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Neural Cascade Architecture With Triple-Domain
Loss for Speech Enhancement
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Abstract—This paper proposes a neural cascade architecture to
address the monaural speech enhancement problem. The cascade
architecture is composed of three modules which optimize in turn
enhanced speech with respect to the magnitude spectrogram, the
time-domain signal and the complex spectrogram. Each module
takes as input the noisy speech and the output obtained from
the previous module, and generates a prediction of the respective
target. Our model is trained in an end-to-end manner, using a
triple-domain loss function that accounts for three domains of
signal representation. Experimental results on the WSJ0 SI-84
corpus show that the proposed model outperforms other strong
speech enhancement baselines in terms of objective speech quality
and intelligibility.

Index Terms—Monaural speech enhancement, time domain,
complex domain, cascade architecture, deep learning.

I. INTRODUCTION

S PEECH enhancement attempts to remove background noise
from the speech signal in a noisy environment, in order

to improve the intelligibility and quality of the noisy speech.
It is extensively applied in speech processing tasks, such as
automatic speech recognition, telecommunication, and hearing
prosthesis. In this paper we study monaural speech enhance-
ment, where noisy speech is collected from a single microphone.

Traditional approaches to monaural speech enhancement in-
clude spectral subtraction and statistical estimation [19], as
well as computational auditory scene analysis [41]. Recently,
supervised algorithms based on deep neural networks (DNNs)
have been established as the mainstream approach [42]. Popular
networks include recurrent neural networks (RNNs) [2], [20],
[34], [45], convolutional neural networks (CNNs) [7], [23], [28],
and generative adversarial networks [4], [29], [31]. Early DNN
studies focus on the magnitude spectrogram of noisy speech in
the time-frequency (T-F) domain, which is derived from short-
time Fourier transform (STFT), and leaves the phase of noisy
speech unaltered. The training targets of these studies can be cat-
egorized into two groups. One group consists of masking based
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targets such as the ideal binary mask [40] and the ideal ratio mask
(IRM) [43], and the other group includes mapping based targets
like the target magnitude spectrum [9], [47]. Recent works in
speech enhancement emphasize the importance of phase estima-
tion motivated by the observation that accurate phase estimation
leads to a significant improvement in speech quality [22]. To
this end, complex-domain and time-domain approaches have
been proposed to address both magnitude and phase estimation.
Based on the insight that real and imaginary spectrograms both
exhibit T-F structure whereas phase spectrogram does not [46],
complex T-F masking and spectral mapping aim to recover the
phase information by estimating real and imaginary components
simultaneously [3], [6], [12], [37], [46]. Other studies tackle this
problem in the time domain by directly estimating waveform
signals [21], [26], [27], [29], such that the phase can be implicitly
estimated. Other studies have attempted to reconstruct clean
speech using cross-domain techniques. For instance, Pandey
and Wang [26] train a time-domain autoencoder but optimize
the prediction with respect to the magnitude spectrogram by
applying STFT to the predicted waveform, which substantially
improves objective speech quality. Bahmaninezhad et al. [1] in-
corporate a time-domain scale-invariant source-to-noise ratio in
the separation criterion of frequency-domain speech separation,
and their experiments show the advantage of the cross-domain
model over the same-domain counterpart.

Despite the success of recent studies that take phase
information into consideration, jointly enhance magnitude and
phase in one stage could be difficult, especially under very low
signal-to-noise ratio (SNR) conditions for highly non-stationary
noises. In contrast to these single-stage models, multi-stage
networks decompose a difficult task into easier sub-tasks. This
strategy has been extensively applied in the speech field. For
example, Zhao et al. [50] perform noisy and reverberant speech
enhancement in two stages, where the first stage deals with
additive noise and the second stage convolutive reverberation.
In the two-stage network of Hao et al. [10], the first stage
predicts binary masks in the T-F spectrogram to remove T-F
units that are dominated by noise, and then a CNN is trained to
perform inpainting in order to recover the masked magnitude
spectrogram. Li et al. [16] use a two-stage network to progres-
sively recovers the clean speech from a noisy mixture. During
the first-stage training, the first subnetwork produces a coarse
magnitude estimate. In the next stage, the second subnetwork
conducts complex spectral mapping and is jointly trained with
the first-stage module. Compared with directly estimating the
complex spectrogram, using estimated magnitude spectrogram
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Fig. 1. A schematic diagram illustrating the cascade architecture. The first module employs a CRN to predict T-F masks, followed by a UNet to predict time-domain
signals. The last module also employs CRN to operate on the complex spectrogram, and its output represents the outcome of the proposed network.

Fig. 2. Densely Connection Block.

as additional input considerably improves the enhancement
performance. Tzinis et al. [38] present a two-step training
procedure for sound source separation. The first step learns a
latent space representation for the input audio, and the second
step utilizes a separation module to separate in the learned latent
space. They show that a pretrained optimal latent space results
in consistent improvement for sound separation tasks. In [5],
Fan et al. propose a multi-stage network for speech separation.
It contains three stages. A pre-separation stage utilizes a T-F
domain separation method. In the next stage, a fully convolu-
tional network uses waveform as input to further enhance the
pre-separated speech. A deep attention module is incorporated

Fig. 3. Grouped Two-layer LSTMs.

for feature fusion. Finally, a temporal convolutional module
(TCM) is applied to model long-term temporal dependencies.
Lin et al. [18] apply multi-stage learning to speech enhancement
by stacking TCM blocks. Each block consists of a self-attentive
TCM, and the proposed network performs sequential refinement
for the magnitude spectrogram. Experiments show that
progressively estimating magnitude spectrogram leads to
noticeable improvement, and the enhancement performance
does not further improve after 5 stages of TCM blocks.

In this study, we propose a novel neural cascade architecture
for monaural speech enhancement. The cascade architecture
consists of three modules based on convolutional recurrent
network (CRN) [36] and UNet [33]. The rationale behind the
cascade design is to constrain enhanced speech in multiple
domains of signal representation using a triple-domain loss.
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Each enhancement module operates on the output of the previous
module and the original noisy speech, such that the speech
is enhanced progressively and, at the same time, allowing for
correction of estimation errors of the previous module. Different
from multi-stage enhancement studies that undergo multiple
sequential training processes, our cascade architecture is trained
only once.

The remainder of the paper is organized as follows. In Sec-
tion II, we formulate the monaural speech enhancement prob-
lem. In Section III, we present the proposed cascade architecture
in detail. In Section IV, we provide experimental setting and data
setup. In Section V, experimental results on WSJ0 SI-84 are
displayed to demonstrate the performance of our model, along
with the comparisons of state of the art baselines. Finally in
Section IV we conclude the paper.

II. PROBLEM FORMULATION

For monaural speech enhancement, we are given a single-
microphone noisy mixture y that is composed of clean target
speech s and background noise n, expressed as

y[k] = s[k] + n[k], (1)

where k indicates a time sample. Converting to the T-F domain
by applying STFT, we have,

Y (t, f) = S(t, f) +N(t, f), (2)

where Y , S and N are the corresponding STFTs of y, s and n,
and t, f index time frame and frequency bin, respectively. These
STFTs can be expressed in either Cartesian or polar coordinates.
In Cartesian coordinates, they are expressed as the addition of
real and imaginary parts,

Yr(t, f) + iYi(t, f) = (Sr(t, f) +Nr(t, f))

+ i(Si(t, f) +Ni(t, f)). (3)

Here subscripts r and i indicate real and imaginary parts of
STFT, respectively, and i is the imaginary unit. From the polar
coordinate perspective, STFT can be expressed as the product
of magnitude and phase,

|Y (t, f)|eiθY (t,f) = |S(t, f)|eiθS(t,f) + |N(t, f)|eiθN (t,f),
(4)

where | · | denotes the magnitude and θ the phase in radius.
The goal of speech enhancement is to produce an estimate ŝ

that is close to the original clean speech s with a DNN f . As
mentioned in Section I, our network has three modules fmask,
ftime and fcomplex that enhance the noisy speech from different
perspectives. With the parameters of each module denoted as φ,
we formulate the speech enhancement problem as,

Ŝ1(t, f) = fmask(φmask, |Y |(t, f))� Y (t, f)

ŝ2(k) = ftime(φtime, y(k), ŝ1(k))

Ŝ3(t, f) = fcomplex(φcomplex, Y (t, f), Ŝ2(t, f)), (5)

where the subscript number 1,2,3 indicates the module num-
ber, and � element-wise multiplication. The final enhancement
result is the output of the last module, i.e. Ŝ3.

III. CASCADE ARCHITECTURE

The proposed network for speech enhancement is shown in
Fig. 1. The cascade architecture consists of three modules: the
magnitude mask module CRN-Mask, the time-domain module
UNet-Time, and the complex-domain module CRN-Complex.
Each module operates on the noisy speech input, and the result
of the previous module. In addition, each module generates an
output that will be optimized directly during DNN training. The
input to the cascade architecture is the complex spectrogram
of a noisy mixture. CRN-Mask is fed with the noisy magni-
tude spectrogram, and estimates the IRM. The estimated mask
is then multiplied with the original complex spectrogram to
provide the magnitude-masked input to the next module. By
applying inverse STFT (iSTFT), the noisy complex input and
magnitude-masked input are converted to waveform signals
and are fed to UNet-Time. The second module, UNet-Time,
produces a time-domain estimate of the clean speech, which
is then converted back to the T-F domain via STFT. The last
module, CRN-Complex, takes the original input and the out-
put of UNet-Time to perform complex spectral mapping. In
the following subsections, we first introduce key components
employed in our model, then describe network configurations
and training objectives for the modules.

A. Densely-Connected Convolutional Block

Inspired by the recently proposed densely connected convo-
lutional network [13], [25], we introduce dense connections to
our design. As shown in Fig. 2, we utilize a densely-connected
(DC) convolutional block to replace a standard convolution in the
complex-domain module. The DC block is designed based on the
idea of reusing feature maps by decomposing one convolution
layer into several with fewer channels, and densely connecting
these layers. Such a pattern improves the information flow
between layers as they are all directly connected. Specifically,
our dense block has 5 layers, each of which consists of a 2D con-
volution, a batch normalization layer and a parametric rectified
linear unit (PReLU) activation function [11]. The growth rate
for the dense block is set to 8, meaning that the number of the
output channels of the first four convolutional layers is 8. The
final layer accepts all previous outputs and performs the normal
convolution operation.

B. Grouping Strategy for RNN

To reduce the computational complexity and the number
of trainable parameters of the cascade model, we employ the
grouped long short-term memory (LSTM) proposed by Gao
et al. [8], which applies a grouping strategy to improve the effi-
ciencies of RNN computations. Specifically, for recurrent layers,
we split the features into disjoint groups to reduce the number
of inter-layer connections. We also rearrange the representations
between two successive recurrent layers to model the intra-group
dependency, as suggested in [37]. This is shown in Fig. 3, and we
utilize a group of 4 and apply a layer normalization after each
LSTM layer. In practice we find that this technique improves
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Fig. 4. Illustration of the modules of the neural cascade architecture. From left to right are the mask module CRN-Mask, the time module UNet-Time, and the
complex module CRN-Complex.

the computational efficiency while maintaining enhancement
performance.

C. Mask Module and Complex Module

We use a standard CRN to construct the mask module [36],
which is fed with a noisy magnitude spectrogram and predicts the
IRM; we have tried directly estimating magnitudes and it does
not perform as well as IRM estimation. As illustrated in Fig. 4(a),
CRN is an encoder-decoder structure network that uses LSTMs
in the bottleneck to model temporal dependencies. We utilize a
stack of 5 convolutional layers with a stride 2 for both encoder
and decoder, except that the encoder uses normal convolutions
to downsample along the frequency axis and the decoder uses
transposed convolutions for upsampling. As such, the encoder-
decoder structure is symmetric. For skip connections we use the
pointwise convolution to concatenate the output of each encoder
layer to the corresponding decoder layer, which our experiments
show to outperform the simple concatenation. Each convolution
is followed by batch normalization, and a PReLU non-linearity.
The final mask prediction is generated by appending a linear
layer with a sigmoidal activation function. The complex module
is depicted in Fig. 4(c) and it resembles the mask module. The
major differences are two-fold. First, all convolutional layers in
the encoder and decoder are replaced with densely connected
blocks. Second, the output of the decoder is split into two halves
and each half is reshaped into 1D and followed by a linear layer
to generate real and imaginary estimates separately. No non-
linearities are used for the final layers.

D. Time Module

The time module UNet-Time is an encoder-decoder structure
that is based on the standard UNet. It operates in the time domain
and enhances frame-level speech segments. As illustrated in
Fig. 4(b), the time module is a fully convolutional network
comprising 9 convolutional layers for both the encoder and
the decoder. Similarly, we use pointwise convolutions for skip
connections, and PReLU to provide non-linearity. We do not
perform batch normalization as it does not provide performance
benefits in our experiments. Note that we do not use dense blocks
in the time module as the complexity will drastically increase.

Table I summarizes the network design details of individual
modules. Since CRN-Mask and CRN-Complex are similar, we
only present the parameter setup of the mask module for brevity.
Layer names denote the function and position of the correspond-
ing layer or block. The input and output size of each layer are
marked as Channels× T imeSteps× FreqChannels. Addi-
tionally, the hyperparameters for each layer are specified in the
format of KernelSizes, Strides, OutChannels.

E. Training Targets and Loss Functions

The training objective of our cascade architecture is composed
of three parts, corresponding to the outputs generated by the
three modules. As mentioned in Section I, the widely used
training target of the IRM [43] is defined in the magnitude
domain. Specifically, it is based on the energy of speech and
noise in T-F units,

IRM(t, f) =

√
S(t, f)2

S(t, f)2 +N(t, f)2
. (6)

The first loss Lmask is calculated based on IRM estimation,

Lmask =
1

TF

∑
t,f

|RM(t, f)− IRM(t, f)|, (7)

where RM denotes the predicted ratio mask, and T and F repre-
sent the number of time frames and frequency bins, respectively.
This loss corresponds to the mean absolute error between the
predicted ratio mask and the IRM.

The second loss Ltime is motivated by the phase-constrained
magnitude loss introduced in [24], which takes into considera-
tion the STFT magnitudes of both speech and noise. Specifically,

Ltime =
1

TF

∑
t,f

(|Ŝ(t, f)| − |S(t, f)|)

+
1

TF

∑
t,f

(|Y (t, f)− Ŝ(t, f)| − |N(t, f)|), (8)

where Ŝ is the STFT of the predicted waveform speech, andY −
Ŝ is the STFT of the estimated noise. This loss is demonstrated
to be effective for imposing a phase constraint on optimization,
and leads to good objective quality scores.
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TABLE I
NETWORK DETAILS OF CRN-MASK AND UNET-TIME

The last loss Lcomplex is defined in terms of the complex
spectrogram, and it combines the real and imaginary difference
LRI and magnitude differenceLMag as previously done in other
complex spectral mapping studies [44].

Lcomplex = LRI + LMag

LRI =
1

TF

T∑
t=1

F∑
f=1

(|Ŝr(t, f)− Sr(t, f)|

+ |Ŝi(t, f)− Si(t, f)|)

LMag =
1

TF

T∑
t=1

F∑
f=1

(|Ŝ(t, f)| − |S(t, f)|). (9)

A magnitude loss term is added in order to reflect the relative
importance of magnitude over phase. Recently, Zhang et al. [49]
proposed a weighted magnitude-phase loss also in an attempt to
emphasize the importance of magnitude estimation.

Finally, our triple-domain loss is the linear combination of
the three losses described above. Each component in the triple-
domain loss optimizes speech with respect to a different signal
representation.

Ltriple = λ1Lmask + λ2Ltime + Lcomplex, (10)

where λ1 and λ2 are the coefficients to balance different value
ranges of the three loss terms. We empirically select λ1 = 5.0,
λ2 = 1.0, based on the performance on the validation data.

Xu et al. [48] proposed a components loss, consisting of
three components for speech preservation, noise suppression,
and residual noise quality. Compared with single-component
baselines, their experiments show improved and balanced per-
formance. Unlike our triple-domain loss, the components loss is
defined in the same STFT domain. Also, our triple-domain loss
is different from the triplet loss used in automatic speaker recog-
nition [17], which is defined in terms of a positive sample and

a negative sample in order to maximize intra-class similarities
and inter-class differences.

IV. EXPERIMENTAL SETTINGS

A. Dataset

The proposed cascade architecture is evaluated on the WSJ0
SI-84 dataset [30], which consists of 7138 utterances from 83
speakers (42 males and 41 females). We select 5428 utterances
from 77 speakers to generate the training set. In addition, 20000
noises are randomly chosen from the DNS-Challenge1 as our
training noises, which have a total duration of approximately 55
hours. To generate training mixtures, we randomly cut a segment
from the training noises, and then mix it with a randomly picked
training utterance at a SNR level that is uniformly sampled
from {−5, −4, −3, −2, −1, 0} dB. Using this strategy we
create a training set with 50000 mixtures. We set aside 150
clean utterances from the training data to create a validation
set that is composed of 4000 mixtures. For test purposes, we
use 4 challenging noises that are babble (identified as babble1)
and factory1 from NOISEX92 [39], and babble (identified as
babble2) and cafeteria from an Auditec CD.2 Test data are gen-
erated by mixing these noises with 150 utterances selected from
6 untrained speakers (25 each) at three SNR levels {−5, 0, 5} dB.

B. Experimental Setup

All the utterances are sampled at 16 kHz. For STFT oper-
ations, we use a 20 ms Hamming window with 50% overlap
between adjacent time frames. That is, we use 320-point STFT,
which corresponds to a 161-dimensional spectrum. For the
frame-level processing in the time module, each utterance is
divided into segments of 2048 samples (i.e 128 ms segment), and
with an overlap of 1024 samples between consecutive segments.

1[Online]. Available: https://github.com/microsoft/DNS-Challenge
2[Online]. Available: http://www.auditec.com

Authorized licensed use limited to: The Ohio State University. Downloaded on February 15,2022 at 16:18:32 UTC from IEEE Xplore.  Restrictions apply. 

https://github.com/microsoft/DNS-Challenge
http://www.auditec.com


WANG AND WANG: NEURAL CASCADE ARCHITECTURE WITH TRIPLE-DOMAIN LOSS FOR SPEECH ENHANCEMENT 739

Both causal and non-causal networks are trained with stochastic
gradient descent optimization using the Adam optimizer [15].
We train the models for 50 epochs with a batch size of 8
utterances, and set an initial learning rate of 0.001. Utterances
that are longer than 8 seconds are chunked to stabilize training,
and shorter utterances in a batch are padded with zeros such that
all inputs have the same size. Note that during loss calculation,
the zero-padded region is ignored. The learning rate is halved if
the loss on the validation set has not decreased for 3 consecutive
epochs. Gradient clipping with a maximum value 5.0 is applied
to avoid gradient explosion.

In our experiments, the performance is assessed by using stan-
dard speech enhancement metrics extended short-term objective
intelligibility (ESTOI) [14], and perceptual evaluation of speech
quality (PESQ) [32]. ESTOI typically has a value range from 0
to 1 and can be interpreted as percent correct, and PESQ has a
value range from −0.5 to 4.5. For both metrics, higher values
indicate better results.

C. Baselines for Comparison

We compare the proposed cascade architecture with six strong
baselines. We first compare with the self-attentive temporal
convolutional network (SATCN) [18] that performs multi-stage
enhancement in magnitude spectrogram. We adopt the 5-stage
configuration that stacks 5 TCNs and incrementally refines
the magnitude estimation, resulting in a model with 9.91 M
parameters. The second one is the gated CRN (GCRN) [37]
that conducts complex spectral mapping. GCRN has a similar
structure to CRN, and is also composed of 5 convolutional and
deconvolutional blocks for the encoder and the decoder modules,
respectively. The major difference is that each convolution is
combined with a gated linear unit, and two decoders are used to
for estimate real and imaginary parts separately. We follow the
configuration described in the original paper that has 9.77 M pa-
rameters. The third one is the autoencoder CNN (AECNN) [26],
which is a fully convolutional network that operates in the time
domain. It is an autoencoder network that is fed with noisy
speech segments, and predicts the corresponding clean speech
segments. We follow the original description and replicate the
network with 6.32 M parameters. For training, we use a segment
size of 16384 samples with 50% overlap for the WSJ0 SI-84
dataset. Deep Complex Convolution Recurrent Network (DC-
CRN) [12] is selected as the fourth baseline, which achieved
the first rank in the real-time track of the 2020 Interspeech
DNS-Challenge. It is a complex version of CRN, and incorpo-
rates complex operations for both CNN and LSTM layers. For
comparison, we choose the DCCRN-E configuration described
in the paper with around 3.67 M parameters. We also include
a two-stage enhancement approach that performs masking and
inpainting (M&I) [10] on the noisy magnitude spectrogram. The
binary masking and spectrogram inpainting modules are similar,
and each is implemented using a residual neural network. In
addition, we replace the standard convolutions with partial con-
volutions in the inpainting module. M&I is a non-causal model
that uses 160×160 magnitude spectrograms as the input, and has
20.47 M parameters. Another two-stage baseline for comparison

is the Complex spectral mapping based Two-Stage Network
(CTSNet) [16]. CTSNet consists of two temporal convolution
based modules that progressively enhance noisy speech. The first
module estimates the magnitude spectrogram and the second
performs complex spectral mapping. The number of intermedi-
ate channels is set to 64 to be consistent with the settings in [16],
resulting in a model with around 6.55 M parameters.

V. RESULTS, COMPARISONS AND ANALYSES

A. Evaluation and Comparison Results

In this section, we present evaluation results on the WSJ0
SI-84 dataset, and compare the performance of our cascade
architecture with the recent baselines in both causal and non-
causal settings. The results are provided in II and III, in terms
of ESTOI and PESQ for four challenging nonstationary noises
at the SNR levels of −5 dB, 0 dB, and 5 dB. We highlight the
best score under each condition by boldface. We observe that all
the DNN-based speech enhancement models effectively remove
noises in various conditions for untrained speakers and noises. In
addition, the proposed neural cascade architecture (NCA) yields
the best results in all conditions.

Under the causal settings, the tables show that our NCA
model substantially outperforms the time-domain AECNN in
both metrics. For example, under −5 dB SNR, we see ESTOI
improved by 9.81% and PESQ by 0.18. In addition, SATCN only
operates on magnitude spectrograms and performs worse than
other baselines even though it performs enhancement in multiple
stages. GCRN and DCCRN perform complex spectral mapping
in one stage, and CTSNet optimizes the complex spectrogram
in multiple stages. Compared with the other baselines, CTSNet
shows a significant advantage. Moreover, our model consistently
outperforms CTSNet, particularly in ESTOI; for example, on
average ESTOI is improved by 3.94%, and PESQ by 0.07 under
−5 dB SNR conditions.

We also provide the non-causal enhancement results under
the exact same experimental setup. To make the baseline models
non-causal, we replace the causal convolutions with non-causal
convolutions. Furthermore, all LSTM layers are replaced with
bidirectional LSTMs. The non-causal models are denoted as
NC-SATCN, BGCRN, BDCCRN, NC-CSTNet and NC-NCA;
non-causal AECNN is not included as turning AECNN into a
non-causal version is not straightforward. Not surprisingly, there
is a substantial performance gap between causal models and
their non-causal counterparts because non-causal models utilize
future information. With non-causal settings our cascade archi-
tecture maintains a consistent performance advantage. In fact,
our proposed network provides an even larger performance gain
over the best baseline of NC-CTSNET, for example by 5.87%
ESTOI and 0.22 PESQ on average in the −5 dB SNR condition.

Fig. 5 illustrates the spectrograms of an example utterance
from the test set mixed at −5 dB with the babble2 noise.
Fig. 5(a)–(e) show respectively the mixture spectrogram,
magnitude-masked spectrogram, time-domain enhanced
spectrogram, final enhanced spectrogram, and clean speech
spectrogram. The figures demonstrate that the cascade
architecture progressively improves the enhancement result.
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TABLE II
EVALUATIONS AND COMPARISONS OF DIFFERENT ENHANCEMENT MODELS IN TERMS OF ESTOI(%)

TABLE III
EVALUATIONS AND COMPARISONS OF DIFFERENT ENHANCEMENT MODELS IN TERMS OF PESQ

TABLE IV
EFFECT OF VARIOUS OPTIMIZATION STRATEGIES

The spectrogram enhanced by our model effectively removes
the background noise even at −5 dB, and is close to that of
the clean speech. We provide enhanced speech samples at
https://whmrtm.github.io/NCA_demo.html.

B. Effects of Optimization Strategies

We further evaluate the proposed NCA with various optimiza-
tion strategies. Table IV compares the enhancement performance
and training time of several strategies under −5 dB SNR. The
first row of the table is the result of end-to-end training, where all
modules are updated simultaneously. There are two reasonable
multi-stage training strategies. One is the sequential training
strategy. First, we train CRN-Mask to predict the IRM. Next,
with the first module frozen, we train UNet-Time by taking
the noisy input and the output from the frozen CRN-Mask.
Finally, we train the last module CRN-Complex with the pre-
vious modules frozen, and take as input the prediction from
the second module and the noisy input. The other strategy is
similar, but without freezing previous modules. Specifically, for
the second module, we jointly train the pre-trained CRN-Mask
and UNet-Time, but use a smaller learning rate for fine-tuning
the first module. In the last step, the last two modules are jointly
trained, with the first module frozen. Similarly, the second mod-
ule is fine-tuned with a smaller learning rate. Our experiments

TABLE V
ABLATION STUDY ON COMPONENTS OF THE CASCADE ARCHITECTURE

show that end-to-end optimization and multi-stage joint training
have the best performance. Sequential training degrades the
enhancement performance; for example, at −5 dB SNR, ESTOI
is decreased by 2.58% and PESQ by 0.12. The end-to-end opti-
mization strategy would be preferable, because it is conceptually
simpler and does not require extra hyperparameters. In addition,
this strategy saves training effort. Compared with the end-to-end
training, the joint training strategy reaches similar performance
using more than twice training time.

Table IV also compares our model trained with only the
complex loss Lcomplex measured at the last module (last row)
and the cross-domain loss measured in all three modules with the
same cascade architecture. Only optimizing Lcomplex degrades
the results considerably compared to optimizing the proposed
triple-domain loss, as the first two modules are not constrained
by their respective objectives. This comparison demonstrates
that the strong performance of the cascade architecture is not
entirely due to the neural network structure, and the training
strategy with the triple-domain loss is also a contributing factor.

C. Ablation Study

To investigate the contributions of the introduced techniques,
we conduct an ablation study using the causal cascade architec-
ture at −5 dB SNR. As shown in Table V, we evaluate several
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Fig. 5. Spectrograms of example speech enhancement: (a) Noisy speech mixture, (b) Speech enhanced by the first module, (c) Speech enhanced by the second
module, (d) Speech enhanced by the proposed architecture, and (e) Clean speech.

variants for comparisons under by taking the average results of
all test noises. In the first variant, denoted as − DC, we remove
dense connections in the complex module. In the second one,
denoted as− 1×1 Conv Skip, we replace the pointwise convolu-
tional skip connections with naive concatenations. The last one,
denoted as−Noisy Input, removes the noisy input for the second
and third modules. The experimental results in Table V show that
these variants underperform the original cascade architecture.
Among these components, dense connections play a significant
role, contributing 3.56% ESTOI and 0.20 PESQ. In addition, it
is important that each module has access to the noisy input.

In Table VI, we present evaluation results under the causal
setting to analyze the contribution of each part. We have inves-
tigated using only a single module, and 2-module and 3-module
combinations. In order to have a fair comparison, we adjust the
number of convolutional channels such that all variants in the
table have comparable numbers of parameters. As shown in the
table, combining cross-domain modules is advantageous over
using single modules. Among two-module models, coupling
CRN-Mask and UNet-Time performs slightly better than the oth-
ers in terms of PESQ. Coupling UNet-Time and CRN-Complex,
however, exhibits better ESTOI scores. Furthermore, among
reasonable combinations of three modules, our proposed model
has the best overall performance.

TABLE VI
EXPERIMENTAL COMPARISONS OF MODULE COMBINATIONS

D. Comparison of Model Complexities

Table VII lists the model size and multiply-accumulate opera-
tions (MACs) of the proposed cascade architecture and the other
baselines in the causal settings. The model size is the number
of trainable parameters within a model, and the computational
complexity is calculated by taking the average of enhancing 50
test utterances using an open-source package.3 As shown in the
table, our model achieves superior performance with reasonable
computational complexity. The NCA model has about 12.87

3[Online]. Available: https://github.com/Lyken17/pytorch-OpCounter
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TABLE VII
NUMBER OF TRAINABLE PARAMETERS AND MACS FOR DIFFERENT

ENHANCEMENT MODELS, WHERE M INDICATES MILLION

million parameters, and about 100 million MACs. Additionally,
the first three rows display the numbers of parameters and
MACs of each module within NCA, and they are reasonably
comparable. In general, DCCRN has the smallest number of
parameters, and GCRN is the fastest model.

VI. CONCLUSION

In this study, we have proposed a novel cascade architecture
for monaural speech enhancement. The key idea is to lever-
age the strengths of time and frequency domain approaches
by progressively enhancing noisy speech in different domains
of speech representation. In the cascade architecture, the first
module estimates the IRM from the noisy input. The second
module performs time-domain enhancement on the output of
the first module and the noisy input. The last module further
refines the enhanced speech by performing complex spectral
mapping on the output of the second module and the noisy input.
Experimental results demonstrate the superiority of the neural
cascade architecture trained with the triple-domain loss.

We have explored various combinations of the modules,
confirming that the proposed cascade design works the best.
Also, we optimize all the modules simultaneously, avoiding the
complexities of pre-training and fine-tuning. For future research,
we plan to make our model practical by reducing the network
complexity and inference time (see [35]). Additionally, we plan
to extend our cascade architecture to speech enhancement in
multi-channel and reverberant environments.
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