2058

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 29, 2021

Towards Robust Speech Super-Resolution

Heming Wang

Abstract—Speech super-resolution (SR) aims to increase the
sampling rate of a given speech signal by generating high-frequency
components. This paper proposes a convolutional neural network
(CNN) based SR model that takes advantage of information from
both time and frequency domains. Specifically, the proposed CNN is
a time-domain model that takes the raw waveform of low-resolution
speech as the input, and outputs an estimate of the corresponding
high-resolution waveform. During the training stage, we employ a
cross-domain loss to optimize the network. We compare our model
with several deep neural network (DNN) based SR models, and
experiments show that our model outperforms existing models.
Furthermore, the robustness of DNN-based models is investigated,
in particular regarding microphone channels and downsampling
schemes, which have a major impact on the performance of DNN-
based SR models. By training with proper datasets and prepro-
cessing, we improve the generalization capability for untrained
microphone channels and unknown downsampling schemes.

Index Terms—Speech super-resolution, bandwidth extension,
convolutional neural network, robust speech super-resolution.

I. INTRODUCTION

OR bandwidth-limited signal transmission and equipment
F such as bluetooth and telephony, only low-frequency com-
ponents of speech signals are preserved. Narrow bandwidth or
low resolution degrades speech quality, or even intelligibility.
Speech super-resolution (SR) aims to increase the waveform
resolution of such speech by generating high-frequency compo-
nents. Itis also referred to as speech bandwidth extension (BWE)
viewed from the spectral perspective. SR or BWE is beneficial
to many speech processing tasks, such as text-to-speech syn-
thesis [32], automatic speech recognition [3], [23] and speech
enhancement [8].

Early studies in this field use signal processing methods.
A source-filter model is introduced to extend the bandwidth
by finding the high-frequency residual signal and the spectral
envelope individually [8], [29]. To predict upper band spec-
tral envelops from narrowband speech, codebook methods are
employed to map narrowband speech representations and the
corresponding upperband envelopes [7], [42], [47]. Gaussian
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mixture models (GMMs), and joint hidden Markov model
and GMM have been exploited for estimation in codebook
mapping [4], [33], [46]. These statistical methods yield bet-
ter results compared with deterministic mapping, but tend to
yield overly smoothed spectra [27]. The introduction of deep
learning advances many areas of signal processing. For speech
SR, deep neural networks (DNNs) have demonstrated superior
performance. DNN studies include multiplayer perceptrons [6],
[21], [41] to predict vocal tract filter parameters or the original
log-power spectrum [23], [28], recurrent neural networks with
long-short-term memory [15], convolutional neural networks
(CNNSs) [14], speech waveform synthesizers like WaveNet [16],
[35], [51] and SampleRNN [26], [31] for conditional speech
generation, and generative adversarial networks [10], [17], [24].
A more detailed summary of the related work is given in Sec-
tion II. In general, deep learning based approaches show better
performance compared with statistical approaches.

Current DNN-based SR models operate in matched set-
tings, where recording conditions are fixed, and high-resolution
(HR)/low-resolution (LR) pairs are obtained in the same way
during training and testing. We observe that these models fail
to generalize to different experimental settings. Specifically, the
performance of such models degrades on speech databases with
different recordings, or on LR signals generated by a different
downsampling scheme. Therefore, it is important to investigate
the robustness of SR models to such factors, and achieve robust
SR. In this paper, we address speech SR in the time domain
by employing a CNN model to reconstruct speech with higher
sampling rates. We propose a cross-domain loss, which not only
produces excellent performance in terms of signal-to-noise ratio
(SNR) and log-spectral distance (LSD) [13], but also removes
unwanted artifacts in generated speech. Additionally, the pro-
posed CNN can operate in real-time.

Another contribution of this paper is an examination of the
sensitivity of DNN-based SR models to different recording
channels and downsampling schemes. By employing different
microphone impulse responses and performing cross-corpus
experiments, we demonstrate that microphone channel is a major
factor that affects SR performance. We also note that models
trained with different downsampling schemes exhibit different
levels of performance, and do not generalize to another way of
downsampling. We show how to improve robustness to these
variations with a proper training strategy. As a result, our model
generalizes to untrained speech corpora and data acquisition
schemes. A preliminary version of this study was published in
ICASSP 2020 [50], but the present paper goes far beyond the
earlier version. The preliminary version adopts a time-frequency
loss, and this version proposes a novel cross-domain loss that
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further improves SR performance. Robustness is not addressed
in [50], but is a major topic in the current investigation. In
addition, more evaluations and comparisons are provided in this
paper.

The rest of the paper is organized as follows. In Section II,
we review related prior studies, which also serve as baselines in
our comparisons. In Section III we present the network design
and loss functions. Section IV provides experimental results
and comparisons. In Section V, the robustness of the model is
examined in terms of microphone channels and downsampling
schemes. Section VI concludes the paper.

II. RELATED WORK

Li and Lee utilize a DNN to address speech BWE [23].
They employ log-power spectrum (LPS) as features, and predict
the wideband LPS from the narrowband LPS. A DNN is pre-
trained as a restricted Boltzmann machine and optimized by a
mean-squared error (MSE) loss between the predicted features
and target features. The phase of the upperband is produced
by flipping the narrowband phase and adding a negative sign.
In another BWE study, Abel and Fingscheidt employ a DNN
to estimate the lower-dimensional cepstral representation of
spectral envelopes [2]. The upperband phase is obtained by
copying the phase of narrowband spectrum. Experiments show
that these DNN-based BWE approaches yield better results than
traditional approaches.

Inspired by the successful application of CNNs in image SR,
Kuleshov et al. introduce AudioUNet [22], which is adapted
from an image domain network [9], [44]. This is an end-to-end
autoencoder model that takes the raw waveform as input and
outputs the predicted SR waveform. This method operates in
the time domain and thus does not need to estimate the phase
separately. It outperforms conventional approaches and consid-
erably improves the quality of reconstructed speech.

While the above studies show promising results, they only
focus on one representation domain. Lim et al. propose a time-
frequency network (TFNet) that incorporates information from
both time and frequency domains [25]. TFNet is built from two
AudioUNets, where one is trained with LR and HR waveforms
and the other is trained with the magnitudes of short-time Fourier
transform (STFT). These two networks are jointly optimized
and a spectral fusion layer is utilized to combine the output of
two branches. The STFT magnitude is obtained by combining
estimates from the two branches, and an estimate of the STFT
phase is obtained through the time branch. Experiments show
that TFNet successfully leverages the cross-domain information
and outperforms AudioUNet.

III. MODEL DESCRIPTION

Suppose we are given an LR speech segment s;,- at a sampling
rate fs;,.. The goal of speech SR is to reconstruct a speech signal
Spy at a sampling rate fsj,,., such that fs,,. > fs,;., i.e. restoring
high-frequency components. The ratio fs,,,./fs;, is referred to as
the downsampling factor, which is typically an integer 2 or 4. For
instance, LR signals may be standard telephone speech signals
sampled at 8 kHz, and HR signals are 16 kHz. To reconstruct
the HR signal, we learn a DNN model f that takes the LR signal

2059

sy as the input. With parameters of the model denoted as 6, the
model produces the corresponding reconstruction s

Ssr = f(oa Slr) (1)

Fig. 1 depicts the overall pipeline of the proposed SR model.
We first upsample LR signals to the desired sampling rate using
cubic spline interpolation [11]. Then the upsampled signal and
HR signal are fed into our model as the input and desired output,
respectively. The proposed neural network is based on the au-
toencoder CNN (AECNN) by Pandey and Wang [37]. AECNN
is a fully convolutional network composed of a series of encoder
and decoder blocks, with skip connections to better reconstruct
encoder outputs. Parametric rectified linear units (PReLUs) are
used to each layer, except for the last layer which is linear.
Dropout is employed every three layers, as illustrated in Fig. 1.
Our CNN takes as the input upsampled segments, each having
2048 samples and with a 50% overlap between consecutive
frames, and outputs the corresponding segment HR estimates.
The network is trained with raw waveforms and minimizes a
loss derived from STFT. One change we introduce to AECNN
is to decoding blocks, where we replace transposed convolution
layers with subpixel layers. A subpixel layer, proposed by Shi
et al. [44], is an upscaling layer implemented by convolution
operations. It has been reported in [34] that using transposed
convolution for upsampling layers can lead to artifacts in the out-
puts of image SR, often referred to as checkerboard artifacts. By
applying subpixel layers these artifacts are alleviated for image
SR. We observe that employing subpixel layers accelerates the
training progress and slightly improves speech SR results. Note
that subpixel layers are also used in AudioUNet in upsampling
blocks [22].

Our model is optimized with a cross-domain loss. For a real
valued signal s of length N in the time domain, the discrete
Fourier transform (DFT) amounts to multiplying by a complex-
valued matrix D,

S = Ds (2)

where D is a N x N matrix, and S is the DFT of s. We
express the complex formula in (2) in real and imaginary parts.
Extracting the real and imaginary part from matrix D, we obtain
D, and D, respectively. Equation (2) can be expressed as:

S, = D,s 3)
Si = DiS (4)

where S, and S; represent the real and imaginary part of the
DFT in real values. Then S = (D, + iD;)s = S, + iS;, and
1 denotes the imaginary unit. The DFT magnitude can be ex-
pressed as Syqq = \/S2 + S7.

The first loss explored is a frequency-domain loss defined as
the mean absolute error (MAE) between two STFT magnitudes,

R 11 M K
Lr(5.8) = 3% 3D 1Smag(m, k) = Smag(m, k)| (5)

m=1 k=1

Here S , S denote the STFT of SR and HR segments, respectively,
and m, k index time and frequency, respectively. This loss is
denoted as L.
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L only optimizes STFT magnitudes and the phase estimation
of SR signal is ignored. Ly does not perform well on time-
domain metrics such as SNR and generates an unwanted artifact
in reconstructed speech. To address the phase estimation, we
investigate three other loss functions. The first one adds a term
that measures real and imaginary parts of STFT, denoted as
Lrrmac:

Lrimac(S,8) = (©6)

@)

The second one incorporates a phase constraint to combine a
time-domain loss with a frequency-domain loss, and uses time-
domain estimation to compensate for phase,

LTF = OéLT + (1 - OK)LF (8)
1 N

Lr(5,8) = 5 D |3(n) = s(n)] ©
n=1

where 8, s are the time-domain SR and HR signals of length N,
respectively. We use a coefficient o to combine two loss terms
Ly and Lp. This loss is called time-frequency loss L, and
the value of v is set to 0.85 to balance the magnitude difference
between frequency and time losses [50].

Lpr and Lrrarac improve SNR scores and alleviate ar-
tifacts phenomenon; however, the artifacts are not completely
removed by either of them. The third loss function we investi-
gate is inspired by a recent study of similar artifacts in speech
enhancement [38], for which we take the STFT magnitudes of
both SR signals and residual signals into account. The residual
signal, denoted as s,.., is obtained by subtracting an upsampled
signal (denoted as s,,;,) from its corresponding HR signal. In the

Ilustration of the super-resolution pipeline and our AECNN network structure.

frequency domain, we have the following relationship,

Shr = Sup + Sre (10)

where S, is a spectral vector in the complex domain. If we only
optimize the magnitude of S},., there can be infinite candidates
of Sy, that satisfy Equation (10). If we optimize the magnitudes
of S, and Sy, simultaneously, the infinite number of candidates
for Sp,,- is reduced to two due to a triangular magnitude relation
(see [38]). Therefore, optimizing both residual and SR signals
imposes a phase constraint on CNN optimization.

Lpem(S, S, Sup) = Lr(S,S) + Lr(S — Sup, S — Sup)
1D

This loss function is denoted as PCM (phase constrained mag-
nitude) [38]. Lpc s takes the STFT of upsampled signal .S,
as an additional input, and is composed of two frequency loss
functions for speech and its corresponding residual. L pcps can
effectively remove unwanted artifacts. Worth noting are previous
studies showing that it is simpler for DNN optimization with
residual terms added [18], [45].

The SNR performance of L pcjps is improved compared with
L, but still not optimal compared with L7 . To improve time-
domain performance, we introduce L,

Lr.pcn(3,5,8, 8, Sup) = BLr(3,5) + (1 — B)Lpoar (12)

This loss is denoted as T-PCM, and we use a coefficient /3, set to
0.6 in this study, to combine loss terms from the two domains.

Fig. 2 illustrates the calculation of Ly pcps on a segment
of 2048 samples, which corresponds to a 128 ms long seg-
ment for 16 kHz sampling frequency. We apply the overlap
and add (OLA) method when calculating the loss within each
segment, because segments of 128 ms are too long to satisfy
the stationarity assumption for short-time signal processing. For
frequency-domain loss calculation, we take into consideration
both signal and residual segments. Framed segments are first
divided into frames of 512 samples with a frame shift of 256
samples, corresponding to an analysis window of 32 ms with
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Fig.2. Schematic diagram showing the process of calculating the T-PCM loss.
L denotes the number of 2048-sample frames, and M represents the number of
512-sample frames.

a 50% frame overlap. Then we multiply these frames with a
Hamming window. The STFT magnitudes for both signals and
residuals are calculated on windowed frames to define the mag-
nitude loss. For the time-domain loss calculation, we calculate
the MAE for framed SR segments and HR segments. Loss terms
from both domains are added to define the T-PCM loss.

IV. EVALUATION AND COMPARISON
A. Experimental Setup

We evaluate our model on two datasets, TIMIT [12] and
VCTK [48]. TIMIT is a standard corpus containing speech
recordings from 630 speakers with a 16 kHz sampling rate. From
the training part of the corpus, we choose 4620 utterances as
the training dataset, and 1153 utterances as the validation set.
We select a subset of the TIMIT core test set for test purposes,
which consists of 192 utterances from 24 speakers that are not
included in the training and validation datasets, thus enabling
us to assess the generalization ability to untrained speakers. The
VCTK corpus contains 44 hours of speech recordings from 108
speakers with a 48 kHz sampling rate. For a fair comparison,
we follow the task design of [22] and [25]. The first task uses
speech data of one specific speaker (speaker p225). The other
task is multi-speaker, for which we train and test using the whole
corpus. Following the description in [25], we split the data to
88%, 6%, and 6% for training, validation and testing purposes.
We also make sure that there is no speaker overlap between
training, validation and testing for the multi-speaker task. LR
signals are obtained by first applying a Chebynov type I low-pass
filter and then subsampling. A silence filter that discards samples
below an energy threshold of 0.05 is performed to stabilize
training and ensure faster convergence.
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For preprocessing, all the utterances are first resampled to a
16 kHz sampling rate if their original sampling rate is higher
than 16 kHz. Then each utterance is normalized to zero mean
and unit variance. Note this is different from our preliminary
version [50], where we apply a uniform normalization (rescal-
ing each utterance to the range -1.0 to 1.0). We observe that
mean and variance normalization (MVN) improves cross-corpus
generalization. We divide each utterance into frames of 2048
samples (128 ms), and with an overlap of 1024 samples between
consecutive frames. LR inputs are upsampled using cubic spline
interpolation so that input and desired output signals for our
CNN have the same length. During the reconstruction stage, we
combine consecutive frames using the OLA method.

We evaluate the SR performance with three objective metrics:
SNR, LSD, and PESQ for wideband speech [5]. SNR is a time-
domain metric, defined as,

N 2
SNR(3, s) = 10logy, Nziﬂ s(n) -
2 n=1[8(n) = s(n)]
LSD, a frequency-domain metric, measures the logarithmic
distance between two magnitude spectra in dB.

M K 4 2

A 1 1 Smag(m, k)?

LSD(S,S5) = — = 1 L

5.9= 35 3 | e 3 e S

m=1 k=1
(14)
When the two spectra are the same, LSD will be 0 dB, the
smallest possible distance. Given a reference and a degraded
audio signal, PESQ for wideband speech is a standard metric of
perceptual speech quality with a value range from 1.04 to 4.64.
Higher PESQ indicates better listening quality.

(13)

B. Comparison Models

We compare with four other deep SR models described in
Section II. The first baseline is the spectral domain model by
Li and Lee [23], referred to as DNN-BWE. This model takes 9
frames (4 preceding and 4 succeeding) as the input and predicts
the current STFT frame. We follow the implementation details
in the original work, which uses 256-sample frames with a
frame shift of 128 samples, and a 4-layer DNN with 2048
hidden units for training. The second baseline is by Abel and
Fingscheidt (denoted as DNN-Cepstral) [1], [2], and we follow
the original description by using a 256-sample frame length
and a 128-sample frame shift for narrowband speech. Their
DNN has 3 hidden layers with 256 units in each. The third
comparison model is the waveform-based model proposed by
Kuleshov et al. [22], denoted as AudioUNet. Following their
default setting in the publicly available code,' we set the number
of filters in the encoding layers to 128, 256, 512, and 512,
and the filter size to 65, 33, 17, and 9. The setting for decoder
layers is similar except for the reverse order and doubled filter
size. AudioUNet operates on 2048-sample segments, with a
50% overlap between consecutive segments. The last baseline
is TFNet by Lim et al. [25], which consists of two AudioUNets.
But for both branches, the number of filters is halved to reduce

Uhttps://github.com/kuleshov/audio-super-res
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TABLE I
EXPERIMENTAL RESULTS FOR SR MODELS EVALUATED ON TIMIT
SNR LSD | PESQ
Spline 1548 | 2.27 | 2.56
DNN-BWE 17.05 | 1.05 | 2.78
DNN-Cepstral | 16.27 | 0.97 | 2.79
AudioUNet 1859 | 0.89 | 2.94
TFNet 1891 | 0.87 | 3.12
AECNN 19.63 | 0.72 | 3.59
Proposed 20.18 | 0.72 | 3.65

parameters. To be consistent with the settings in their paper, a
frame size of 8192 samples with a 75% overlap is employed for
the network input.

For our proposed network, the kernel size is set to 11 for all
convolutional layers. The number of channels for each encoding
layer is set to 64, 64, 64, 128, 128, 128, 256, 256, and 256, and
the decoding layers have the same numbers except in the reverse
order. Our network is trained with a mini-batch size of 32 for
100 epochs, and optimized with the T-PCM loss. Dropout ratio
is set to 0.2 for dropout layers. The Adam optimizer [20] with
a learning rate of 0.0003 is used for stochastic gradient descent
based optimization. The learning rate is halved if the loss has not
improved for 3 consecutive epochs on the validation set. We add
an early stopping criterion such that the training process stops if
the validation loss has not improved for 6 successive epochs. For
other deep SR baselines, the training setup follows their original
descriptions.

C. Results and Comparisons

Table I presents the results of our proposed CNN, as well as
the other baselines, on the TIMIT dataset which is downsampled
to 8 kHz to create LR signals. The first row corresponds to the
objective scores by applying cubic spline interpolation, which
is a conventional signal processing baseline and outputs limited
but stable improvement for SR. Our model improves over the
cubic spline method by 4.7 dB in terms of SNR, and cuts LSD
by 68.3%. PESQ is improved by nearly 1.1, which is a large
improvement for speech quality. Compared with the other four
deep learning baselines, we see consistent improvement over all
three metrics. Specifically, compared with the best-performing
baseline of TFNet, our model improves SNR by around 1.3 dB,
LSD by 17.2%, and PESQ by 0.5. Also our model slightly
improves over the AECNN baseline in terms of SNR and PESQ.

The VCTK results are reported in Table II. The ratio R
is the downsampling factor, where R = 2 implies upsampling
from 8 kHz to 16 kHz, and R = 4 represents upsampling from
4 kHz to 16 kHz. VCTKg represents the single-speaker task,
and VCTK ), represents the multi-speaker task. As shown in
Table II, our model shows superior performance for both down-
sampling factors. For R = 2, compared with the spline baseline,
our model improves SNR by over 3.0 dB, and cuts LSD to
below 1.0 for both tasks. We also see a consistent improvement
in PESQ. For R =4, we observe similar improvements for
all three metrics over the spline method. For instance, for the
multi-speaker task, we see SNR boosted by around 4.7 dB, LSD
cut to below 1.0, and PESQ increased by 0.5. Our model also
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TABLE II
EXPERIMENTAL RESULTS FOR SR MODELS EVALUATED ON VCTK WITH
DOWNSAMPLING FACTOR OF 2 AND 4

VCTKg VCTK pr
Model R | SNR LSD PESQ | SNR LSD PESQ
Spline 2 | 19.07 199 3.84 1889 2.08 3.53
DNN-BWE 2 | 19.04 140 3.85 18.80 138  3.56
DNN-Cepstral | 2 | 19.89 125 3.85 19.09 134  3.59
AudioUNet 2 2082 136 3.90 1994 132  3.68
TFNet 2 | 2111 124 391 19.84 099 3.72
Proposed 2 | 2244 094 417 2208 0.88 391
Spline 4 | 1533 313 3.07 1342 299 3.3
DNN-BWE 4 | 1530 147 327 1353 138 3.24
DNN-Cepstral | 4 | 1547 144  3.28 1387 136 3.25
AudioUNet 4 | 1729 141 340 16.65 1.40  3.39
TFNet 4 | 1835 133 349 1732 122 348
Proposed 4 | 18.86 0.94 3.51 18.13 095 3.64
TABLE III

COMPARISON OF VARIOUS L0OSS FUNCTIONS ON THE TIMIT DATASET

Loss SNR LSD | PESQ
MAE 20.05 | 094 | 3.22
MSE 1998 | 0.89 | 3.23
F 10.88 | 0.72 | 3.57
RI 5.48 0.72 | 3.54
TF 20.27 | 0.76 | 3.54
RI-MAG | 18.34 | 0.72 | 3.51
PCM 15.88 | 0.71 | 3.63
T-PCM 20.18 | 0.72 | 3.65

consistently improves over other deep SR baselines. Compared
with the strongest baseline of TFNet, our proposed model yields
better SNR, LSD and PESQ scores for both tasks under the two
downsampling factors. For the multi-speaker task under R = 2,
for example, SNR is improved by around 2.2 dB, LSD by 11.1%,
and PESQ by around 0.2.

To examine the advantage of our proposed T-PCM loss func-
tion, we compare different loss functions on the TIMIT corpus.
As shown in Table III, the time-domain losses L;sg and Ly 4 g
give good SNR values, but not LSD performance. By introducing
spectral loss terms (Lg, Lrr, Lrimac, Lrr, Lpon and
Lr_pcar), the PESQ values increase, indicating that spectral
loss leads to better speech quality. Although Ly and Ly have
good LSD scores, very low SNR scores are observed. Although
L rr manifests both phase and magnitude, the real and imaginary
parts are related as the cosine and sine, respectively, of the phase
multiplied by the magnitude [52]. By including a magnitude
term, L pr.ar A 1s found to improve both phase and magnitude
estimation over L ;. Additionally, due to poor phase estimation,
for L and L gy we observe unwanted artifacts in reconstructed
speech for certain signals obtained by decimating downsampling
(see Section V-B). The L and L gy_as 4 losses show balanced
performance in terms of SNR, LSD, and PESQ, and artifacts are
alleviated but still exist. For Lpcas and Lp.pe s, we do not
hear the artifact in reconstructed speech.

Table IV compares the numbers of trainable parameters of
our proposed model and the other baselines, which show that
our model achieves strong performance with a relatively small
number of parameters. Fig. 3 illustrates the output of our SR
model on a sample TIMIT utterance (“In wage negotiations, the
industry bargains as a unit with a single union”). Comparing
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TABLE IV
NUMBER OF TRAINABLE PARAMETERS FOR DIFFERENT SR MODELS, WHERE
M INDICATES MILLION

Number of Parameters
DNN-BWE 112 M
DNN-Cepstral 025 M
AudioUNet 70.9 M
TFNet 58.8 M
Proposed 102 M

the spectrograms we can observe that missing high-frequency
components in the LR spectrogram are recovered well by our
model.

V. ON ROBUSTNESS

Although recent SR studies show promising performance
under matched experimental settings, whether models trained
on one corpus can be generalized to other corpora and whether
different downsampling schemes affect the robustness of the
model are yet to be investigated. Real-world applications often
require SR models to be insensitive to such factors. This section
examines the important issue of robustness.

A. Corpus Channels

A speech corpus typically contains speech signals recorded in
a fixed environment. Taking TIMIT for example, all recordings
are collected in the same anechoic room with a single micro-
phone. Although this setting guarantees a uniform quality, it
likely introduces signal characteristics unique to the specific
experimental setting, impeding the generalizability of the trained
models on one corpus. The recording characteristic of a corpus
is referred to as corpus channel [39]. To validate this analysis,
we randomly choose two microphone impulse response (MIR)
functions from Vintage Mics,? and convolve them with TIMIT
utterances. As shown in Fig. 4, the energy distributions over
frequency are distinct for the same utterance when convolved
with different MIRs. Table V further illustrates channel effects,
where our model trained with original TIMIT utterances shows
degraded performance when tested on utterances convolved with
the two MIRs. The last row is the average result of testing

Zhttps://www.audiothing.net/impulses/vintage-mics /
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Fig. 4. Spectrograms of an utterance convolved with two different MIRs,
together with energy distributions along frequency.

TABLE V
MODEL TRAINED ON ORIGINAL TIMIT UTTERANCES TESTED ON DATA
CONVOLVED WITH DIFFERENT MIRS

Model SNR LSD | PESQ
Spline 1548 | 2.27 | 2.56
Original 20.18 | 0.72 | 3.65
Test on MIR1 12.53 | 1.38 241
Test on MIR2 13.75 | 0.87 2.99
Average of 20 MIRs | 14.76 | 1.01 2.82

separately on utterances convolved with 20 randomly picked
MIRs.

To systematically investigate channel effects, we conduct
cross-corpus experiments on four different databases using the
deep SR models evaluated in the previous section. Experimental
settings and DNN architectures are as described in Section I'V-
A and IV-B. The four datasets are TIMIT [12], Wall Street
Journal (WSJ) [40], LIBRIspeech [36], and IEEE [19]. For the
WSJ corpus, speakers read Wall Street Journal articles plus
spontaneous dictations. Two sets of microphones are utilized
for the recordings: a close-talking Sennheiser HMD414 and
a secondary microphone which may vary. WSJ recordings are
sampled at a 16 kHz sampling rate, and contain a small amount
of background noise. For our experiments, we use 12 736
utterances from 100 speakers to train, 1206 utterances from 10
speakers to validate, and 651 utterances from 8 speakers to test.
LibriSpeech consists of 1000 hours of 16 kHz English speech
recordings, which are derived from reading audiobooks in the
LibriVox project. The recordings are collected from volunteers
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TABLE VI
EXPERIMENTAL RESULTS FOR CROSS-CORPUS SR USING THE FOUR BASELINES AND PROPOSED MODEL
TIMIT WSJ LIBRI IEEE
Model / Training Dataset | SNR~ LSD PESQ | SNR LSD PESQ | SNR LSD PESQ | SNR LSD PESQ
Spline 1548 227 256 15.80 223 243 1243 1.87 2.53 20.75 198 290
DNN-BWE / TIMIT 17.05 1.05 278 1419 132 203 1142 163 1.29 1854 139 1.73
DNN-BWE / WSJ 15.51 118  2.63 1671 119 273 1262 1.17 249 1922 123 242
DNN-BWE / LIBRI 15.51  1.18  2.65 16.62 128  2.66 1321 117 255 1924 129 244
DNN-BWE / IEEE 1509 1.12 199 1206 1.83 145 9.78 1.68 1.05 1994 094 3.19
DNN-Cepstral / TIMIT 16.27 097 279 16.06 097 241 13.15 153 207 1897 140 2.08
DNN-Cepstral / WSJ 16.61 096 272 17.03 092 298 1338 1.16 244 19.65 1.18 279
DNN-Cepstral / LIBRI 1695 097 277 16.77 095 270 1355 113 277 20.06 1.16 293
DNN-Cepstral / IEEE 15.80 097 272 1549 1.03 264 1242 122 236 20.10 098  3.22
AudioUNet / TIMIT 1859 0.89 294 7.38 1.91 1.63 9.98 133 1.63 1285 1.57 1.29
AudioUNet / WSJ 17.86 1.01 278 18.00 1.00 3.08 17.70  1.06  2.67 2339 1.05 333
AudioUNet / LIBRI 18.11 097 276 1690 1.02 272 1786 1.04 283 2257 111 335
AudioUNet / IEEE 1595 095 221 14.77 1.02 221 1435 127 202 2255 1.02 349
TFNet / TIMIT 1891 087 3.12 11.81  1.19 1.84 9.27 125 1.44 11.61 155 132
TFNet / WSJ 1796  1.03  2.82 1857 099 3.22 1793  1.03 287 20.74 1.14  3.18
TFNet / LIBRI 18.60 0.90 278 1696 099 276 1813 1.00 291 21.86 1.04 332
TFNet / IEEE 15.81 094 227 1480 1.02 227 15.07 1.07 2.09 23.63 0.86 3.79
Proposed / TIMIT 2018 0.72  3.65 13.85 096  2.15 1372 097 213 2337  1.02 299
Proposed / WSJ 19.35 092 3.08 2131 0.74 3.64 18.62 091  3.06 25.83 090 3.9
Proposed / LIBRI 19.58 092 323 17.85 093 298 1894 091 3.28 25.86 099  3.60
Proposed / IEEE 1740 0.88 244 16.04 091 241 15.67 098 227 2647 0.65 4.14
Proposed / Mixed 19.61 0.76  3.55 2031  0.76  3.52 18.45 096  3.00 26.19 0.85 3.85

across the world, so LibriSpeech has various recording envi-
ronments and thus contains diverse channels. In this paper, the
LibriClean subset (denoted as LIBRI) of the LibriSpeech corpus
is chosen for our experiments. From the LIBRI corpus, we select
28 539 utterances for training, 2703 utterances for validation
and 2620 utterances for testing, with no speaker overlap. IEEE
contains 720 phonetically balanced English sentences uttered
by a male speaker with a sampling frequency of 25 kHz. We
randomly select 576 utterances for training, 72 utterances for
validation and the remaining 72 utterances are reserved for
testing purposes. For all datasets, utterances are first resampled
to 16 kHz, and LR signals are generated at 8 kHz by applying
the subsampling scheme.

Table VI summarizes the results of cross-corpus SR experi-
ments. Each row represents one model trained on a particular
dataset and tested on all four datasets. Each column shows the
results on a specific dataset. As shown in the table, our model
outperforms all the other baselines for all four datasets. As
expected, the best performance is observed when training and
testing are done on the same corpus. We observe that the gener-
alization ability of each model differs with training dataset, and
the models trained with datasets that contain diverse channels
are more robust when testing on untrained corpora. Specifically,
training with WSJ or LIBRI shows comparable objective scores
when tested on untrained corpora. Training with IEEE or TIMIT,
however, shows poor performance on untrained corpus chan-
nels. This observation is more obvious for AudioUNet, TFNet
and the proposed network. For the spectral-domain models of
DNN-BWE and DNN-Cepstral, the generalization advantage of
WSIJ and LIBRI mainly manifests in LSD and PESQ. These
models perform relatively poorly for the time-domain metrics
of SNR, likely because they focus on magnitude optimization.
In addition, we expect that training on multiple corpora should
enhance robustness to the trained corpora. To verify this, we
train our model by randomly selecting 10 000 utterances from

the training sets of the four datasets (TIMIT, WSJ, LIBRI and
IEEE), and then test on their test sets. The results are given in
the last row of Table VI, and show that this strategy yields good
performance for all four datasets.

We remark that the size of the corpus does not seem to be a
key factor for generalization. Although IEEE has only about a
sixth of the utterances of the TIMIT dataset, the models trained
on TIMIT do not display better generalization. Especially time-
domain models (AudioUNet, TFNet, Proposed) trained with
TIMIT perform even worse than trained with IEEE on untrained
corpora. Another remark is that the models trained with WSJ and
LIBRI have comparable robustness even though LIBRI contains
more microphone channels. This may result from the fact that
WSIJ contains more background noise, which is another factor
that affects cross-corpus generalization.

B. Downsampling Schemes

Most of the existing speech SR networks are trained with sim-
ulated datasets, where LR/HR pairs are generated by applying a
specific downsampling scheme. In the real world, however, the
pre-assumed downsampling scheme may not match the LR/HR
relationship. Our experiments indicate DNN-based models are
sensitive to different downsampling schemes, and this affects
the generalization capability of supervised SR models.

We divide downsampling schemes into three categories. The
first one is referred to as subsampling, which is the default set-
ting of the MATLAB [30] downsample function. Subsampling
decreases the sampling rate by discarding samples at fixed inter-
vals. The second category is decimating, where one first applies
a low-pass filter and then subsamples to acquire the desired LR
signal. This is the default setting for the MATLAB decimate,
resample functions and the SciPy [49] decimate function. The
first two methods operate in the time domain, and the third
category named FFT operates in the frequency domain. The FFT
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TABLE VII
EXPERIMENTAL RESULTS OF DIFFERENT DOWNSAMPLING SCHEMES EVALUATED ON TIMIT

Subsampling Decimating FET
Model SNR LSD PESQ | SNR LSD PESQ | SNR LSD  PESQ
Trained with Subsampling | 20.18  0.72  3.65 1532 128 3.5 16.02  0.88  3.52
Trained with Decimating -10.85 251 1.03 1794 075 395 -1233 248 1.03
Trained with FFT 14.55 0.84  2.59 1562 135 332 17.28  0.72  3.92
Trained with Random 19.57 0.75 351 17.07 0.77  3.81 16.74  0.77  3.88

scheme transforms an HR signal to the Fourier domain, leaves
out high-frequency parts above the cutoff frequency, and then
transforms back to obtain the corresponding LR signal. This is
the default setting of the resample function in SciPy.

Table VII provides a comparison of the three categories of
downsampling schemes on TIMIT using the proposed model. In
the first three rows, we use the model trained with one specific
downsampling scheme to test on data obtained by all three
downsampling schemes. We observe that the decimating scheme
performs the worst when tested on untrained schemes, with a
drastic drop in objective scores (even negative SNR values).
Although we see a degradation for subsampling and FFT, the
drop is not nearly as severe as decimating.

Subsampling is simple and efficient among the three schemes.
However, according to the sampling theorem of Shannon [43],
this method introduces an unwanted artifact (referred to as alias-
ing) during the downsampling process as there are components
with frequencies higher than the Nyquist frequency. Decimating
solves this problem by first applying a low-pass filter. By default
decimating uses Chebyshev Type I infinite impulse response
filter of order 8 as the anti-aliasing filter in both MATLAB
and SciPy package. We investigate two other low-pass filters
(Butterworth and Bessel) for decimating. Experiments show that
SR performance is highly affected by the type of low-pass filters.
This indicates the models learned using decimating schemes
carry unwanted characteristics of specific filters, which limit
their application to realistic signals. The FFT method also avoids
the aliasing phenomenon, and is a better choice for generaliza-
tion purposes since it does not involve any filter. However, the
computational expense is higher than the other two schemes.

It is important to develop a model that is robust against
downsampling schemes. To achieve this, we introduce a random
downsampling strategy: for each HR signal, the corresponding
LR signal is generated by randomly picking one downsampling
scheme from the three categories. By doing so, we make sure
that models learn the essential features for SR, not the acoustic
properties of specific downsampling techniques. The last row
in Table VII provides the results when training with random
downsampling. The results demonstrate that the model trained
in this way is capable of producing satisfactory SR performance
regardless of how LR signals are generated.

VI. CONCLUDING REMARKS

In this paper, we propose a novel CNN model for speech
super-resolution that combines the strengths of both time and
frequency domain approaches. The proposed CNN operates on
time-domain signals, but is optimized using a cross-domain loss.
Different loss functions have been investigated, and evaluation

results show that the proposed T-PCM loss leads to better per-
formance and avoids annoying artifacts in reconstructed speech.
Experimental results on various datasets have demonstrated that
our model significantly outperforms other DNN methods. Fur-
thermore, our model is computationally efficient with arelatively
small number of parameters. Also, as the proposed CNN model
operates frame by frame, using no future (or past) information,
it is a causal system.

We have also examined the robustness for deep learning
based SR models. Specifically, we have investigated the ef-
fects of corpus channels and downsampling schemes. We have
demonstrated that training with datasets that contain diverse
channels and a random downsampling strategy improves model
robustness. For future work, we plan to study how to improve
the robustness of SR models to other factors such as background
noise and room reverberation.
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