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Abstract—Robustness against noise and reverberation is critical
for ASR systems deployed in real-world environments. In robust
ASR, corrupted speech is normally enhanced using speech sepa-
ration or enhancement algorithms before recognition. This paper
presents a novel joint training framework for speech separation
and recognition. The key idea is to concatenate a deep neural
network (DNN) based speech separation frontend and a DNN-
based acoustic model to build a larger neural network, and jointly
adjust the weights in each module. This way, the separation fron-
tend is able to provide enhanced speech desired by the acoustic
model and the acoustic model can guide the separation frontend to
produce more discriminative enhancement. In addition, we apply
sequence training to the jointly trained DNN so that the linguis-
tic information contained in the acoustic and language models
can be back-propagated to influence the separation frontend at
the training stage. To further improve the robustness, we add
more noise- and reverberation-robust features for acoustic mod-
eling. At the test stage, utterance-level unsupervised adaptation
is performed to adapt the jointly trained network by learning
a linear transformation of the input of the separation frontend.
The resulting sequence-discriminative jointly-trained multistream
system with run-time adaptation achieves 10.63% average word
error rate (WER) on the test set of the reverberant and noisy
CHiME-2 dataset (task-2), which represents the best performance
on this dataset and a 22.75% error reduction over the best existing
method.

Index Terms—CHiME-2, deep neural networks (DNN), joint
training, robust automatic speech recognition, speech separation,
time-frequency masking.

I. INTRODUCTION

D NN-HMM hybrid methods become the dominant
approach in automatic speech recognition. Different from

traditional GMM-HMM methods, which use GMMs for acous-
tic modeling, the DNN-HMM approach uses DNN to predict
senone states based on acoustic inputs with a large context win-
dow [19]. Compared with traditional GMM-HMM approaches,
large improvement has been observed. Since speech recognition
is itself a sequence classification problem, recently, different

Manuscript received August 13, 2015; revised November 30, 2015 and
January 31, 2016; accepted February 03, 2016. Date of publication February
11, 2016; date of current version March 08, 2016. This work was supported in
part by an NSF grant (IIS-1409431), in part by an AFOSR grant (FA9550-12-
1-0130), and in part by the Ohio Supercomputer Center. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Murat Saraclar.

Z.-Q. Wang is with the Department of Computer Science and Engineering,
The Ohio State University, Columbus, OH 43210-1277 USA (e-mail:
wangzhon@cse.ohio-state.edu).

D. Wang is with the Department of Computer Science and Engineering, The
Ohio State University, Columbus, OH 43210-1277 USA, and also with the
Center for Cognitive and Brain Sciences, The Ohio State University, Columbus,
OH 43210-1277 USA (e-mail: dwang@cse.ohio-state.edu).

Digital Object Identifier 10.1109/TASLP.2016.2528171

neural network architectures that can capture sequential depen-
dencies, such as the convolutional neural networks (CNNs)
[37], recurrent neural networks (RNNs) [12], long-short term
memory (LSTM) [15] and time-delayed neural networks [33],
are introduced to improve the performance of ASR systems in
addition to commonly used feed-forward DNNs. Although a
lot of progress has been made in ASR on clean speech, the
performance still drops sharply in the presence of reverbera-
tion, mismatched noises and low SNR conditions. Improving
the robustness of ASR systems in such environments remains a
challenge.

Although DNN-based acoustic models are robust to noisy
input with small variations [57], speech separation algorithms
are able to significantly improve recognition performance even
when deep neural networks are used for acoustic modeling
[4]. Recently, different DNN-based speech separation meth-
ods, such as the time-frequency (T-F) masking [55], [46], [48],
spectral mapping [56], [14], [1], and signal approximation [54],
[8], [53], are developed and shown to perform surprisingly well
even in highly adverse environments.

When incorporating speech separation into ASR, there are
three commonly used strategies. The first strategy is to conduct
acoustic modeling on clean speech. At the test stage, a separa-
tion frontend is used to enhance noisy speech before recogni-
tion [29], [6]. A disadvantage would occur when the separation
frontend introduces distortions unseen by the acoustic model
trained on clean speech [29]. Nonetheless, this strategy is still
useful from a practical perspective as it allows modular research
on noise-robust ASR. The second strategy avoids the distor-
tion problem to some extent by using a separation frontend to
enhance both training and test set first, and conducts acous-
tic modeling on the enhanced training set. It may be able to
improve the recognition performance since the features may
become cleaner after enhancement. However, the performance
of this approach is highly dependent on the performance of the
separation frontend [4], [41]. As suggested in [40], it might
be better to let the acoustic model see enough input varia-
tions at the training stage. The third strategy performs acoustic
modeling on noisy speech and at the test stage, noisy features
are fed to the acoustic model for decoding directly or feature
enhancement first. The resulting multi-condition training strat-
egy is shown to be very effective [43] but gives unimpressive
performance in matched conditions [25]. In addition, when the
performance of speech separation is good, using the acoustic
model trained on noisy data for decoding may not sound like
a reasonable idea. Different strategies have their own advan-
tages and disadvantages, and which strategy should be adopted
is highly dependent on the situation.
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Speech separation and recognition are not two independent
tasks and they can clearly benefit from each other. Many studies
in robust ASR focus on improving the performance of speech
separation [26]. In other studies, first-pass recognition results
[27], [53], [3] or language models [18] are utilized to help
speech separation. In our previous studies [30], [31], [50], we
proposed to integrate speech separation and acoustic modeling
via joint adaptive training. In this study, we further develop this
approach and propose various techniques to elevate the per-
formance. The present work mainly makes the following four
contributions.

First, we concatenate a DNN-based speech separation fron-
tend, a trainable mel-filterbank and a DNN-based acoustic
model together to build a larger and deeper DNN, and jointly
adjust the weights in each module via the back-propagation
algorithm. Note that mel-filtering can be represented as one
layer in a neural network [36] since it is just a linear transforma-
tion of power spectrogram. The separation frontend is trained to
reconstruct noise-free power spectrogram via time-frequency
masking. Acoustic modeling is done in the mel-spectrogram
domain. With joint training, the separation frontend and filter-
bank are able to provide enhanced features expected by the
acoustic model. In addition, the linguistic information con-
tained in the acoustic model is allowed to flow back to influence
the separation frontend and filterbank. Furthermore, the fil-
terbank can be trained according to the separation frontend
and acoustic model [36]. Second, concatenating the separation
frontend and acoustic model to form a bigger DNN natu-
rally leads us to sequence-discriminative training applied to the
jointly trained DNN for further improvement. This way, at the
training stage, the information from language models can be
flowed back to influence not only the acoustic model but also
the separation frontend by optimizing sequence-discriminative
criterion. Third, utterance-level unsupervised adaptation is per-
formed at the test stage to adapt the jointly trained DNN to
potentially mismatched conditions or new speakers to some
extent. Fourth, we find that adding more robust features for
acoustic modeling can significantly improve the robustness of
ASR systems. Traditionally, log mel-spectrogram is widely
used as the only feature for DNN-based acoustic models [29],
[41], [52], [24], [10], [35], partly because DNN is believed
to be capable of extracting highly nonlinear discriminative
information from relatively raw input. However, DNN robust-
ness against reverberation and noise is limited. In this study,
we incorporate additional robust features, such as AMS [23],
RASTA-PLP [17], MRCG [2], and PNCC [21], for acoustic
modeling. This multi-stream strategy improves recognition rate
substantially.

The proposed sequence-discriminative jointly-trained multi-
stream approach achieves 10.63 percent average WER on the
test set of the noisy and reverberant CHiME-2 dataset (task-2)
[43]. To our knowledge, this represents the best result on this
dataset to date.

The rest of this paper is organized as follows. We describe
our joint training approach in Section II, followed by experi-
ments and evaluations in Section III. We conclude this paper
in Section IV. A preliminary version of this work is presented
in [50]. There are major differences from this preliminary
work, including the use of sequence training and unsupervised

Fig. 1. Schematic diagram of the proposed joint training framework. The layer
shown in gray means that the weights or operations of that layer are fixed. Solid
and dotted arrows indicate the directions of forward pass and backward pass,
respectively. See text for more details.

adaptation in the present study, as well as the Kaldi toolkit
to give better baseline ASR systems and clean alignments.
These methodological differences lead to a large performance
improvement over [50]. Also, more systematic comparisons are
provided in this paper.

II. SYSTEM DESCRIPTION

Our system is built in a step-by-step way. We first train a sep-
aration frontend and an acoustic model separately, both using
DNNs. Then we concatenate the separation frontend, mel-
filterbank and acoustic model together to construct a deeper
and larger DNN, and jointly adjust the weights in all modules.
After that, we replace the cross-entropy criterion used at the
joint training stage with sequence-discriminative criterion for
sequence training. Finally, we perform utterance-level unsuper-
vised adaptation at the test stage. The overall framework of our
system is shown in Fig. 1. More details are provided in the
following sections.

A. Speech Separation

Originated in computational auditory scene analysis [45],
T-F masking has shown considerable potential for removing
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additive noise in noisy speech. The key idea of this method
is to estimate the ideal binary mask (IBM) [44] that identifies
speech dominant and noise dominant T-F units, or the ideal
ratio mask (IRM) [32], which represents the ratio of speech
energy to the sum of speech energy and noise energy within
each T-F unit. In this framework, speech separation is for-
mulated as a supervised mask estimation problem. Different
learning machines, such as GMMs, support vector machines
(SVMs) and multi-layer perceptrons (MLPs), have been used
for mask estimation. Recently, DNN is employed for mask esti-
mation, and achieves very promising separation performance
in both matched and un-matched test conditions [55]. Recent
listening tests show that DNN based IBM estimation produces
substantial speech intelligibility improvements of noisy utter-
ances for both hearing-impaired and normal-hearing listeners
[16]. In addition, different training targets are carefully ana-
lyzed recently [49], and it is suggested that the IRM is likely
to be a better training target for supervised speech separation.
Therefore, we utilize DNNs to estimate the IRM in this study.

The ideal mask can be defined in different T-F representa-
tion domains, such as cochleagram domain, mel-spectrogram
domain or power spectrogram domain. In line with later joint
training, the IRM in this study is defined in the power spectro-
gram domain [49]:

M (t, f) =
S (t, f)

S (t, f) +N (t, f)
(1)

where M is the IRM of a noisy signal created by mixing a
noise-free utterance with a noise signal at a specific SNR level,
S represents the power spectrogram of the noise-free utterance,
N stands for the power spectrogram of the noise signal, and t
and f index time and frequency respectively.

At the test stage, the IRM must be estimated from noisy
utterances. We employ a DNN as the discriminative learning
machine for mask estimation. The DNN has four hidden lay-
ers each with 1024 rectified linear units (ReLUs) [11]. There
are 161 sigmoidal units in the output layer, corresponding to
the dimension of each frame in the power spectrogram. No pre-
training is performed. Starting from random initialization, the
network is trained for a maximum of 50 epochs to minimize the
cross-entropy loss function within each T-F unit using stochas-
tic gradient descent with momentum and Adagrad [7]. The loss
function is defined as:

L
(
M *

)
=− 1

T

∑

t,f

[M (t, f) logM * (t, f)

+ (1−M (t, f)) log
(
1−M * (t, f)

)
(2)

where M∗ (t, f) is the estimated mask at time t and frequency
f , and T is the total number of frames in the dataset. The
momentum is linearly increased from 0.1 to 0.5 in the first 5
epochs and fixed at 0.9 afterward. The learning rate is fixed at
0.005 in the first 20 epochs and linearly decreased to 0.0005 in
the following 30 epochs. The dropout rates of the input layer
and all hidden layers are set to 0.3. The maximum L2 norm of
the incoming weights of each neuron in the hidden layers is set
to 1. The mini-batch size is set to 256. A development dataset
is used for parameter tuning and early stopping.

The feature used for mask estimation is log-compressed
power spectrogram. We splice a large context window of 19
frames centered at the current frame as the input to DNN.
In this study, the frame length is 20 ms and frame shift is
10 ms. Therefore, for a signal with 16 kHz sampling rate, the
input dimension corresponding to one frame is 3059 (161 ∗
19). Note that the log power spectrogram feature is globally
mean-variance normalized before splicing.

At the test stage, after obtaining the estimated IRM from a
noisy utterance using the trained DNN, we multiply it point-
wisely with the power spectrogram of the noisy utterance to get
the enhanced power spectrogram, i.e.

X* = M * ⊗X (3)

where X∗ is the resulting enhanced power spectrogram, M∗ is
the estimated IRM, X is the noisy power spectrogram, and ⊗
represents point-wise matrix multiplication.

B. Acoustic Modeling

The DNN-HMM hybrid approach is dominant in ASR today.
We utilize a DNN with 7 hidden layers each with 2048 ReLUs
for acoustic modeling. The DNN is trained to estimate the
posterior probability of each senone state by minimizing cross-
entropy at the training stage. All the other training recipes
follow the DNN training for mask estimation presented in the
previous section.

Log mel-spectrogram is widely used as the only feature
for acoustic modeling. However, mel-spectrogram itself is not
robust to noise and reverberation. To improve the robustness
of ASR systems, we add more robust features for acoustic
modeling as different features contain different and perhaps
complementary information for senone state discrimination. In
this study, we use a subset of the following features for acoustic
modeling.

• 40-dimensional log mel-spectrogram together with its
delta and double delta components (MEL). We perform
sentence level mean normalization before splicing an
11-frame context window;

• 256-dimensional multi-resolution cochleagram (MRCG)
[2] with its delta and double deltas. The recently proposed
MRCG is shown to be relatively robust to additive noise
for mask estimation;

• 31-dimensional power-normalized cepstral coefficients
(PNCC) [21] together with their deltas and double deltas.
Sentence level mean normalization is performed before
splicing an 11-frame context window. The PNCC feature
is shown to be robust to reverberation and additive noise;

• 13-dimensional RASTA-PLP [17]. The context window
is set to 7;

• 15-dimensional amplitude modulation spectrogram
(AMS) [23] extracted from each of 26 channels;

• 31-dimensional narrowband mel-frequency cepstral coef-
ficients (MFCC) with the analysis window of 20 ms. The
context window is set to 7;

• 31-dimensional wideband MFCC with the analysis win-
dow of 200 ms. The context window size is set to 7.
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The last four features, denoted as Fset, are shown to have
complementary power for mask estimation [31], [47]1. In this
study, we directly use Fset features for acoustic modeling. The
frequency ranges are all set 64 to 8000 Hz. Following com-
mon practice, we use 9 frames centered at the current frame
to calculate delta and double delta components. With the fea-
tures mentioned above for acoustic modeling, the input dimen-
sion is 4026 (40 ∗ 3 ∗ 11 + 256 ∗ 3 + 31 ∗ 3 ∗ 11 + 13 ∗ 7 +
15 ∗ 26 + 31 ∗ 7 + 31 ∗ 7). They are globally mean-variance
normalized before DNN training. To facilitate comparison, we
always include the MEL features for acoustic modeling.

C. Joint Training

As illustrated in Fig. 1, the key idea for joint training is to
concatenate an acoustic model DNN and a speech separation
DNN to form a larger and deeper neural network, and jointly
adjust the weights in all modules. The link for concatenating
the separation frontend and the acoustic model is a trainable fil-
terbank layer and a set of layers with fixed operations, which
basically represent the extraction of the enhanced MEL fea-
tures (with delta and double deltas and an 11-frame context
window) (see also [30], [31], [50]). More specifically, after
obtaining the estimated IRM from the separation frontend based
on the log power spectrogram of a noisy utterance, we mul-
tiply it point-wisely with the noisy power spectrogram to get
the enhanced power spectrogram. The enhanced power spec-
trogram is then fed into the trainable filterbank layer to get the
enhanced filterbank feature. Afterwards, we compress it loga-
rithmically, add delta and double deltas, perform sentence-level
mean normalization, conduct global mean-variance normaliza-
tion, and splice 11 frames to yield the enhanced MEL features.
The enhanced MEL features, together with other robust fea-
tures, are finally passed to the acoustic model to estimate state
posterior probabilities. Interestingly, the joint training frame-
work can be performed in a single neural network because
the point-wise multiplication, filtering, sentence- and global-
level normalization, adding delta and double deltas are all linear
transformations. In addition, the derivatives of the logarithmic
function can be easily computed. Therefore, we are able to flow
the error signal from the acoustic model back to the filterbank
layer and the separation frontend, and jointly train all modules
using the back-propagation algorithm.

A similar frontend and backend joint training approach was
presented by Gao et al. [9], where feature mapping is employed
as the frontend. It has been suggested that masking is likely
a better approach than mapping for speech separation [49]. In
addition, the output dimension of their frontend is equal to the
input dimension, which consists of many consecutive frames
and is large. In contrast, we obtain enhancement results per sin-
gle frame. Furthermore, their frontend obtains enhanced MEL
features by direct mapping instead of using a trainable filter-
bank layer and fixed layers to transform the enhanced power
spectrogram.

1We tried to use this feature set to estimate the IRM defined in the power
spectrogram domain and in the mel-spectrogram domain as well, but the ASR
performance is not as good as using the log power spectrogram directly.

In our approach, parameter initialization is critical before
joint training. Randomly initializing all the parameters is
unlikely to be effective considering the size of the network.
Here we use the weights in a separately trained acoustic model
and a separately trained separation frontend to initialize the
corresponding parts of the DNN for joint training. Following
[36], we initialize the parameters in the trainable filterbank (FB)
layer using

WFB = exp
(
W *

)
(4)

where W ∗ is initialized to

W * = log (max (Mel_FB, eps)) (5)

Here Mel_FB denotes the standard 40-dimensional mel-
filterbank and eps is a small constant (10−3 in this study).
With (4), every time W ∗ is updated, all the parameters in the
filterbank are ensured to be non-negative. With (5), all the
parameters in the filterbank can be updated. Using an eps term
instead of 0 in the mel-filterbank for initialization is found to
consistently improve the performance of our system.

The whole network is trained for 15 epochs to minimize the
cross-entropy criterion from the acoustic model alone. In pre-
liminary studies, we tried to put a weight between the loss of the
acoustic model and the loss of the separation frontend, expect-
ing the performance of both tasks to improve. However, no
clear improvement on the ASR performance was observed. The
learning rate is fixed at 0.0005 for the first 8 epochs and linearly
decreased to 10−5 for the next 7 epochs. Note that the learning
rate of 0.0005 is the smallest learning rate used in the previ-
ous sections2. The momentum is fixed at 0.9 for all the epochs.
The mini-batch size is set to 512. No dropout and weight nor-
malization is performed at the filterbank layer and fixed layers.
The sentence-level mean of each utterance and global mean and
variance are updated at the beginning of each epoch in the for-
ward pass. All the other network setup and training strategies
follow the DNN training in the previous sections.

D. Sequence-Discriminative Training

The previous sections describe how the DNN-based acous-
tic models are trained to minimize the cross-entropy criterion
at the frame level. As automatic speech recognition is itself a
sequence classification problem, it is sensible to optimize the
sequence-discriminative criterion to better capture the essence
of this problem. It is widely known that sequence training is
helpful for GMM-HMM systems. In recent studies, sequence
training is also found to be useful for DNN-HMM hybrid
systems [42], [31]. Here, we investigate the effectiveness of
sequence training criterion on the joint training system. As sug-
gested in [42], different sequence training criterion gives similar
performance on recognition rates. In this study, we replace the
frame-wise cross-entropy criterion with the state-level mini-
mum Bayes risk (sMBR) [22] and back-propagate the error

2The optimization processes of the separately trained acoustic model and
separation frontend have already converged long before reaching the 0.0005
learning rate. Therefore, the improvement from joint training is not simply
because of using a very small learning rate on un-converged models.
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signal from this criterion to influence the weights in the acous-
tic model, filterbank and separation frontend. This method is
expected to improve the performance of speech recognition. We
believe that this method may also benefit mask estimation since
the error signal from the sequence training criterion contains
information from language models, which is rarely exploited in
speech separation research.

To speed up the sMBR training, we re-generate the lattices
after the first epoch, and further train the network for six epochs.
The learning rate is linearly decreased from 10−5, which is
the smallest learning rate used at the joint training stage, to
10−6. The acoustic scaling factor is fixed at 0.1. The mini-batch
size is variable corresponding to the length of each utterance.
The sentence-level mean of each utterance is updated dynam-
ically in the forward pass for each mini-batch. All the other
network setup and training recipes follow the DNN training at
the joint training stage. Most of the times, the performance on
the development set converges in 3-5 epochs after re-generating
the lattices.

E. Unsupervised Adaptation

Adaptation is commonly performed on well-trained acous-
tic models to compensate the differences between training and
test conditions. It can be done in a supervised or unsupervised
way, depending on whether the labels of adaptation data are
available. Many adaptation methods have been proposed for
DNN based acoustic models, such as linear transformation [39],
[29], conservative training [58], and subspace based methods
[38]. In [28], it is suggested that the linear input network (LIN)
and linear hidden network based approaches are better than
linear output network, factorization and KL-divergence based
adaptation.

We perform unsupervised adaptation to our jointly trained
acoustic models following the LIN approach. At the test stage,
given a single test utterance, we first use the un-adapted
jointly-trained sequence-discriminative model to generate ini-
tial decoding results. The first-pass decoded state sequence is
then used as the labels for learning a linear transformation of
the input features of the separation frontend by minimizing
the cross-entropy criterion calculated from the acoustic model,
with all the other parameters fixed. The linear transformation is
defined as follows:

x̂t,f = wfxt,f + bf (6)

where xt,f denotes the globally mean-variance normalized log
power spectrogram, corresponding to the un-adapted input of
the separation frontend, x̂t,f denotes the adapted features, and
wf and bf are the parameters to be learned. For a test utterance,
the number of parameters to be learned is 322 (161 + 161),
which is approximately in the same range of the number of
frames in the test utterance.

For each utterance, the adaptation process is run for 20
epochs with a mini-batch size equal to the length of the utter-
ance. The learning rate is linearly decreased from 0.005 to
10−5. We simply adopt the learned parameters at the last epoch
due to the lack of a development set. All the other training

recipes and network setup follow the DNN training described in
the previous sections. Note that we also perform dropout on the
adapted features, which consistently improves the performance
due to alleviated overfitting. After we obtain all the linear trans-
formation for each test utterance, we re-generate the likelihood
and run a second-pass decoding to obtain the final results.

It may be argued that the cross-entropy loss function used
at the adaptation stage would counteract the effect of the
sequence-discriminative criterion used at the joint training
stage. We note that this would not be a problem since the
cross-entropy criterion will make posterior estimates closer
to the initial decoding results generated from the sequence-
discriminative model.

A similar adaptation method was proposed in [29]. One key
difference is that we perform adaptation on the input of the
separation frontend rather than on the output of the separation
frontend. We think that our strategy is better since, if we per-
form adaptation on the input of the separation frontend, the
enhancement results would be changed in a highly non-linear
way rather than in a simple linear fashion.

Finally, we believe that this unsupervised adaptation tech-
nique with the learned linear transformation can also adapt a
well-trained separation frontend to new test environments to
some extent.

III. EVALUATIONS AND COMPARISONS

We evaluate our method on the recently proposed reverber-
ant and noisy CHiME-2 dataset (task-2) [43]3. The CHiME-2
dataset is created by first convolving clean utterances in the
WSJ0-5 k dataset with time-varying binaural room impulse
responses (BRIRs) and then mixing with reverberant noises
at six SNR levels equally spaced from -6 dB to 9 dB. The
BRIRs and reverberant noises are recorded with the same
microphone and living room setup. The recorded noises contain
major noise sources in a typical kitchen or living room, such as
competing speakers, electronic devices, footsteps, laughter, and
distant noises. The multi-conditional training set (si_tr_s) con-
tains 7138 utterances (∼14.5h) in total. The development set
(si_dt_05) contains 409 utterances at each SNR level (∼4.5h).
The test set (si_et_05) contains 330 utterances at each SNR
level (∼4h). The CHiME-2 dataset also provides reverber-
ant noises, and reverberant noise-free utterances corresponding
to the multi-conditional training set. With the noises, clean
speech, reverberant noise-free utterances, and noisy-reverberant
utterances available, we can readily evaluate the recognition
performance together with speech separation performance of
our system.

Our system is monaural in nature, and we simply average the
signals from the left and right channel before extracting fea-
tures. In our experiments, this technique is much better than
only using one of these two channels. A GMM-HMM system
is built using the Kaldi toolkit [34] on the clean utterances
in the WSJ0-5 k to get the senone state for each frame of
the corresponding noisy-reverberant utterances. Following the
common pipeline in the Kaldi toolkit, the GMM-HMM system

3Available at http://spandh.dcs.shef.ac.uk/chime_challenge/chime2013/WSJ0/.
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TABLE I
PERFORMANCE (% WER) USING MULTICONDITION TRAINING WITH MORE ROBUST FEATURES FOR ACOUSTIC MODELING

is first built using the MFCC feature. Then we concatenate
13-dimensional MFCC feature within a 7-frame context win-
dow, and utilize linear discriminant analysis (LDA) to compress
the concatenated feature to 40 dimensions. After that, we de-
correlate it via maximum likelihood linear transform (MLLT)
and use feature-space maximum likelihood linear regression
(fMLLR) to reduce speaker variance, which is estimated by
speaker adaptive training. The resulting cross-word tied-state
tri-phone GMM-HMM system contains 1965 senone states in
total. The initial clean alignments are obtained by performing
forced alignment on the clean utterances. To refine the initial
clean alignments, we further train a DNN-based acoustic model
using the MEL features of the clean utterances, and re-generate
clean alignments. Such clean alignments are used as the labels
for training all the acoustic models in this study. Note that the
DNN-HMM hybrid system built on the clean utterances is a
powerful recognizer. It achieves 2.15% WER on the clean test
set of the WSJ0-5 k dataset. Therefore, we believe that these
high-quality labels can guide the DNN-based acoustic model
to perform well on discriminating different senone states even
when the input features are very noisy and the input SNR is
very low. We use the CMU pronunciation dictionary and the
official 5 k close-vocabulary tri-gram language model in our
experiments. Note that this language model is used for decod-
ing at the test stage and generating the lattices of the training
utterances at the sequence training stage.

The training data for mask estimation is obtained from par-
allel noisy-reverberant and reverberant noise-free data. The
mixed noise signals can be obtained by direct subtraction. With
these datasets available, we train a separation frontend using
the method detailed in Section II.A. The frontend is trained to
remove additive noise in noisy-reverberant utterances. Note that
the noisy-reverberant dataset, i.e. the multi-conditional training
data, is used for both mask estimation and acoustic modeling.

Our experiments are done in an incremental manner. We
first build our acoustic models using feature subsets selected
according to the performance on the development set. Then
we jointly train the acoustic models with the separation fron-
tend. Afterwards, we perform sequence training on the jointly
trained DNN. Finally, we perform unsupervised adaptation to
the sequence-discriminative jointly-trained DNN at the test
stage.

A. Expanded Feature Set for Acoustic Modeling

We first report the results of incorporating more robust fea-
tures for acoustic modeling. In this experiment, no speech
enhancement or separation is performed. We simply train
acoustic models multi-conditionally by adding more robust fea-
tures and do not tune the network structure or training recipes
for each feature set. To push up the baselines, we perform
sequence training on the multi-conditionally trained acoustic
models, which is followed by unsupervised adaptation at the
test stage. The WER results are presented in Table I.

If we only train our acoustic models using the cross-entropy
criterion, with the commonly used MEL features alone, we are
able to obtain 16.16% average WER on the test set. Note that
if we just use the default DNN code for the CHiME-2 dataset
in the Kaldi toolkit, we can only obtain 17.49% average WER
on the test set. This is consistent with the results obtained in
[13]. The major differences are that we use ReLUs, dropout
and Adagrad for training, while the default DNN code uses sig-
moidal units, pre-training and stochastic gradient descent. By
adding the PNCC feature, the average WER can be reduced
to 14.74%. After appending the MRCG feature, the WER is
brought down to 13.97%. The performance is further pushed to
13.46% average WER after we add the Fset features. Note that
this result is already better than our previous best result [50]
using the same set of features on this dataset, mainly because
better clean alignments are generated using the Kaldi toolkit.

We then apply sequence training to the multi-conditionally
trained acoustic models. The training recipes follow the
sequence training described in Section II.D. We observe that
sequence training leads to large improvement for all the input
features, and the relative improvement becomes smaller if more
features are used for acoustic modeling.

Finally, we apply utterance-level unsupervised adaptation
to the sequence-discriminative acoustic models. Similar to
Section II.E, given a test utterance, we first decode it to obtain
a hypothesized state sequence, from which we learn a linear
transformation of the input features. To reduce the number of
parameters to be learned and make a fair comparison with later
experiments, we only learn a linear transformation for the MEL
features. Learning linear transformations for other features may
decrease the performance, simply because too many parame-
ters are learned. Thus, the total number of parameters to be
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TABLE II
PERFORMANCE (% WER) COMPARISON OF THE PROPOSED APPROACH WITHOUT EXTRA ROBUST FEATURES

learned is 240 (40 ∗ 3 + 40 ∗ 3) for each test utterance. From
Table I, we can see that unsupervised adaptation leads to consis-
tent improvement, while the relative improvement for acoustic
models with more features becomes smaller as well.

Compared with only using the MEL features, adding all
the extra robust features for acoustic modeling reduces the
average WER by 2.7 (16.16% to 13.46%), 1.75 (13.92% to
12.17%), and 1.34 percentage points (13.20% to 11.86%) with-
out sequence training or adaptation, with sequence training
but no adaptation, and with sequence training and adaptation,
respectively. These considerable improvements occur probably
because features are extracted from different domains using
different filterbanks, compression operations and environmen-
tal compensations, and therefore they likely complement each
other for acoustic modeling on multi-conditional data. This
suggests that relying on the DNN to learn optimal non-linear
features from relatively raw input, e.g. the MEL features, may
not be the optimal strategy for robust ASR. Combining the fea-
ture learning ability of DNNs and domain knowledge may be a
better way for improving the robustness of ASR systems.

As shown in Table I, the average WER on the develop-
ment set keeps decreasing as we add more and more features.
Therefore, in the following experiments, we add the PNCC,
MRCG and Fset features for acoustic modeling. Note that we
do not perform any kind of enhancement on these extra features
since they are considered to be inherently robust in our study.
To facilitate comparisons, we also report the results based on
the MEL features alone.

B. Plug-and-Play and Re-Training Approaches

Before presenting the results of the joint training approach,
we explore two alternative strategies when incorporating speech
separation into ASR systems.

The first strategy, denoted as plug-and-play, is to train our
acoustic models using the MEL features alone or the MEL +
PNCC + MRCG + Fset features. In the test stage, we use the
trained separation frontend to get the enhanced power spec-
trogram which is then passed to the mel-filterbank to get the

enhanced MEL features. Finally, together with other robust fea-
tures, the enhanced MEL features are passed to the acoustic
model for decoding. As shown in the first entry of Table II, if
we only use the MEL features for acoustic modeling, the fron-
tend can lead to 1.39% (16.16% to 14.77%), 0.5% (13.92% to
13.42%), and 0.58% (13.20% to 12.62%) absolute improve-
ment without sequence training or adaptation, with sequence
training but no adaptation, and with sequence training and adap-
tation, respectively. We can see that the relative improvement
of using our frontend becomes much smaller if the acoustic
model has been sequence-trained. Note that for unsupervised
adaptation, we learn a linear transformation of the enhanced
MEL features. The first-pass decoding results for adaptation
are obtained by applying the plug-and-play approach to the
sequence-discriminative acoustic model. Again, the number of
parameters to be learned is 240 (40 ∗ 3 + 40 ∗ 3). Performing
unsupervised adaptation on the enhanced MEL features can
lead to 0.8% (13.42% to 12.62%) average WER reduction.
Similar observations can be found in the first entry of Table III,
in which we use the MEL + PNCC + MRCG + Fset features
for acoustic modeling.

The second alternative, denoted as re-training, is to train our
acoustic models using the enhanced MEL features alone or
the enhanced MEL + PNCC + MRCG + Fset features. At the
test stage, after we get the enhanced MEL features, together
with other robust features, we feed all of them to the acous-
tic model for decoding. Note that, again, the Fset, MRCG and
PNCC features are directly extracted from the original noisy-
reverberant utterances. The results are shown in the second
entry in Tables II and III, respectively. Note that, adaptation
is performed only on the enhanced MEL features. Motivated
by deep stacking [5], [53], the unenhanced MEL features are
additionally incorporated for acoustic modeling. The results are
reported in the third entry of Tables II and III, without and with
extra robust features, respectively. We can see that adding the
unenhanced MEL features for acoustic modeling brings some
gains for the re-training approach.

Comparing the results from plug-and-play and re-training
approach, we find that the former strategy typically scores
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TABLE III
PERFORMANCE (% WER) COMPARISON OF THE PROPOSED APPROACH WITH EXTRA ROBUST FEATURES

higher. One possible reason is that, when re-training is used, the
separation frontend significantly reduces the variations seen by
the acoustic model at the training stage [41]. In addition, the dis-
tortion it introduces for the training utterances may be different
from that for the test utterances. Another possible explanation
is related to overfitting. Since in this study4, the separation fron-
tend is also trained on the multi-conditional training data. We
can reasonably assume that the separation frontend performs
better on the training set than on the development and test set.
Therefore, if the enhanced training data is subsequently used
to re-train the acoustic models, overfitting would likely happen.
This is exactly what we encountered in our experiments. For
the re-training approach, the loss of the acoustic model on the
development set is much better than that of the plug-and-play
or the direct multi-condition training approach; however it gives
us worse performance after decoding.

C. Joint Training

Considering that more variations would be seen by the acous-
tic models trained on noisy-reverberant utterances and the
plug-and-play approach normally gets better performance on
the development set as shown in Tables II and III, we use the
parameters in the acoustic models from this approach, together
with the separation frontend, to initialize the corresponding
parameters in the joint-training DNN, and then perform joint
training. When joint training is done, sMBR training and run-
time adaptation are conducted. Note that for the run-time
adaptation, we learn a linear transformation of the input of the
separation frontend. The number of parameters to be learned
for each utterance is 322 (161 + 161).

As reported in Table II, after joint training, the performance
can be improved from 14.77% to 13.99% average WER. After
sMBR training, the performance is improved to 12.07%. The
performance is further pushed up to 11.23% after run-time
unsupervised adaption, which is helpful especially in low SNR
conditions. For example, when the input SNR is -6 dB, the
WER is reduced from 20.44% to 18.72%.

If we do not use extra robust features for acoustic modeling,
compared with plug-and-play, we reduce the average WER by
absolute 0.78% or relative 5.3% (14.77% to 13.99%) if only

4This underlying problem also exists in many other studies.

the cross-entropy criterion is used for joint training. The per-
formance gap is enlarged to absolute 1.35% or relative 10.06%
(13.42% to 12.07%) after sequence training is applied. If we
further perform unsupervised adaptation at the test stage, the
performance difference is further increased to absolute 1.39%
or relative 11.01% (12.62% to 11.23%). Interestingly, the rel-
ative improvement becomes larger after sequence training and
unsupervised adaptation are applied to the joint-training DNN.
This trend can also be observed by comparing the first entry
with the fourth entry in Table III, where more features are used
for acoustic modeling. This is desirable since, in joint modeling,
the noise compensation module can be seamlessly combined
with other ASR techniques, such as sequence training and
adaptation, to obtain further improvement.

As presented in the fourth and fifth entry of Table II,
co-adapting the filterbank with the separation frontend and
acoustic model can give us slightly better results. If the param-
eters in the filterbank are co-adapted, the performance is
0.24% (14.23% to 13.99%) average WER better after joint
training, 0.12% (12.19% to 12.07%) better after sMBR train-
ing, and 0.1% (11.33% to 11.23%) better after run-time
adaptation.

These results clearly demonstrate the effectiveness of joint
training. We think that it is due to the reduction of the distor-
tion problem and the linguistic information back-propagated
from the acoustic model to the separation frontend. In addi-
tion, the separation frontend used in this study treats all the
frames and time-frequency units equally important, without
considering the underlying linguistic information that is critical
for senone states discrimination. In contrast, with joint model-
ing, the separation frontend can be somehow informed by the
acoustic model to produce more discriminative enhancement
results.

The best performance we obtained on the test set is 11.23%
average WER if no extra robust features are used. With extra
robust features, the performance can be further improved to
10.63%. With more sophisticated training and adaptation tech-
niques, the effectiveness of extra features is reduced. This
would be welcome as using a small number of features, such as
log mel-spectrogram, is favored in industry. On the other hand,
incorporating more robust features for acoustic modeling is a
simple and effective technique towards improved robustness of
ASR systems.
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TABLE IV
PERFORMANCE (% WER) COMPARISON OF THE PROPOSED APPROACH WITH OTHER STUDIES

It might be argued that the joint training approach just per-
forms acoustic modeling multi-conditionally by training a very
deep and large DNN on a combination of features. To address
this possibility, we train a DNN with 12 (4 + 1 + 7) hidden
layers, each with 1600 ReLUs, on the combination of the log
power spectrogram and MEL features (without robust features)
using multi-condition training directly. Note that the number of
parameters in this new DNN is almost the same as that in the
joint training DNN. The performance, shown in the last entry
of Table II, is much worse than that of joint training. This is
likely because the joint training approach has better network
architecture and better parameter initialization.

D. Comparison With Other Studies

In Table IV, we list the results of several other studies that
report competitive results on the same dataset. All of them use
the DNN-HMM hybrid approach and clean alignments from
clean utterances as the labels to train their acoustic models. The
system described in [52] employs an RNN to perform acous-
tic modeling on the noisy-reverberant training data and does
not use any speech enhancement or separation. Chen et al. [3]
utilize LSTM for both speech separation and acoustic model-
ing. Their ASR systems follow the re-training approach, and an
iterative strategy using alignment information from their ASR
system is proposed to improve speech separation and recogni-
tion simultaneously. Weninger et al. [53] build their frontend by
training an RNN with the LSTM activation function to predict
a phase-sensitive spectrum approximation objective function.
They also use re-training and additional alignment informa-
tion from ASR systems to boost the performance of speech
separation. Their DNN based acoustic models are built in a
way similar to the standard recipes in the Kaldi toolkit. Both
enhanced and unenhanced log mel-filterbank features without
delta components are utilized for acoustic modeling, and no
extra robust features are used in their study. Han et al. [13] use
a spectral mapping based separation frontend to enhance both
the training and test set first, and perform acoustic modeling
on the enhanced training set using the standard DNN training
recipes in the Kaldi toolkit. Their overall WER is 15.6%, which
is slightly worse than obtained by Narayanan and Wang [31].
To our knowledge, the results by Weninger et al. [53] are the
best on the CHiME-2 dataset reported in the literature so far.
As shown in Table IV, we have now pushed the performance to
10.63% average WER. This represents a 22.75% relative error
reduction over [53], and the best result to date.

IV. CONCLUDING REMARKS

Moving forward, we plan to employ sequence models, such
as the RNN or LSTM, for speech separation and acoustic mod-
eling since they have been shown to capture temporal dynamics
well [20]. How to effectively perform joint training on two
RNNs is an open question.

Speech separation and recognition are two closely related
problems. In this study, a joint training strategy is presented to
integrate speech separation and acoustic modeling at the train-
ing stage. By further applying sequence training and run-time
adaptation, the performance advantage of the joint modeling
approach becomes even larger. Still, speech separation is done
in a bottom-up fashion at the test stage. How to leverage
top-down information, such as the knowledge from language
models, to help speech separation at the test stage is an inter-
esting direction for future research. We think that the joint
modeling approach presented in this paper is an important step
towards this goal, because language models are about the rela-
tions among words, or in a wider sense, among phonemes or
states, while speech separation is commonly done in the time-
frequency domain or at the signal level [51]. There is clearly a
gap between them. The joint modeling approach utilizes acous-
tic models to bridge these two modules so that the information
can be potentially flowed back and forth.
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