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Abstract 
Robustness is crucial for automatic speech recognition systems 
in real-world environments. Speech enhancement/separation 
algorithms are normally used to enhance noisy speech before 
recognition. However, such algorithms typically introduce 
distortions unseen by acoustic models. In this study, we 
propose a novel joint training approach to reduce this 
distortion problem. At the training stage, we first concatenate a 
speech separation DNN, a filterbank and an acoustic model 
DNN to form a deeper network, and then jointly train all of 
them. This way, the separation frontend and filterbank can 
provide enhanced speech desired by the acoustic model. In 
addition, the linguistic information contained in the acoustic 
model can have a positive effect on the frontend and 
filberbank. Besides the commonly used log mel-spectrogram 
feature, we also add more robust features for acoustic 
modeling. Our system obtains 14.1% average word error rate 
on the noisy and reverberant CHIME-2 corpus (track 2), which 
outperforms the previous best result by 8.4% relatively. 
Index Terms: robust ASR, speech separation, deep neural 
networks, CHIME-2 

1. Introduction 
Deep neural networks (DNN), including convolutional neural 
networks (CNN) [1] and recurrent neural networks (RNN) [2], 
represent the state-of-the-art models for acoustic modeling in 
automatic speech recognition. In robust ASR, although DNN 
is shown to be inherently robust to slight variations of the 
training data because of its multi-layer architecture [3], its 
performance still drops significantly in the presence of rapidly 
changing and mismatched noises, low SNR conditions, and 
reverberant environments. As a result, speech enhancement or 
separation is still needed when using deep networks for 
acoustic modeling [4]. 

There are three common strategies when incorporating 
speech enhancement into robust ASR systems. The first 
approach is to train an acoustic model from clean speech and 
utilize a speech enhancement frontend to enhance noisy 
speech at the test stage [5]. It would be a big issue if the 
frontend introduces distortions not seen by the acoustic model 
at the training stage. The second approach avoids this problem 
by enhancing both training and testing data first, and then does 
acoustic modeling on the enhanced training set [4]. The third 
approach is to train an acoustic model via multi-condition 
training. Some studies directly feed noisy features into the 
acoustic model at the test stage, while other studies enhance 
noisy speech first. When comparing the second and third 

approaches, Delcroix et al. [4] can get better results using the 
second approach, while Seltzer et al. [6] show that the third 
approach is better. As suggested in [7,8], it would be better to 
let the acoustic model see enough variations during training. In 
addition, reducing the mismatch between enhanced speech and 
the training data for acoustic modeling is of considerable 
importance [5].  

In our previous study [9], we proposed to jointly train a 
speech separation DNN with an acoustic model DNN for 
robust ASR. The key idea is to concatenate these two DNNs 
so that the error signal from the acoustic model DNN can be 
further back-propagated to the speech separation DNN. This 
way, the separation frontend can be adjusted to provide the 
enhanced speech desired by the acoustic model. In addition, 
the linguistic information from the acoustic model can 
influence the separation frontend. In this study, we further 
develop this strategy.  

Here we train a speech separation DNN to enhance the 
noisy power spectrogram, rather than the noisy mel-
spectrogram used in our previous study. We think it would 
probably be better to do enhancement in the power 
spectrogram domain since mel-spectrogram contains less 
information. As suggested in [ 10 ], mel-filterbank can be 
thought of as one layer in a neural network since mel-filtering 
is a linear transform of the power spectrogram. We can insert 
this layer between the speech separation DNN and the acoustic 
model DNN, and jointly train all of them so that the filterbank 
is adjusted accordingly.  

Furthermore, in DNN-HMM hybrid approach for robust 
ASR, log mel-spectrogram is widely used as the only feature 
for acoustic modeling [5,6,11,12,13,14], partly because DNN 
is considered capable of automatically extracting meaningful 
representations through its multi-layer structure [ 15 , 16 ]. 
However, in our experiments, we found that when using multi-
condition training for acoustic modeling, adding more robust 
features, such as AMS [17], RASTA-PLP [18], PNCC [19], 
and MRCG [20], to acoustic models will significantly decrease 
word error rate (WER).  

In summary, our study makes three contributions. First, we 
find that performing speech enhancement in the power 
spectrogram domain is slightly better than in the mel-
spectrogram domain. Second, we jointly train the speech 
separation frontend, filterbank, and acoustic model to alleviate 
the distortion problem. Third, we find that adding more robust 
features to acoustic models significantly improves perform-
ance. With these observations, we achieve 14.1% WER on the 
challenging CHIME-2 corpus (track 2) [21], which, to our 
knowledge, represents the best result on this dataset. 

Copyright © 2015 ISCA September 6-10, 2015, Dresden, Germany

INTERSPEECH 2015

2839



2. System Description 
In this section, we first describe the method for training a 
DNN-based speech separation frontend via time-frequency (T-
F) masking. Then we present how we train a DNN-based 
acoustic model with more robust features. Note that these two 
DNNs are trained separately in the beginning. Finally, together 
with the values of the mel-filterbank, we use the parameters of 
the trained frontend and acoustic model to initialize the 
corresponding part in the joint training system. The overall 
joint training framework is shown in Figure 1. 

2.1. Speech Separation 
Recently, DNN-based time-frequency masking [22,23] has 
shown considerable potential for robust ASR [5,9,12, 24 ]. 
These methods typically estimate the ideal ratio mask (IRM), a 
T-F mask that represents the ratio of speech energy to mixture 
energy at each T-F unit, from premixed clean speech and noise 
at different SNR levels. In this study, the IRM is defined in the 
power spectrogram domain:  
 

�(�, �) =
�(�, �)

�(�, �) + �(�, �)
 (1) 

where � is the ideal ratio mask, � is the power spectrogram of 
clean speech, and  � is the power spectrogram of noise. � and 
� index time and frequency, respectively.  

We utilize a DNN to do mask estimation. The DNN has 
three hidden layers, each with 1024 hidden rectified linear 
units (ReLU). The output layer contains 161 sigmoid units, 
corresponding to the number of channels in each frame of the 
power spectrogram. The optimization aims to minimize the 
cross-entropy loss function within each T-F unit. The dropout 
rates in the input layer and hidden layers are all set to 0.3. The 
maximum ��  norm of the incoming weights of each hidden 
unit is set to be 1. We learn the weights starting from random 
initialization using stochastic gradient descent with 
momentum and Adagrad [25] for a maximum of 50 epochs. 
The mini-batch size is 256. The momentum is linearly 
increased from 0.1 to 0.9 in the first 12 epochs and kept fixed 
afterwards. The learning rate is fixed at 0.01 in the first 10 
epochs, 0.005 in the following 20 epochs and 0.001 afterwards.  

The window size in our study is 20 ms and the hop size is 
10 ms. The features used for mask estimation are: 
� 13-dimensional RASTA-PLP [18] feature; 
� 15-dimensional AMS [17] feature extracted from each of 

the 26 channels of the mel-spectrogram;  
� 31-dimensional narrowband MFCC feature with the 

analysis window of 20 ms; 
� 31-dimensional wideband MFCC feature with the 

analysis window of 200 ms. 
All of these features are globally mean and variance 

normalized before training. We splice a 7-frame window for 
all features except for AMS. So the total number of features 
for mask estimation is 915 (13*7+15*26+31*7+31*7). This 
feature set is shown to be complementary for mask-based 
speech separation in [26]. The feature set is denoted as “fIRM” 
for convenience. 

At the test stage, given a noisy utterance, we first utilize 
the trained DNN to estimate the IRM of that utterance and 
then obtain the enhanced power spectrogram using: 
 	∗ = (�∗)� ⊗ 	 (2) 

where �∗  is the estimated IRM of the noisy power 
spectrogram 	, ⊗ stands for point-wise matrix multiplication, 
and 	∗  denotes the enhanced power spectrogram. Here a 
tunable parameter  (0 ≤  ≤ 1)  is used to scale the 
estimated masks. When α is set to 1, it means that we use the 
estimated masks directly. When α  is set to 0, we do not 
perform any masking. When α  is between 0 and 1, we 
suppress noise to some extent. Through validation, we find 
that α = 0.5 is the best choice. When α is set to 0.5, Eq. (2) is 
similar to the square root Wiener filter which has optimal 
properties for power spectrogram enhancement [27]. 

2.2. Acoustic Modeling 
The DNN–HMM hybrid approach represents the state-of-the-
art method for speech recognition. In this study, we use a 
DNN with 7 hidden layers for acoustic modeling. Each hidden 
layer contains 2048 ReLU units. We use softmax activation at 
the output layer and minimize the cross-entropy loss function. 
All the other setup and training recipes are the same as the 
DNN training for mask estimation. 

Many previous studies only use the log mel-spectrogram 
as the only feature for acoustic modeling. It is believed that 
DNN can learn useful representations automatically from 
relatively raw input such as the log mel-spectrogram or power 
spectrogram with a large context window (normally 11 
frames). For robust ASR, when the acoustic model is trained 
using multi-conditional data, it’s sensible that adding more 
robust features to acoustic models would help since different 
features would encode different kinds of information. In this 
study, we use a subset of the following features for acoustic 
modeling: 
� 26-dimensional log mel-spectrogram feature together 

with its delta and double delta components. We further 
splice the features of 11 frames together after sentence 
level mean normalization (denoted as “NMS” feature); 

� 915-dimensional fIRM feature as described in the 
previous section; 

� 31-dimensional PNCC feature together with its delta and 
double delta components. Features from 11 frames are 
spliced together. The PNCC feature is relatively robust 
to reverberation and noises as shown in [19]; 

� 256-dimensional multi-resolution cochleagram (MRCG) 
feature together with its delta and double delta 
components. The recently proposed MRCG feature is 
shown to perform well for mask estimation [20]. 

All of these features are globally mean and variance 
normalized before acoustic modeling. For comparison, we 
always incorporate the NMS feature as part of all the features 
when doing acoustic modeling. 

2.3. Joint Training 
The joint training framework is shown in Figure 1. After we 
get the estimated IRM from the speech separation frontend, we 
scale it exponentially and multiply it point-wisely with the 
power spectrogram as in Eq. (2). Then we pass the enhanced 
power spectrogram into the filterbank layer to get the 
enhanced filterbank feature. The filterbank layer gives a linear 
transformation similar to mel-filtering, which can be 
represented as one layer in the network. Afterwards, we use 
the log operation to compress the enhanced filterbank feature. 
As the sentence-level mean normalization, delta and double 
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delta, and global mean and variance normalization are all 
linear transformations, we can encode each of them as one 
layer in the network as well. Finally, after splicing several 
frames (11 frames in this study), together with other robust 
features, the output of the fixed layer is passed into the 
acoustic model. Interestingly, we can represent all of these 
steps as a big and deep neural network so that we can utilize 
the back-propagation algorithm to jointly train the speech 
separation frontend, filterbank and acoustic model. 

We use the parameters of the separately trained speech 
separation DNN and acoustic model DNN to initialize the 
corresponding parameters of the joint-training DNN. 
Following [10], we initialize the weights of the filterbank layer 
as follows: 
 ����������� = ��� (�∗) (3) 

where �∗ is initialized to be log (���-�����!"#$%). This way, 
every time �∗  is updated, all the values in  �����������  are 
ensured to be non-negative. 

This network is further jointly trained for a maximum of 
30 epochs. The learning rate is fixed at 0.001 and the 
momentum is fixed at 0.9. The mini-batch size is set to be 512. 
No dropout is performed at the filterbank layer. The network is 
trained to optimize the cross-entropy error of the acoustic 
model. All the other setup and training recipes follow those for 
the DNN training for mask estimation and acoustic modeling 
in the previous steps. The sentence level mean of each 
utterance and the global mean and variance are updated by 
running the feed-forward algorithm at the beginning of each 
epoch.  

3. Experimental Setup 
We conduct our experiments on the medium-vocabulary task 
of the CHIME-2 challenge (track 2) [21]. The CHIME-2 
corpus is created by first convolving clean utterances in WSJ0-
5k with time-varying binaural room impulse responses and 
then mixing with reverberant noises at six SNR levels linearly 
spaced from -6 dB to 9 dB.  The noises contain a very rich set 
of sounds from a living lounge and kitchen such as 
background speakers, footsteps, electronic devices, laughter, 
distant noises outside the room etc. The multi-condition 
training set contains 7138 noisy and reverberant utterances 
(~14.5h in total). The development set contains 409 utterances 
for each SNR condition (~4.5h in total). The test set contains 
330 utterances for each SNR condition (~4h in total).  

Our system is monaural. In our experiments, we simply 
average the signals from the left and right ear. The training 
data for mask estimation (7138 mixtures in total) is created by 
manually mixing the reverberant training set with the given 
noises in the CHIME-2 corpus at the same six SNR levels. 
Note that this dataset is only used for mask estimation. As we 
mentioned before, we utilize DNNs to do acoustic modeling. 
All the DNN-based acoustic models are trained using the 
multi-condition training set. A GMM-HMM system trained 
with maximum likelihood using the MFCC features extracted 
from the corresponding clean utterances in WSJ0-5k is used to 
get the senone state for each frame. There are 3310 senone 
states in total. We use a trigram language model and the CMU 
pronunciation dictionary in our experiments. The HTK toolkit 
is used to train the GMM-HMM system. The HTK decoder is 
modified to do DNN-HMM hybrid system decoding. 

4. Evaluation Results 
Our experiments are done in an incremental way. We first 
compare the performance of acoustic modeling with more 
robust features. Then we compare the performance of T-F 
masking in the power spectrogram domain with T-F masking 
in the mel-spectrogram domain. We finally present the results 
of joint training and compare our results with other studies. 

4.1. Expanded features for acoustic modeling 
In this experiment, we directly train acoustic models with 
different features using multi-condition training. Note that we 
do not perform speech enhancement here. The results on the 
test set are shown in Table 1. With the commonly used NMS 
feature, we obtain 20.8 percent average WER on the test set. 
When we add the fIRM feature, the average WER drops 4.2 
percent from 20.8 to 16.6. If we further add the MRCG feature, 
the average WER drops 0.3 more percent to 16.3. The best 
model we have obtained is trained with the NMS+fIRM+ 
MRCG+PNCC feature, and the 15.6 percent WER on the test 
set is absolute 5.2 percent better than the NMS baseline and is 
only 0.2 percent worse than the previous best result [9] on this 
dataset. Note that what we do is simply adding more features, 
and it brings us 5.2 percent WER reduction on the test set. 
These results suggest that when using multi-condition training, 
adding more features for acoustic modeling provides 
significant benefit, probably because manually designed 
features contain more useful domain knowledge. It also 
suggests that relying on deep networks to automatically learn 
optimal features from raw input may not be the best strategy. 
Combining the feature learning power of deep networks with 
domain knowledge may be a more promising way towards
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Table 1. Results (% WER) of acoustic modeling with more robust features and direct multi-condition training 
Features -6dB -3dB 0dB 3dB 6dB 9dB Average 

NMS 32.2 26.1 21.9 17.2 14.7 13.0 20.8 
NMS+fIRM 27.0 20.3 16.8 13.9 11 10.4 16.6 

NMS+fIRM+MRCG 26.5 20.7 17.1 13.1 11.0 9.8 16.3 
NMS+fIRM+MRCG+PNCC 26.1 18.7 16.2 12.8 10.4 9.3 15.6 

Table 2. Results (% WER) of masking in the mel-spectrogram or power spectrogram domain with different acoustic models 
Features for acoustic modeling Masking domain -6dB -3dB 0dB 3dB 6dB 9dB Average 

NMS Mel-spectrogram 28.8 22.8 19.8 16.3 13.6 12.0 18.9 
NMS Power spectrogram 28.3 22.3 19.9 15.9 13.7 12.0 18.7 

NMS+fIRM+MRCG+PNCC Mel-spectrogram 25.3 18.5 15.3 12.0 10.4 9.0 15.1 
NMS+fIRM+MRCG+PNCC Power spectrogram 25 18.2 15.3 12.2 10.4 9.0 15.0 

Table 3. Results (% WER) of joint training and comparison with other methods 
Description -6dB -3dB 0dB 3dB 6dB 9dB Average 

Jointly train frontend and acoustic model 23.6 17.9 14.4 11.8 9.9 8.6 14.4 
Jointly train frontend, filterbank and acoustic model 22.8 17.7 14.0 11.5 9.9 8.8 14.1 

Previous best result [9] 25.1 19.2 15.1 12.8 10.5 9.5 15.4 
Directly train an 11-hidden-layer DNN 25.5 20.2 16.9 13.8 10.8 9.5 16.1 

 

improvements [28]. 

4.2. T-F masking in different domains 
In this experiment, we compare the performance of performing 
T-F masking in different domains. When ideal masks are 
defined in the mel-spectrogram domain, the frontend is trained 
to get the enhanced mel-spectrogram directly. When ideal 
masks are defined in the power spectrogram domain, the 
frontend is trained to get the enhanced power spectrogram first, 
which is then passed into the mel-filterbank to get the 
enhanced mel-spectrogram. The enhanced mel-spectrogram is 
finally passed into a multi-conditionally trained acoustic 
model for decoding. The performance on the test set is shown 
in Table 2. When the acoustic model is trained with the NMS 
feature, conducting T-F masking in the power spectrogram 
domain can improve the average WER by around 0.2 percent. 
When we use the NMS+fIRM+MRCG+PNCC feature to train 
the acoustic model, we get about 0.1 percent improvement. 
We can see that defining ideal masks in the power 
spectrogram domain performs slightly better than in the mel-
spectrogram domain. By comparing the results in Table 1 and 
Table 2, we can also see that performing speech separation 
when the acoustic model is trained with multi-conditional data 
can still bring us a decent amount of improvement. 

4.3. Joint training 
In Table 3, we present the joint training results on the test set. 
In this experiment, T-F masking is performed in the power 
spectrogram domain and the acoustic model is trained with the 
NMS+fIRM+MRCG+PNCC feature. To figure out whether 
learning parameters of the filterbank layer will help, we first 
fix the filterbank layer to be the mel-filterbank, and only 
jointly train the acoustic model and the frontend. The 
performance is 0.3 percent worse than joint training on all of 
them, which suggests that learning the filterbank helps a little. 
The final system achieves 14.1 percent average WER on the 
test set, which is absolute 1.3 percent better than the previous 
best result [9] on this dataset (or 8.4% relative improvement). 
We also point out that, by comparing the first row of Table 3 
with the last row of Table 2, using joint training can improve 

the average WER by 0.6 percent. This is probably because of 
the reduction of the distortion problem and the linguistic 
information propagated back from the acoustic model.  

It might be argued that joint training of the separation 
frontend, filterbank and acoustic model is basically the same 
as training a deeper and bigger DNN-based acoustic model 
with multi-conditional data. To address this possibility, we 
train a DNN with 11 hidden layers and 1746 units in each 
layer using the NMS+fIRM+MRCG+PNCC feature for a 
maximum of 80 epochs as a comparison. Note that the number 
of parameters and other setup in this large DNN are almost the 
same as our jointly trained DNN. With this new DNN, as 
shown in Table 3, we can only obtain 16.1 percent average 
WER on the test set. The superiority of our approach is 
probably because of better network architecture and better 
parameter initialization. 

5. Conclusions and Future Work 
We have found that performing T-F masking in the power 
spectrogram domain is slightly better than in the mel-
spectrogram domain. We have proposed a novel joint training 
approach that jointly adjusts the frontend, filterbank and 
acoustic model to alleviate the distortion problem. 
Furthermore, we suggest adding more features for acoustic 
modeling when using multi-condition training, which leads to 
significant improvements compared with only using the mel-
spectrogram feature. Since the CHIME-2 corpus is noisy and 
reverberant, more experiments are needed to verify that the 
robust features used in this study can generalize to other 
datasets such as the Aurora-4 corpus which is noisy and has 
channel distortions. At a minimum, adding more robust 
features to acoustic models trained with multi-condition 
training appears to be a simple and effective technique towards 
improved robustness of ASR systems. 
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