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Abstract

Significant advances in speech separation have been
made by formulating it as a classification problem, where
the desired output is the ideal binary mask (IBM). Pre-
vious work does not explicitly model the correlation be-
tween neighboring time-frequency units and standard bi-
nary classifiers are used. As one of the most important
characteristics of speech signal is its temporal dynam-
ics, the IBM contains highly structured, instead of, ran-
dom patterns. In this study, we incorporate temporal dy-
namics into classification by employing structured out-
put learning. In particular, we use linear-chain structured
perceptrons to account for the interactions of neighbor-
ing labels in time. However, the performance of struc-
tured perceptrons largely depends on the linear separabil-
ity of features. To address this problem, we employ pre-
trained deep neural networks to automatically learn ef-
fective feature functions for structured perceptrons. The
experiments show that the proposed system significantly
outperforms previous IBM estimation systems.

Index Terms: Monaural speech separation, temporal dy-
namics, structured perceptron, deep neural networks

1. Introduction

Monaural speech separation is a central problem in
speech processing. Since no spatial information can be
used, monaural speech separation can only use intrinsic
properties of speech or noise, and is thus challenging. In
this study, we only consider separating speech from non-
speech interference.

Computational auditory scene analysis (CASA) at-
tempts to solve the speech separation problem based on
perceptual principles. It offers several advantages over
the traditional speech enhancement methods, e.g., no sta-
tionarity is assumed. A primary computational goal of
CASA is the estimation of the ideal binary mask (IBM)
[9]. The IBM is defined as a mask in which each time-
frequency (T-F) unit is labeled as 1 or 0 based on the lo-
cal signal-to-noise ratio (SNR). If the local SNR of a unit
exceeds a threshold, the unit is labeled as 1, otherwise
0. Recent efforts have been made in the CASA com-
munity to formulate IBM estimation as a binary classi-
fication problem. This formulation has achieved notable
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success in robust automatic speech recognition [8] and
improving human speech intelligibility in noise [6]. Re-
cent work has significantly improved classification per-
formance by exploiting the selection of features [10] and
classifiers [3].

Dictated by the speech production mechanism and
linguistic constraints, speech signal contains rich tempo-
ral information, which could be exploited for speech sep-
aration. Systems accounting for temporal dynamics exist.
For example, Mysore et al. [7] directly model temporal
dynamics using hidden Markov models (HMMs). As a
result of temporal continuity', the IBM contains highly
structured patterns. However, none of the above classifi-
cation based systems explicitly model temporal dynamics
and each T-F unit is labeled without considering neigh-
boring labels. To address this deficiency, we propose to
use structured output learning models that are capable of
capturing interactions between labels. In particular, we
employ linear-chain structured perceptrons [1], which are
discriminative Markov random fields trained by the aver-
aged perceptron algorithm. However, structured percep-
trons are linear models with limited modeling power. To
deal with this limitation, we further employ pretrained
deep neural networks to learn highly nonlinear feature
functions for structured perceptrons.

In the next section, we describe the proposed sys-
tem including the system overview, temporal dynamics
modeling and nonlinear feature function learning. Exper-
imental results are shown in Section 3. We conclude this
paper in Section 4.

2. Proposed Method
2.1. System Overview

A sound mixture with 16 kHz sampling rate is passed
through a 64-channel gammatone filterbank with cen-
ter frequencies ranging from 50 Hz to 8000 Hz. The
output from each channel is divided into 20-ms frames
with 10-ms frame shift, producing a cochleagram. The
computational goal here is to estimate the IBM for the

1Other contextual constraints such as common onset and co-
modulation also contribute to the structure in the IBM, but we only
consider temporal dynamics in this study.
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mixture. Due to different spectral properties across fre-
quency channels, we train different classifiers for differ-
ent channels, with the IBM providing training labels. In
our previous work [10], we have identified a set of T-F
unit level complementary features that are effective for
separation. Unit level feature extraction is possible be-
cause a T-F unit is a subband signal of a certain length.
In this study, we also employ this set of features, which
consists of amplitude modulation spectrogram (AMS),
relative spectral transform and perceptual linear predic-
tion (RASTA-PLP), mel-frequency cepstral coefficients
(MFCC), pitch-based features and delta features. We use
ideal pitch in training but estimated pitch in testing.

2.2. Incorporating Temporal Dynamics

Previous classification based systems mainly use Gaus-
sian mixture models (GMMSs) [6] and support vector ma-
chines [3, 10] as subband classifiers. However, they do
not explicitly model the correlation in time. While delta
features can capture some temporal variations on the fea-
ture level, each T-F unit is still classified individually. On
the other hand, structured output learning models gen-
eralize traditional classifiers to predict structured objects
such as sequences and trees. In this study, we treat unit
labeling at each channel as a sequence labeling prob-
lem and employ linear-chain structured perceptrons [1]
as the subband classifier. Structured perceptrons general-
ize the standard perceptron algorithm to predict outputs
structured on a random field. Unlike HMM, a structured
perceptron is a discriminative model and does not need
the independence assumption of features, making it more
suitable to our classification task. Compared to condi-
tional random fields, it is more efficient as it does not
need to compute the partition function.

For simplicity, in this study we only consider the in-
teraction between a label and its predecessor. Therefore,
the discriminant function of a structured perceptron can
be written as follows:

Fy,x) =Y w1 (yi,x) + v do(yi1,9:,%), (1)

where ¢ is the frame index, y and x are output (la-
bel) and input (feature) sequences, respectively. ¢; and
¢o are vector-valued association and interaction feature
functions, respectively. Association feature functions de-
fine the local discriminant functions for individual T-F
units. Interaction feature functions complement associ-
ation ones by capturing the interactions between neigh-
boring T-F units in time. For example, with interaction
feature functions, it is possible to learn when two neigh-
boring T-F units should be assigned to the same label. w
and v are parameters to be learned by the standard per-
ceptron training algorithm. The predicted sequence la-

INTERSPEECH 2012

beling is obtained via

y = argmax F(y, x).
y
If the predicted sequence labeling ¥ is different from the
training sequence labeling y* under the current model,
ie., if maxy F'(y,x) > F(y*,x), then we update the
model parameters using the following equations:

W+Z [01(y; %) — ¢1(9:,x)],

w

v = V+Z[¢2(y;'k711y;kvx)_¢2(gi717yi7x)}~

In our task, we directly use T-F unit feature vectors as
the association feature functions and their concatenations
as the interaction feature functions:

[6(y; = 0)x;,0(y; = 1)x]",

o1
#2 =[6(yi—1 = 0,9; = 0)z;,6(yi—1 = 0,y; = 1)z,
]T

0yic1 =1, =0)2;,0(yi—1 = 1,y = 1)z,

)

where ¢ is the indicator function, x; is the feature vector
of the i-th unit, and z; = [x;_1, X;]

As can be seen, sequence decoding is involved in both
training and testing. In our setting, we could simply use
the Viterbi algorithm for efficient decoding. For other
complex interaction forms, more sophisticated decoders
can be used, but with significantly higher complexity.

2.3. Learning Nonlinear Feature Functions

Structured perceptrons are linear models with limited
modeling power. The performance is largely dependent
on the linear separability of features. Unfortunately,
acoustic features are usually not linearly separable. To
address this issue, we further propose to use pretrained
deep neural networks (DNN5s) to automatically learn fea-
ture functions that can greatly increase the modeling
power of structured perceptrons.

Deep neural networks have received widespread at-
tention since Hinton et al.’s 2006 paper [5]. Deep neural
networks can be viewed as hierarchical feature detectors
that learn increasingly complex feature mappings as the
number of hidden layers increases. However, training
deep neural networks with backpropagation is difficult
due to problems such as vanishing gradients. To allevia-
tive this problem, Hinton et al. propose to first pretrain a
DNN using a stack of unsupervised, restricted Boltzmann
machines (RBMs) in a layerwise fashion before perform-
ing backpropagation on any objective function of inter-
est. Raw features are used to train the first RBM, whose
hidden activations are then treated as the new training
data for the second RBM, and so on. The resulting net-
work weights are used to initialize a DNN with the same
depth and size. It has been shown that such a generative-
discriminative process is crucial for successfully training

1529



a deep architecture. DNNs have achieved state-of-the-art
performance on many pattern recognition tasks, includ-
ing automatic speech recognition (e.g. [2]).

An RBM is a two layer neural network, with connec-
tions only between its visible layer v and hidden layer
h. It has an energy function E' defining joint probability
p(v,h) = e F@R) /7 where v and h denote a visible
and hidden layer configuration, respectively. Z is the par-
tition function to ensure that p(v, k) is a valid probability
distribution. We use a Gaussian-Bernoulli (i.e. Gaussian
visible layer and Bernoulli hidden layer) RBM for the
first layer of a DNN and Bernoulli-Bernoulli RBMs for
all the layers above. The energy function of a Gaussian-
Bernoulli RBM is defined as follows and the interested
reader is referred to [5] for the Bernoulli-Bernoulli case,

E(’U7 h) = % Z(’Ui - ai)Q - ZthJ - Zwijvihj,
J .3

%

where v; and h; are the ith and jth units of v and h, a;
and b; are the biases for v; and h;, respectively, and w;;
is the symmetric weight between h; and v;.

Maximum likelihood estimation can be used to train
an RBM. Similar to the standard results for log-linear
models, the gradient of the log-likelihood is the differ-
ence between the expectation under the empirical distri-
bution and the expectation under the model distribution.
The calculation of the second expectation involves expo-
nentially many terms, but it can be effectively approxi-
mated using contrastive divergence [4].

After RBM pretraining, we fine-tune the whole net-
work using backpropagation with a cross-entropy loss
function to make the network discriminative. Since the
last layer of such a network essentially defines a linear
classifier, the last hidden layer representation is likely
more linearly separable if the network is well trained.
Therefore, we can take the hidden activations from the
last hidden layer as the automatically learned feature
function for the structured perceptron. In other words,
the discriminant function of a structured perceptron now
becomes:

Fy(y,x) = Z w! o1 (yi, 9(x))+vT P2 (yi-1,yi, 9(%)).
Z @

Here a pretrained DNN acts as the discriminative non-
linear mapping g(-). This way structured perceptrons
would greatly benefit from the nonlinear modeling power
of deep architectures, which we will show next.

3. Experimental Results

We employ the IEEE corpus recorded by a female
speaker for systematic evaluations. For training, we mix
50 sentences with 12 nonspeech noises at 0 dB. The 12
noises are babble, bird chirp, crow, cocktail party, yelling,
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crowd clap, rain, rock music, siren, telephone, white, and
wind noise. For testing, we use 20 new sentences to
mix with the 12 noises at 0 dB. To test generalization
of the proposed system, we also create an unmatched
test set by mixing the 20 test sentences with 3 unseen
noises: speech-shaped, traffic, and factory noise. The test
noises cover a variety of daily noises and most of them
are highly nonstationary.

We compare with two previous classification based
speech separation systems [6, 3] to demonstrate the ef-
fectiveness of the proposed system (named DNN-Struct).
We also present results from two baseline systems that are
based on DNNs or structured perceptrons (named Struct-
Perc) alone, in order to disentangle the contribution of
each component in the system. We use two hidden layer
DNNs and fine-tune the whole network using the limited-
memory BFGS algorithm (L-BFGS) after 100 epochs of
RBM pretraining. Structured perceptrons are trained for
50 epochs and the final models use averaged parameters.
We employ classification accuracy as well as hit minus
false-alarm (HIT—FA) rate as the evaluation criteria in
this study. Here, the HIT rate is the percent of correctly
classified target-dominant T-F units (1s) in the IBM. The
FA rate is the percent of wrongly classified interference-
dominant (0s) T-F units in the IBM. The HIT—FA rate is
proposed in [6] and shown to be highly correlated with
human speech intelligibility.

We report HIT—FA results at three kinds of frames:
overall, voiced and unvoiced. Voicing boundaries are de-
termined based on ideal pitch of speech. Table 1 shows
the classification performance of different systems on the
matched-noise test set. First, it is instructive to directly
compare the classification performance between SVM
[3] and DNN. We use the same feature set to train both
SVM and DNN, and clearly DNN outperforms SVM in
terms of both accuracy and HIT—FA. The performance
improvement is particularly large for unvoiced speech,
which is harder to separate due to the lack of harmon-
ics and weak energy. This result suggests that deep ar-
chitectures are likely more suitable for the speech sepa-
ration problem than shallow ones. We note that DNNs
without RBM pretraining (i.e., standard multi-layer per-
ceptrons) produce significantly worse results in our ex-
periments. Structured perceptrons are able to model tem-
poral dynamics, but only with linear modeling capabil-
ity. As can be seen in Table 1, the performance is ac-
tually significantly worse than standard binary classifiers
such as SVM. Nevertheless, the performance is substan-
tially boosted by using learned nonlinear feature func-
tions with DNNs. The proposed system significantly out-
performs other comparisons in terms of both accuracy
and HIT—FA, and the improvement over Kim et al.’s
GMM based system is quite large. Kim et al.’s system
has been shown to improve speech intelligibility in noise
[6], it is therefore reasonable to project that the proposed
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Table 1: Classification performance of different systems on a matched-noise test set. Boldface indicates best result

System Overall Voiced Unvoiced Accuracy
HIT FA HIT-FA HIT FA HIT-FA HIT FA HIT-FA
Kimetal. [6] | 75.4% | 20.0% 55.4% 79.1% | 22.0% 57.1% 57.4% | 16.4% 41.0% 77.4%
SVM [3] 75.7% | 1.7% 68.0% 80.5% | 7.5% 73.0% 56.7% | 8.2% 48.5% 86.6%
Struct-Perc | 72.3% | 12.5% 59.8% 77.9% | 11.5% 66.4% 50.0% | 14.2% 35.8% 82.3%
DNN 79.0% | 7.5% 71.5% 82.4% | 8.0% 74.4% 68.2% | 8.1% 60.1% 87.5%
DNN-Struct | 82.1% | 7.0% 75.1% 84.3% | 7.1% 77.2% 72.0% | 7.0% 65.0% 89.1%

Table 2: Classification performance of different systems on an unmatched-noise test set

System Overall Voiced Unvoiced Accuracy
HIT FA HIT-FA HIT FA HIT—FA HIT FA HIT-FA
Kim et al. [6] | 65.7% | 34.6% 31.1% 67.4% | 34.9% 32.5% 53.6% | 34.0% 19.6% 66.1%
SVM [3] 64.8% | 4.0% 60.8% 68.8% | 4.7% 64.1% 41.0% | 2.7% 38.4% 90.9%
Struct-Perc | 65.7% | 4.7% 61.0% T71.5% | 5.7% 65.8% 313% | 2.7% 28.6% 90.6%
DNN 68.6% | 5.2% 63.4% 70.2% | 5.8% 64.4% 59.0% | 4.0% 55.0% 90.6%
DNN-Struct | 71.0% | 4.6% 66.4% 71.8% | 5.1% 66.7 % 65.8% | 3.7% 62.1% 91.4%

Table 3: SNR and SegSNR results of different systems

Criteria SNR (dB) SegSNR (dB)
Matched | Unmatched || Matched | Unmatched

Kim et al. [6] 10.2 6.8 7.3 2.2

SVM [3] 10.5 8.8 10.9 7.2

DNN-Struct 12.2 9.5 13.2 8.2

system will provide further improvements.

Due to the mismatch between training and testing,
classification becomes harder on the unmatched-noise
test set. As we can see in Table 2, Kim et al.’s sys-
tem fails to generalize due to substantially increased FA
rates. The proposed system consistently outperforms the
others and achieves reasonable performance on unseen
noises. The improvement of DNN-Struct over DNN indi-
cates that modeling temporal dynamics improves the gen-
eralization of the classifiers.

In addition to classification performance, Table 3 also
presents SNR and segmental SNR (SegSNR) compar-
isons, which are standard criteria for speech enhance-
ment algorithms. The target speech resynthesized from
the IBM is used as the ground truth signal. By the SNR
based criteria the proposed system also significantly out-
performs previous systems. Moreover, the proposed sys-
tem produces more natural sounding output due to the
smoothing effect from temporal dynamics modeling.

4. Conclusions

We have proposed a classification based speech separa-
tion system that explicitly models temporal dynamics.
We formulate the separation problem as a sequence
labeling problem and employ structured averaged
perceptrons.  We transform the standard structured
perceptron into a highly nonlinear sequence classifier by
using feature functions learned from pretrained DNNs.
The proposed system significantly outperforms previous
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systems in terms of classification accuracy, HIT—FA,
and SNR. To our knowledge, this is the first study that
uses DNNs to address the speech separation problem.
In the current study, we only model the interaction
between two neighboring frames. In future work, we will
investigate more complex forms of temporal interaction,
including long-range temporal interactions.

Acknowledgements.

This research was supported

in part by an AFOSR grant (FA9550-08-1-0155) and an
STTR grant from AFOSR.

[1]

[2]

[3]
[4]

[5]

[6]

[7]

[8

—

[9]

[10]

5. References

M. Collins, “Discriminative training methods for hidden Markov
models: Theory and experiments with perceptron algorithms,” in
Proc. EMNLP, 2002.

G. Dahl, D. Yu, L. Deng, and A. Acero, “Context-dependent pre-
trained deep neural networks for large vocabulary speech recog-
nition,” IEEE T-ASLP, vol. 20, no. 1, pp. 3042, 2012.

K. Han and D. Wang, “An SVM based classification approach to
speech separation,” in Proc. ICASSP, 2011, pp. 5212-5215.

G. Hinton, “Training products of experts by minimizing con-
trastive divergence,” Neural Comp., vol. 14, no. 8, pp. 1771-1800,
2002.

G. Hinton, S. Osindero, and Y. Teh, “A fast learning algorithm for
deep belief nets,” Neural Comp., vol. 18, no. 7, pp. 1527-1554,
2006.

G.Kim, Y. Lu, Y. Hu, and P. Loizou, “An algorithm that improves
speech intelligibility in noise for normal-hearing listeners,” JASA,
vol. 126, pp. 1486-1494, 2009.

G. Mysore and P. Smaragdis, “A non-negative approach to semi-
supervised separation of speech from noise with the use of tem-
poral dynamics,” in Proc. ICASSP, 2011, pp. 17-20.

M. Seltzer, B. Raj, and R. Stern, “A Bayesian classifier for spec-
trographic mask estimation for missing feature speech recogni-
tion,” Speech Comm., vol. 43, no. 4, pp. 379-393, 2004.

D. Wang, “On ideal binary mask as the computational goal of
auditory scene analysis,” in Speech Separation by Humans and
Machines, Divenyi P., Ed.  Kluwer Academic, Norwell MA.,
2005, pp. 181-197.

Y. Wang, K. Han, and D. Wang, “Exploring monaural features for
classification-based speech separation,” Ohio State Univ. Dept. of
CSE, Tech. Rep. TR37, 2011.

1531





