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ABSTRACT

Supervised learning based speech separation has shown con-

siderable success recently. In its simplest form, a discrimina-

tive model is trained as a time-frequency masking function,

where the training target is an ideal mask. Ideal masks, such

as the ideal binarymasks, are structured spectro-temporal pat-

terns. However, previous formulations do not model promi-

nent output structure. In this paper, we propose an alternative

training target that is explicitly related to mask structure. We

first learn a compositional model of the square-root ideal ra-

tio mask that is closely related to the Wiener filter. Instead of

directly estimating the ideal mask values, we learn to predict

the weights for resulting mask-level spectro-temporal bases,

which are then used to generate the estimated masks. In other

words, the discriminative model is used to predict the parame-

ters of a generativemodel of the target of interest. Experimen-

tal results show consistent improvements in low SNR condi-

tions by adopting the new training target.

Index Terms— Speech separation, deep neural networks,

training target, spectro-temporal patterns

1. INTRODUCTION

Speech separation is a central problem in speech processing.

Monaural speech separation segregates target speech from

background noises using only one microphone. Despite many

important applications, monaural speech separation remains

a largely unsolved problem for decades. Monaural speech

separation is particularly challenging when dealing with low

signal-to-noise (SNR) ratio and non-stationary broadband

noises. In these cases, speech information is typically buried

in noise in the majority of time-frequency (T-F) units, ren-

dering traditional methods, such as speech enhancement,

ineffective.

Recently, speech separation has been formulated as a su-

pervised learning problem (e.g., [7]) with success. In its sim-

plest form, acoustic features are extracted from noisy mix-

tures after a time-frequency analysis. These features are used

to train a discriminative model that attempts to predict some

kind of ideal masks. In other words, the discriminative model

acts as a masking function, where the inputs are noisy fea-

tures and the outputs are mask values. The modeling power

of machine learning techniques enables monaural separation

in challenging conditions possible. In a recently conducted

listening test [4], we have shown that by predicting the ideal

binary mask (IBM) [15], a deep neural network (DNN) based

monaural separation system significantly improves the intel-

ligibility of noisy speech for hearing impaired listeners.

Previous supervised separation systems typically predict a

mask value at each T-F unit independently. However, the ideal

mask, whether binary or ratio, has strong spectro-temporal

structure due to speech production mechanisms, which are

largely ignored in previous systems. In fact, recent research

has shown that it is the patterns in the IBM that carry im-

portant intelligibility information [9, 11]. Therefore, explic-

itly modeling the output structure in a learning algorithm will

likely improve the performance in challenging conditions.

We propose the square-root ideal ratio mask (IRM) as

the training target, which is different from previous systems

that typically predict the IBM. Then, we propose to associate

the training target of DNNs with the structure in the IRM.

Specifically, we learn a compositional model to decompose

the square-root IRM into a set of spectro-temporal bases and

associated weights. Instead of directly estimating the IRM,

the DNN is trained to estimate the weights that are used to

linearly combine the mask bases to generate the estimated

mask. By switching to this intermediate target, the training

should be faster and the estimated mask is expected to be con-

structed from useful mask patterns.

Compositional models, in particular non-negative matrix

factorization (NMF), have been used in source separation

(e.g., [2, 13]). However, the proposed method is fundamen-

tally different from NMF based methods. Supervised NMF

typically models speech and noise spectra separately and

finds a linear combination of them to fit the observed mixture

spectra. In this sense, NMF can be loosely considered as

a generative model. In contrast, our method is purely dis-

criminative in the way that it learns a mapping from noisy

features to the parameters (e.g., weights) of a compositional

model, which serves as an intermediate step to obtaining the
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estimated mask. The compositional model is applied to the

ideal mask only to represent its spectro-temporal structure. In

addition, it does not have to be an NMF.

2. SUPERVISED SPEECH SEPARATION

The computational goal of supervised speech separation is to

estimate certain type of ideal masks capable of improving hu-

man speech intelligibility. We describe the training procedure

used in this paper as follows. We use a 32-channel gamma-

tone filterbank as our analysis frontend. The noisy mixtures

are passed to the gammatone filterbank with center frequen-

cies ranging from 50 to 8000 Hz. By windowing the filter

response in each filter channel, a T-F representation called

cochleagram [16] is formed for the noisy mixture. Acoustic

features are then extraced and fed as input to a deep neural

network, where the training target is provided by the ideal

mask of interest.

The supervised learning framework offers us great flexi-

bility in system design. When the ideal mask of interest is the

IBM, the DNN is trained as a classifier to predict whether a

T-F unit is target dominant or not. When the ideal mask is a

ratio mask, the DNN is trained as a regressor to estimate the

ideal gains. Using other training targets such as the instanta-

neous SNR is also possible [10]. In this paper, the baseline

DNN is trained to predict the square root of the ideal ratio

mask, which is defined as:

d(c,m) =

√

S(c,m)2

S(c,m)2 +N(c,m)2
(1)

where d(c,m) denotes the gain at channel c and time frame

m. S(c,m)2 and N(c,m)2 denote the clean speech energy

and noise energy at channel c and time framem, respectively.

As can be seen, this training target is closely related to the

square-root Wiener filter, which is widely used in speech en-

hancement.

The baseline DNN system uses a window of features to

predict the square-root IRM at each time frame. We use the

combined acoustic features proposed in [17], including am-

plitude modulation spectrogram, relative spectral transform

and perceptual linear prediction, mel-frequency cepstral co-

efficients, and gammatone filterbank power spectra.

3. STRUCTURE-PRESERVING TRAINING TARGET

Previous supervised speech separation systems directly learn

a map from noisy features to the ideal mask of interest. This

could be a difficult task especially at low SNR conditions,

as features might be too noisy to be discriminative. Strong

spectro-temporal correlations are fundamental to speech due

to linguistic constraints and speech production mechanisms.

This is well reflected in the ideal mask, and such output struc-
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Fig. 1. A compositional model of the square-root IRM. Top

left: 128 learned bases by training an NMF on square-root

IRM (sliding window of 5 frames). Top right: the square-root

IRM of a noisy mixture at -5 dB. Bottom left: basis weights

inferred by the NMF. Bottom right: the reconstructed square-

root IRM by using the resulting weights and bases.

ture could be used to regularize the learning and to help the

estimation.

Recent research has revealed the strong correlations be-

tween the patterns in the IBM and human intelligibility score

as well as automatic speech recognition performance [9, 11].

Ideally, these patterns should have good correspondences to

the underlying linguistic units such as phones or subphones.

We assume that these patterns are constituents that can be

combined to construct the ideal mask. In this paper, we learn

an additive, compositional model of the ideal mask. Specifi-

cally, a simple NMF is trained on the square-root IRM and the

resulting bases are considered as the constituent structures.

To capture temporal structures, the NMF is trained on a win-

dow of frames instead of single time slices. After training,

the resulting weights, bases, along with the NMF model form

a generative model1 of the square-root IRM. The weights are

used to linearly combine the corresponding bases to recon-

struct the original mask. Figure 1 shows the learned bases,

weights and the reconstructed mask. We can see that the sim-

ple NMF is sufficient to reconstruct the square-root IRM.

Instead of directly estimating the square-root IRM, we

propose to estimate the basis weights of its compositional

model. As shown above, correctly estimated basis weights

will lead to (almost) ideal masks. We expect that the esti-

mation of basis weights tends to be more error tolerable than

the direct estimation of masks per se. The rationale is that

even when some weights for a particular frame are erroneous,

1Strictly speaking, the standard NMF is not a generative model as it is

not probabilistic. Here the term is slightly abused to refer to models that can

produce/reconstruct the data of interest.
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Table 1. STOI measure comparisons between different systems and training targets

System Target
Babble Factory Speech-shaped

-5 dB -2 dB 0 dB -5 dB -2 dB 0 dB -5 dB -2 dB 0 dB

Mixture n/a 0.562 0.629 0.676 0.571 0.635 0.681 0.607 0.675 0.722

DNN Square-root IRM 0.644 0.745 0.789 0.703 0.776 0.817 0.770 0.828 0.859

DNN Mask basis weight 0.660 0.755 0.800 0.721 0.786 0.823 0.775 0.831 0.862

Supervised NMF Spectrogram 0.596 0.667 0.716 0.632 0.696 0.738 0.682 0.752 0.789

Hendriks et al. [5] DFT magnitudes 0.497 0.586 0.645 0.529 0.613 0.669 0.604 0.681 0.731

DNN (Spectrogram) basis weight 0.678 0.753 0.790 0.730 0.787 0.816 0.783 0.826 0.850

Table 2. PESQ score comparisons between different systems and training targets

System Target
Babble Factory Speech-shaped

-5 dB -2 dB 0 dB -5 dB -2 dB 0 dB -5 dB -2 dB 0 dB

Mixture n/a 1.396 1.573 1.711 1.254 1.428 1.540 1.497 1.648 1.735

DNN Square-root IRM 1.625 1.862 2.105 1.761 2.075 2.246 1.934 2.168 2.350

DNN Mask basis weight 1.668 1.953 2.246 1.860 2.136 2.273 1.970 2.193 2.360

Supervised NMF Spectrogram 1.462 1.631 1.752 1.511 1.688 1.832 1.653 1.836 1.961

Hendriks et al. [5] DFT magnitudes 1.238 1.490 1.668 1.368 1.653 1.852 1.475 1.732 1.921

DNN (Spectrogram) basis weight 1.670 1.913 2.070 1.870 2.073 2.200 1.981 2.163 2.255

the rest of the correctly estimated weights can still contribute

useful structure, which may comprise to make part of the es-

timated mask correct. In other words, training to estimate the

basis weights helps preserve the structure in the final algo-

rithm output, which may lead to more perceptually relevant

results.

4. EXPERIMENTS

4.1. Experimental Settings

We use the IEEE sentences recorded by a male speaker as

the speech corpus [6]. Three challenging broadband noises,

i.e., a speech-shaped noise (SSN), a factory noise and a bab-

ble noise are additively mixed with clean speech to create the

training and test mixtures. To create the training set, we mix

200 sentences with the first two minutes of each of the three

noises at -5, -2 and 0 dB. Each clean sentence is mixed with

20 randomly picked noise segments, creating a training set of

4000 mixtures for each type of noise. To create the test set,

we use 50 unseen sentences to mix with random cuts from

the last two minutes (no overlap with any training noise seg-

ments) of the three noises, also at -5, -2 and 0 dB. The SSN

is stationary, whereas the factory and babble noise are highly

non-stationary. We point out that these noises are extremely

difficult to separate at negative SNR conditions. For example,

the human (normal-hearing) intelligibility score for the used

factory noise at -5 dB is well below 50% [8].

We use the standard feed-forward DNNs (multi-layer per-

ceptrons) as the discriminative model throughout all the ex-

periments. All DNNs use three hidden layers, each having

1024 rectified linear units. The networks are discriminatively

trained using the standard backpropagation algorithm with

dropout regularizations, and no unsupervised pretraining is

used. Adaptive stochastic gradient descent (AdaGrad) is used

as the optimizer [1]. We use a window (5 frames) of combined

features as inputs to the DNN (input dimension is 1230). To

compare the standard and proposed training targets, we train

two sets of DNNs. The first set uses a 32-D output layer

to directly estimate the square-root IRMs across all 32 chan-

nels. The standard NMF is used to learn 128 bases of the

square-root IRM using a sliding window of 5 frames. There-

fore, the second set uses a 128-D output layer to estimate the

weights of these bases. We use the standard sigmoid acti-

vation functions for the output layers of the mask-estimating

DNNs, as the square-root IRM is bounded within [0, 1]. The
values of the basis weights are greater than or equal to 0

(due to non-negativity) but are not necessarily less than or

equal to 1. To accommodate this, we use bounded linear out-

put units for weight-estimating DNNs, which are defined as

f(x) = max (0,min (x,m)). Here m denotes the largest

weight value found in the training set. Note that we also used

the bounded linear units (with m = 1) for mask-estimating

DNNs but did not achieve better results. This indicates that

the choice of output activation functions does not contribute

to the performance differences shown next.

4.2. Results

To put the performance of supervised speech separation in

perspective, we also compare with NMF and speech enhance-

ment based systems. We compare with supervised NMF [18],

where the speech bases and noise bases are trained separately

for each type of noise using exactly the same training data

used by DNNs. We have made efforts to tune its perfor-
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Fig. 2. Spectrogram reconstruction of a -5 dB mixture (fac-

tory noise). The DNN is trained to estimate the weights of the

spectrogram bases learned by an NMF.

mance, and the best NMF results are obtained by using a

sliding window of 11 frames [2]. We use 80 and 160 bases

to represent speech and noise spectrogram, respectively. We

also tried using convolutive NMF [13] to learn more invari-

ant spectro-temporal bases, but did not achieve betters results

for the noises used in this paper. For speech enhancement,

we compare with the algorithm proposed by Hendriks et al.

[5], which is considered as a state-of-the-art in the speech

enhancement community. In evaluation, we use Short-Time

Objective Intelligibility measure [14] (STOI) and Perceptual

Evaluation of Speech Quality score [12] (PESQ) to evalu-

ate the objective speech intelligibility and speech quality im-

provement, respectively. Both STOI and PESQ are obtained

by comparing with clean speech.

STOI and PESQ results for different systems with differ-

ent training targets are presented in Table 1 and 2. Across all

SNR conditions, switching training target from mask to mask

basis weight gives consistent improvements. Note that STOI

represents a correlation between 0 and 1, and a 1% absolute

improvement is considered significant. For example, using

the conversion formula for the IEEE corpus given in Table

II of [14], the projected intelligibility improvement is about

4% in the case of -5 dB babble. Estimating weights seems

to be more helpful in lower SNR and non-stationary noise

cases. The STOI improvement is only marginal in the case

of SSN. Switching targets gives slight but also consistent im-

provements in PESQ. Although using exactly the same train-

ing data, supervised NMF is substantially worse than DNNs

in both STOI and PESQ (perceptually it is also much worse).

In low SNR conditions, data-driven techniques seem to be

very important, which is reflected by the comparisons with

Hendriks et al.’s system. In fact, except SSN, the STOI results

of Hendriks et al.’s system are significantly worse than those

of unprocessed. Although designed to improve speech qual-

ity, it is also worth noting that NMF and speech enhancement

are significantly worse than masking based DNN approaches

in terms of PESQ.

4.3. Discussions

The proposedmethod can be easily extended. The ideal target

of interest can vary according to applications, and is certainly

not limited to mask estimation. For example, we can learn

spectrogram bases and use DNNs to predict corresponding

weights, which along with the pre-learned bases can be used

to directly reconstruct clean spectrograms. When the bases

are learned by NMF, this can be thought as a supervised and

much more non-linear fashion to performNMF inference. An

example of reconstructing the clean spectrogram of a -5 dB

mixture (factory noise) is shown in Figure 2, where we can

see that the proposed method is much better than a super-

vised NMF that uses the same training data (thus the clean

spectrogram bases are the same for both DNN and NMF).

In a few cases, spectrogram reconstruction offers further im-

provements, which can be seen from the last row in Table 1

and 2. This seems to be an interesting future work for us.

Enabled by the supervised learning framework, the proposed

method can also be easily applied to other applications, such

as bandwidth extension and dereverberation.

5. CONCLUSIONS

Choosing a suitable training target is important for supervised

learning. It is possible that predicting an intermediate target

makes learning easier and generalize better [3]. Motivated

by the spectro-temporal pattens in the ideal masks, we have

proposed a structure-preserving training target as an alterna-

tive to directly estimating the mask values. Switching to this

intermediate target provides consistent STOI and PESQ im-

provements, especially for non-stationary noises in very low

SNR conditions. In addition, we have also demonstrated that

a standard DNN that estimates the square-root IRM can per-

form substantially better than supervisedNMF and speech en-

hancement in low SNR conditions.

The supervised learning framework is very flexible that it

enables the proposed method to be applicable to many kinds

of target of interest and/or to many applications other than

speech separation. We want to point out that the proposed

method does not rely on NMF. Any kind of generative mod-

els, or even speech production models, should be applicable.

These are all interesting future work.
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