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Abstract
We study image segmentation on the basis of locally excitatory globally inhibitory oscillator
networks (LEGION), whereby the phases of oscillators encode the binding of pixels.  We
introduce a lateral potential for each oscillator so that only those oscillators with strong connections
from their neighborhood can develop high potentials.  Based on the concept of the lateral potential,
a solution to remove noisy regions in an image is proposed for LEGION, so that it suppresses the
oscillators corresponding to noisy regions, without affecting those corresponding to major regions.
We show that the resulting oscillator network separates an image into several major regions, plus a
background consisting of all noisy regions, and illustrate network properties by computer
simulation.  The network exhibits a natural capacity in segmenting images.  The oscillatory
dynamics leads to a computer algorithm, which is applied successfully to segmenting real gray-
level images.  A number of issues regarding biological plausibility and perceptual organization are
discussed.   We argue that LEGION provides a novel and effective framework for image
segmentation and figure-ground segregation.

1. Introduction
The segmentation of a visual scene (image) into a set of coherent patterns (objects) is a

fundamental aspect of perception, which underlies a variety of tasks such as image processing,
figure-ground segregation, and automatic target recognition.  Scene segmentation plays a critical
role in the understanding of natural scenes.  Although humans perform it with apparent ease, the
general problem of image segmentation remains unsolved in sensory information processing.  As
the technology of single-object recognition becomes more and more advanced in recent years, the
demand for a solution to image segmentation is increasing since both natural scenes and
manufacturing applications of computer vision are rarely composed of a single object.

Objects appear in a natural scene as the grouping of similar sensory features and the
segregation of dissimilar ones.  Sensory features are generally taken to be local, and in the simplest
case may correspond to single pixels.  To approach the problem of scene segmentation, three basic
issues must be addressed: What are the cues that determine grouping and segregation?  What is the
proper representation for the result of segmentation?  How are the cues used to give rise to
segmentation?

Much is known about sensory cues that are important for segmentation.  In particular, Gestalt
psychology has uncovered a set of principles guiding the grouping process in the visual domain
(Wertheimer 1923; Koffka 1935; Rock and Palmer 1990).  These principles work together to
produce segmentation.  We briefly summarize some of the most important principles (see also
Rock and Palmer 1990):
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• Proximity.  The closer the features lie to each other, the easier they are to be grouped into the
same segment.

• Similarity. Features that have similar attributes, such as grayness, color, depth, texture, etc.,
tend to group together.  

• Common fate. Features that have similar temporal behavior tend to group together.  For
instance, a group of features that move coherently (common motion) would form a single object.
Notice that common fate may be regarded as one aspect of similarity.  We list it separately to
emphasize the importance of time as a separate dimension.

• Connnectedness. A uniform, connected region, such as a spot, line, or more extended area,
tends to form a single segment.

• Good continuation. A set of features that form a smooth and continuous curve tend to group
together.

• Prior knowledge. If a set of features belong to the same familiar pattern, they tend to group
together.  

In computer vision algorithms for image segmentation, the result of segmentation can be
represented in many ways.  However, it is not a trivial task to represent the outcome of
segmentation in a neural network.  One proposal is naturally derived from the so-called neuron
doctrine (Barlow 1972), where neurons at higher brain areas are assumed to become more selective
and eventually a single neuron represents each single object (the grandmother-cell representation).
Multiple objects in a visual scene would be represented by the coactivation of multiple units at
some level of the nervous system.  This representation faces major theoretical and neurobiological
problems (von der Malsburg 1981; Abeles 1991; Singer 1993).  Another proposal relies on
temporal correlation to encode the binding (Milner 1974; von der Malsburg 1981; Abeles 1982).  
In particular, the correlation theory of von der Malsburg (1981) asserts that an object is represented
by the temporal correlation of the firing activities of the scattered cells that encode different features
of the object.  Multiple objects are represented by different correlated firing patterns that alternate in
time, each corresponding to a single object.  

Temporal correlation provides an elegant way to represent the result of segmentation.  A special
form of temporal correlation is oscillatory correlation, where the basic unit is a neural oscillator
(see Terman and Wang 1995; Wang and Terman 1995a).  However, this representation does not,
by itself, reveal how segmentation is achieved using Gestalt grouping principles.  Despite an
extensive body of literature dealing with segmentation using temporal correlation (starting perhaps
from von der Malsburg and Schneider 1986), little progress has been made in building successful
neural systems for image segmentation.  There are two major challenges facing the oscillatory
correlation theory.  The first challenge is how to achieve fast synchronization within a population
of locally coupled oscillators.  Most of the models proposed for achieving phase synchrony rely on
all-to-all connections (see Sect. 2 for more details).  However,  as pointed out by Sporns et al.
(1991) and Wang (1993a), a network with full connections indiscriminately connects all the
oscillators which are activated simultaneously by different objects, because the network is
dimensionless and loses critical information about geometry.  The second challenge is how to
achieve fast desynchronization among different groups of oscillators representing distinct objects.
This is necessary in order to segment multiple objects simultaneously presented.  

We have previously proposed a neural network framework to deal with the problem of image
segmentation, called Locally Excitatory Globally Inhibitory Oscillator Networks (LEGION) (Wang
and Terman 1995a; Terman and Wang 1995).  Each oscillator is modeled as a standard relaxation
oscillator.  Local excitation is implemented by positive coupling between neighboring oscillators
and global inhibition is realized by a global inhibitor.  LEGION exhibits the mechanism of selective
gating, whereby oscillators stimulated by the same pattern tend to synchronize due to local
excitation and oscillator groups stimulated by different patterns tend to desynchronize due to global
inhibition (Wang and Terman 1995a; Terman and Wang 1995).  We have proven that, with the
selective gating mechanism, LEGION rapidly achieves both synchronization within groups of
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oscillators that are stimulated by connected regions and desynchronization between different
groups.  In sum, LEGION provides an elegant solution to both challenges outlined above.

In this paper, we study LEGION for segmenting real images.  Before we demonstrate image
segmentation, the original version of LEGION needs to be extended to handle images with many
tiny (noisy) regions.  One such example is shown in Fig. 1, where three objects with a noisy
background form a visual image.  Without extension, LEGION would treat each region, no matter
how small it is, as a separate segment.  Thus, it would lead to many tiny fragments.  We call this
problem fragmentation.  A more serious problem is that it is difficult to choose parameters so that
LEGION is able to achieve more than several (5 to 10) segments (Terman and Wang 1995).  Noisy
fragments may, therefore, compete with major image regions for becoming segments, so that it
may not be possible to extract the major segments from an image.  The problem of fragmentation is
solved by introducing a concept of lateral potential for each oscillator.  The extended dynamics is
fully analyzed (Wang and Terman, 1996), and the resulting LEGION network is applied to gray-
level images and yields successful segmentation.  A preliminary version of this work was
presented in Wang and Terman (1995b).

In the next section we review prior work relevant to image segmentation and neural networks.
In Section 3, our model is described in detail.  In Section 4, computer simulations of the extended
LEGION network are presented.  Section 5 presents the segmentation results on real images.
Further discussions concerning our approach are given in Section 6.

2. Related Work
2.1 Image Segmentation Algorithms

Due to its critical importance for computer vision, image segmentation has been studied
extensively.  Many techniques have been invented (for reviews of the subject see Zucker 1976;
Haralick 1979; Haralick and Shapiro 1985; Sarkar and Boyer 1993b).  Broadly speaking, there are
three categories of algorithms: pixel classification, edge-based organization, or region-based
segmentation.  A simple classification technique is thresholding: a pixel is assigned a specific label
if some measure of the pixel passes a certain threshold.  This idea can be extended to a complex
form including multiple thresholds which are determined by pixel histograms (Kohler 1981).
Edge-based techniques generally start with an edge-detection algorithm, which is followed by
grouping edge elements into rectilinear or curvilinear lines.  These lines are then grouped into
boundaries that can be used to segment images into various regions (see, for example, Geman et
al. 1990; Sarkar and Boyer 1993a; Foresti et al. 1994).  Finally, region-based techniques operate
directly on regions.  A classical method is region growing/splitting (or split-and-merge, see
Horowitz and Pavlidis 1976; Zucker 1976; Adams and Bischof 1994), where iterative steps are
taken to grow (split) pixels into a connected region if all the pixels in the region satisfy some
conditions.  One of the apparent deficits with these algorithms is their iterative (serial) nature (Liou
et al. 1991).  There are some recent algorithms which are partially parallel (Liou et al. 1991; Mohan
and Nevatia 1992; and Manjunath and Chellappa 1993).

Most of these techniques rely on domain-specific heuristics to perform segmentation, and no
unified computational framework exists to explain the general phenomenon of scene segmentation
(Haralick and Shapiro 1985).  The problem of scene segmentation is computationally hard (Gurari
and Wechsler 1982), and largely regarded unsolved.

2.2 Neural Network Efforts
Neural networks have proven to be a successful approach to pattern recognition (Schalkoff

1992; Wang 1993b).  Unfortunately, little work has been devoted to scene segmentation which is
generally regarded as part of preprocessing (often meaning manual segmentation).  Scene
segmentation is a particularly challenging task for neural networks, partly because traditional neural
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networks lack the representational power for encoding multiple objects simultaneously.  Interesting
schemes of segmentation based on learning have been proposed before (Sejnowski and Hinton
1987; Mozer et al. 1992).  Grossberg and Wyse (1991) proposed a model for segmentation based
on the contour detection model of Grossberg and Mingolla (1985; see Gove et al. in press for a
computer simulation).  However, all of these methods were tested only on small synthetic images,
and it is not clear how they can be extended to handle real images.  Also, Kohonen's self-
organizing maps have been used for segmentation based on pixel classification (Kohonen 1995;
Koh et al. 1995).  A primary drawback of these methods is that the number of segments (objects)
is assumed to be known a priori.   

Because temporal (oscillatory) correlation offers an elegant way of representing multiple
objects in neural networks (von der Malsburg and Schneider 1986), most of the neural network
efforts on image segmentation have centered around this theme. In particular, the discovery of
synchronous oscillations in the visual cortex has triggered much interest in exploring oscillatory
correlation to solve the problems of segmentation and figure-ground segregation.  One type of
model uses all-to-all connections to reach synchronization (Wang et al. 1990; Sompolinsky et al.
1991; von der Malsburg and Buhmann 1992).  As explained in Sect. 1, these models cannot
extend very far in solving the segmentation problem because fundamental information concerning
the geometry among sensory features is lost.  Another type of model uses lateral connections to
reach synchrony (Sporns et al. 1991; Murata and Shimizu 1993;  Schillen and König 1994).
Unfortunately, it is unclear to what extent these oscillator networks can synchronize on the basis of
local connectivity since no analysis is given and only simulation results on small networks are
provided.  Moreover, recent insights into the contrasting behavior between sinusoidal and
relaxation oscillators makes clear that sinusoid-typed oscillators, which encompass most of the
oscillator models used, have severe limitations to support fast synchronization (Wang 1995;
Terman and Wang 1995; Somers and Kopell in press).  In fact, in all of the above models, nothing
close to a real image has ever been used for testing these models.

3. Model Description

The building block of LEGION, a single oscillator i, is defined as a feedback loop between an
excitatory unit xi and an inhibitory unit yi, whose time derivatives are defined as

′xi  = 3xi – xi
3 + 2 – yi + Ii H(pi + exp(-α t) – θ) + Si + ρ (1a)

′yi  = ε (γ (1 + tanh(xi /β)) – yi) (1b)

Here H stands for the Heaviside step function, which is defined as H(v) = 1 if v ≥ 0 and H(v) = 0
if v < 0.  Ii represent external stimulation which is assumed to be applied from time 0 on, and Si
denotes the coupling from other oscillators in the network.  ρ denotes the amplitude of Gaussian
noise, the mean of which is set to -ρ.  The negative mean is used to reduce the chance of self-
generating oscillations, which will become clear in the next paragraph.  The noise term is
introduced for two purposes.  The first one is obvious: to test the robustness of the system.  The
second one, perhaps more important, is to play an active role in separating different input patterns
(for more discussions see Terman and Wang 1995).  

The parameter ε is a small positive number.   Hence (1), without any coupling or noise and
with constant stimulation, corresponds to a standard relaxation oscillator.  The x-nullcline of (1) is
a cubic curve, while the y-nullcline is a sigmoid function.   If I > 0 and H = 1, these curves
intersect along the middle branch of the cubic when β is small.  In this case, we call the oscillator
enabled (see Fig. 2A).  It produces a stable periodic orbit, which alternates between silent and
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active phases of near steady-state behavior.  As shown in Fig. 2A, the silent and the active phases
correspond to the left L  and the right R  branches of the cubic, respectively.  The transitions
between the two phases occur rapidly (thus referred to as jumping).  Notice that the trajectory of
the oscillator in phase space jumps between the two branches and then follows closely the
branches, because the small ε induces very different time scales for x- and y-dynamics.  The
parameter γ  is used to control the ratio of the times that the solution spends in these two phases.
For a larger value of γ, the solution spends a shorter time in the active phase.  If I ≤ 0 and H = 1,
the nullclines of (1) intersect at a stable fixed point along the left branch of the cubic (see Fig. 2B).
In this case (1) produces no periodic orbit, and the oscillator is referred to as excitable, indicating
the oscillator has not yet been but can be excited by stimulation.  An excitable oscillator may
become oscillatory if it receives, through the term S, large enough coupling from other oscillators.
Because of this dependency on external stimulation, the oscillations are stimulus-dependent.  We
say that the oscillator is stimulated if I > 0, and unstimulated if I ≤ 0.  The parameter β specifies the
steepness of the sigmoid function, and is chosen to be small.  The oscillator model (1) may be
interpreted as a model for the spiking behavior of a single neuron, the envelope of a bursting
neuron, or a mean field approximation to a network of excitatory and inhibitory binary neurons.

The primary difference between (1) and the model in Terman and Wang (1995) is the
introduction of the Heaviside function in which α > 0 and 0 < θ < 1.  The parameter α is chosen to
be on the same order of magnitude as ε so that the exponential function decays on a slow time
scale.  It is the Heaviside term which allows the network to distinguish between major blocks and
noisy fragments.  The basic idea is that a major block must contain at least one oscillator, denoted
as a leader, which lies in the center of a large homogeneous region.  This oscillator will be able to
receive large lateral excitation from its neighborhood.  A noisy fragment does not contain such an
oscillator.  The variable pi in (1a) determines whether or not an oscillator is a leader.  It is referred
to as the lateral potential of the oscillator i, and satisfies the differential equation:

′pi  = λ (1 – pi) H[ ∑
k∈ N(i)

   Tik H(xk – θx) – θp] – µ pi (2)

Here λ > 0, Tik is the permanent connection weight (explained later) from oscillator k to i, and
N(i) is called the neighborhood of i.  If the weighted sum oscillator i receives from N(i) exceeds
the threshold θp, pi approaches 1.  If this weighted sum is below θp, pi relaxes to 0 on a time scale
determined by µ, which is chosen to be on the same order as ε resulting in a slow time scale.  It
follows that pi can only exceed the threshold θ in (1a) if i is able to receive a large enough lateral
excitation from its neighborhood.  In order to develop a high potential, it is not sufficient that a
large number of neighbors of i are oscillatory.  They must also have a certain degree of synchrony
in their oscillations.  In particular, they must all exceed the threshold θx at the same time in their
oscillations.

The purpose of introducing the lateral potential is that an oscillator with a high potential can
lead the activation of an oscillator block corresponding to an object.  Though a high-potential
oscillator need not be stimulated, it must be stimulated, however, in order to play the role of
leading an oscillator block; otherwise, the oscillator will not oscillate at all.  Thus, we require that a
leader be always stimulated.  More formally, an oscillator i is defined as a leader if pi ≥ θ and i is
stimulated.  The lateral potential of every oscillator is initialized to zero.

The network we study for image segmentation is two dimensional.  Figure 3 shows the
simplest case of permanent connectivity, where an oscillator is connected only with its four
immediate neighbors except on the boundaries where no wrap-around is used.  Such connectivity
forms a 2-D grid.  In general, however, N(i) should be larger, and the permanent connection
weights should take on the form of a Gaussian distribution with their distance.    
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The coupling term Si in (1) is given by

Si = ∑
k∈ N(i)

   Wik H(xk – θx) – Wz H(z – θxz)     (3)

where Wik is the dynamic connection weight from k to i.  The neighborhood of the above
summation is chosen to be the same as (2).  In some situations, however, they should be chosen
differently to achieve good results, and an alternative definition with two different neighborhoods
is given elsewhere (Wang and Terman 1996).

Now let us explain permanent and dynamic connection weights.  To facilitate synchrony and
desynchrony (more discussions later), we assume that there are two kinds of synaptic weights
(links) between two oscillators following von der Malsburg who argued for its neurobiological
plausibility (von der Malsburg 1981; von der Malsburg and Schneider 1986; see also Crick 1984).
The permanent weight, or Tik, embodies the hardwired structure of a network.  On the other hand,
the dynamic weight, or Wik, rapidly changes.  Wik is formed on the basis of Tik according to the
mechanism of dynamic normalization (Wang 1995).  Dynamic normalization was previously
defined as a two-step procedure: First update dynamic links and then normalization (Wang 1995;
Terman and Wang 1995).  There are different ways to realize such normalization.  In the
following, we give one way to implement dynamic normalization in differential equations,

′ui  = η (1 – ui)Ii  – ν ui (4a)

′Wik  = WT Tik ui uk  – Wik ∑
j∈ N(i)

 
 Tij  ui uj (4b)

The function ui measures whether oscillator i is stimulated, and it is initialized to 0.  The parameter
η determines the rate of updating ui.  When Ii > 0, ui → 1 quickly because we choose η »ν (see
below); otherwise when Ii = 0, ui = 0.  For this equation we assume Ii = 0 if oscillator i is
unstimulated (otherwise it is easy to enforce this by applying a step function on I i).  The parameter
ν is chosen to be on the same order as ε, so that ui slowly relaxes back to 0 after the external
stimulus is withdrawn.

We assume that Wik are initialized to 0 for all i and k.  It is easy to see that if oscillator i is
unstimulated, Wik remains to be 0 for all k, and if oscillator k is unstimulated Wik = 0 for all i .
Otherwise, if ui = 1 and uk = 1 for at least one k ∈  N(i), then at equilibrium,

Wik = 
WTTik ui uk

∑
j∈ N(i)

 Tij  ui uj
 and  ∑

k∈ N(i)

  Wik  = WT

Thus the total dynamic weights converging to a single oscillator equals WT, which gives the
desired normalization.  Notice that dynamic weights, not permanent weights, participate in
determining Si (see (3)).  Moreover, Wik can be properly set up in one step at the beginning based
on external stimulation, which should be useful for engineering applications.

It should be mentioned that weight normalization is not a necessary condition for the selective
gating mechanism to work.  This conclusion has been established previously (Terman and Wang
1995).  With normalized weights, however, the quality of synchronization within each oscillator
block is better (Terman and Wang 1995).
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In (3), Wz is the weight of inhibition from the global inhibitor z, whose activity, also denoted
by z, is defined as

′z  = φ (σ∞ – z)                       (5)

where σ∞ = 1 if xi ≥ θzx for at least one oscillator i, and σ∞ = 0 otherwise.  Hence θzx represents
another threshold, and it is chosen so that only an oscillator jumping to the active phase can trigger
the global inhibitor.  If σ∞ equals 1, z → 1.  The parameter φ represents the rate at which the
inhibitor reacts to the stimulation from the oscillator network.

The introduction of a lateral potential provides a solution to the problem of fragmentation.
There is an initial period when the term exp(α t) exceeds the threshold θ.  During this period,
every stimulated oscillator is enabled.  This allows the leaders to receive sufficient lateral excitation
so that they can achieve a high potential.  After this initial period, the only oscillators which can
jump up without stimulation from other oscillators are the leaders.  When a leader jumps up, it
spreads its activity to other oscillators within its own block, so they can also jump up.  These
oscillators are referred to as followers.  Oscillators not in this block are prevented from jumping
up, because of the global inhibitor.  The oscillators which belong to the noisy fragments will not be
able to jump up beyond the initial period, because these oscillators will not be able to develop a
sufficiently high potential by themselves and they cannot be recruited by leaders.  These oscillators
are referred to as loners.  In order to be oscillatory beyond the initial time period, an oscillator
must either be a leader or a follower.  This indicates that the oscillator is not part of a noisy
fragment, because noisy fragments in an image tend to be small and isolated (see Fig. 1).  The
collection of all noisy regions whose corresponding oscillators are loners is called the background,
which is not a uniform region and generally discontiguous.   

We have proven a number of rigorous results concerning the system (1)-(5).  Our main result
implies that the loners will no longer be able to oscillate after an initial time period.  Moreover, the
asymptotic behavior of a leader or a follower is precisely the same as the network obtained by
simply removing all the loners.  Together with the results in Terman and Wang (1995), this implies
that after a number of oscillation cycles a block of oscillators corresponding to a single major image
region will oscillate in synchrony, while any two oscillator blocks corresponding to two major
regions will desynchronize from each other.  Also, the number of cycles required for full
segmentation is no greater than the number of major regions plus one.  The details of the analysis
are given in Wang and Terman (1996).

The analysis in Wang and Terman (1996) is constructive in the sense that it leads to precise
estimates that the parameters must satisfy.  It shows that the results hold for a robust range of
parameter values.  Moreover, the analysis does not depend on the precise form of nonlinear
functions in (1).   The specific cubic and sigmoid functions (see Fig. 2) are used because of their
simplicity.  In addition to the parameter description given earlier, we require that 0 < θ  < 1, and α
be chosen so that all the stimulated oscillators remain enabled for the first cycle, but only leaders
remain enabled during the second cycle.   In (2), we simply require that λ be on the same order of
magnitude as 1, and 0 < θp < 1.  The parameter η  in (4) simply needs to be on the same order of
1.  

There are alternative ways of defining the model without affecting its essential dynamics (Wang
and Terman 1996).  In particular, we have given a definition where dynamic normalization of
connection strengths in (4) is not needed, but the quality of synchrony within each block and the
flexibility for choosing parameters seem somewhat lessened.

4. Computer Simulation
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To illustrate how the LEGION network is used for image segmentation while eliminating
fragmentation, we have simulated a 50x50 grid of oscillators with a global inhibitor as defined by
(1)-(5).  We map the three objects (designated as the sun, a tree, and a mountain) in Fig. 1, and
then add 20% noise so that each uncovered square has a 20% chance of being covered
(stimulated).  The resulting image is shown in Fig. 4A.  In the simulation, N(i) is simply the four
nearest-neighbors without boundary wrap-around.  For all the stimulated oscillators I = 0.2, while
for the others I = 0.  Notice that if oscillator i is unstimulated, Wik = Wki = 0 for all k, and Ii does
not need to be negative to prevent i from oscillating.  The amplitude ρ of the Gaussian noise was
set to 0.02.  This represents a 10% noise level compared to the external stimulation.  We observed
during the simulations that noise facilitated the process of desynchronization.

The differential equations (1)-(5) were solved using both a fourth-order Runge-Kutta method
and the adaptive grid o.d.e. solver LSODE.  Permanent connections between any two neighboring
oscillators were set to 2.0, and for total dynamic connections (see (4b)), WT = 8.0.  Dynamic
weights Wik were set up at the beginning according to (4).  The following values for the other
parameters in (1)-(5) were used:  ε = 0.02, α = 0.005, β = 0.1, γ = 6.0, θ = 0.9, λ = 0.1, θx = -
0.5, θp = 7.0, Wz = 1.5, η  = 1.0, µ = ν = 0.01, φ = 3.0, and θzx = θxz = 0.1.  The value of θp
was chosen so that, in order to achieve a high potential, an oscillator must have all of four
neighbors active.  The simulation results were robust to considerable changes in the parameter
values.  Fig. 4B-4E show the instantaneous activity (snapshot) of the network at various stages of
dynamic evolution.  The diameter of each black circle represents the x activity of the corresponding
oscillator.  Specifically, if the range of x values of all the oscillators is given by xmin and xmax,
then the diameter of the black circle corresponding to one oscillator is set to be proportional to
(x–xmin)/(xmax–xmin).

Fig. 4B shows the snapshot at the beginning of the dynamic evolution.  This is included to
illustrate the random initial conditions.  Fig. 4C shows a snapshot shortly after Fig. 4Bz.  One can
clearly see the effect of synchrony and desynchrony: all the stimulated oscillators which belong to
or are the neighbors of the sun are entrained and have large activities (in the active phase).  At the
same time, the oscillators stimulated by the rest of the image have very small activities (in the silent
phase).  Thus the noisy sun is segmented from the rest of the image.  A short time later, as shown
in Fig. 4D, the oscillators in the group representing the noisy tree reach their active phase and are
separated from the rest of the image.  Fig. 4E shows another snapshot, when the noisy mountain
has its turn to be activated and separate from the rest of the input.  This successive "pop-out" of the
segments continues in a stable periodic fashion until the input image is withdrawn.  To illustrate the
entire segmentation process, Figure 5 shows the temporal evolution of every stimulated oscillator.
The activities of the oscillators stimulated by each noisy object are combined together as one trace
in the figure, and so are for the background.  Since the oscillators receiving no external stimulation
remain excitable and unable to oscillate throughout the simulation process, they are excluded from
the display.  The three upper traces represent the activities of the three oscillator blocks, and the
fourth one represents the background consisting of all of the scattered dots.  Because of low
potentials, these oscillators quickly become excitable even though they are enabled at the
beginning.  The bottom trace represents the activity of the global inhibitor.  The synchrony within
each block and desynchrony between different blocks are clearly shown after three cycles.

To illustrate the role of the lateral potential, the same network with the same input (Fig. 4A)
and the same initial condition has been simulated without the lateral potential.  In this case, the
Heaviside function in (1a) is always 1 for every oscillator.  With the random initial condition
shown in Fig. 4F, the network reaches a stable oscillatory behavior with four segments, after less
than three cycles.  The four segments are shown in Fig. 4G-4J.  Without the lateral potential, the
network cannot distinguish major image regions from noisy fragments and separate major regions
apart.

With a fixed set of parameters, the dynamical system of LEGION can segment only a limited
number of patterns.  This number depends, to a large extent, on the ratio of the times that a single
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oscillator spends in the silent and active phases.  Let us refer to this limit as the segmentation
capacity of LEGION.  In the above simulation, the number of the major blocks to be segmented is
within the segmentation capacity.  What happens if this number exceeds the segmentation capacity?
From the analysis in Wang and Terman (1996), we know that the system will separate the entire
image into as many segments as the capacity allows, where each segment may correspond to one
major block  (called simple segment) or a number of major blocks (called congregate segment).  To
illustrate this point, we show the following simulation, where we present to a 30x30 LEGION
network with an arbitrary image containing nine binary patterns, which together form the phrase
OHIO STATE as shown in Fig. 6A.  We then add 10% random noise to the input in a similar
way as in Fig. 4, resulting in Fig. 6B.  We use the same parameter values as in the simulations
presented in Fig. 4, except that γ = 8.0.  For this set of parameters, our earlier experiments
showed that the system's segmentation capacity is less than 9.  The simulation results are presented
in Fig. 6C-6H.  Shortly after the start of system evolution, the LEGION network segmented the
input of Fig. 6B into five segments, shown in Fig. 6D-6H respectively.  Among these five
segments, three are simple segments (Fig. 6D, 6E, and 6H) and two are congregate segments
(Figs. 6F and 6G).  Besides Fig. 6, many other simulations have been performed for the input of
Fig. 6B with different random initial conditions, and the results are comparable with Fig. 6.  There
are different ways, however, that the system separates the nine noisy patterns into five segments.
For this particular set of parameters, the segmentation capacity of the LEGION network is 5.  In
fact, we have not seen a single simulation trial where more than 5 segments are produced.  This
important property of the system, i.e. it naturally exhibits a segmentation capacity, is in good
accord with the well-known psychological principle that there are fundamental limits on the number
of simultaneously perceived objects.

5. Real Images

LEGION can segment gray-level images in a way similar to segmenting binary images.  For a
given image, a LEGION network of the same size as the image with a global inhibitor is used to
perform segmentation.  Each pixel of the image corresponds to an oscillator of the network, and
we assume that every oscillator is stimulated when the image is applied to the network.  The main
difference between gray-level and binary images lies in how to set up connections.  For gray-level
images, the coupling strength between two neighboring oscillators is determined by the similarity
of two corresponding pixels.  This simple way of setting up the coupling strength addresses only
the grouping principles of proximity, connectedness, and similarity (cf. Sect. 1).

5.1 Algorithm
To segment real images with large numbers of pixels involves integrating a large number of the

differential equations of (1)-(5).  To reduce numerical computations on a serial computer, an
algorithm is extracted from these equations.  The algorithm follows major steps in the numerical
simulation of the equations, and it exhibits the essential properties of relaxation oscillators, such as
two time scales (fast and slow) and the properties of synchrony and desynchrony in a population
of oscillators.  Such extraction is quite straightforward because, in a relaxation oscillator network,
much of the dynamics takes place when oscillators are jumping up or jumping down.  Besides, the
algorithm overcomes the segmentation capacity, which may be desired in some applications.  More
specifically, the following approximations have been made.

(a) When no oscillator is in the active phase (see Fig. 2), the leader closest to the jumping point
(left knee) among all enabled oscillators is selected to jump up to the active phase.

(b) An oscillator takes one time step to jump up to the active phase if the net input it receives
from neighboring oscillators and the global inhibitor is positive.

(c) The alternation between the active phase and the silent phase of a single oscillator takes one
time step only.  
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(d) All of the oscillators in the active phase jump down if no more oscillators can jump up.
This situation occurs when the oscillators stimulated by the same pattern have all jumped up.  

---------------------------------------------------------------------------------------------------------------------
LEGION algorithm

Only the x value of oscillator i, xi, is used in the algorithm.  N(i) is assumed to be the eight
nearest neighbors of i without wrap-around.  LKx, RKx, LCx represent the x values of three of
four corner points of a typical limit cycle (see Fig. 2A), where LC denotes the (upper) left corner
of the limit cycle.  By straightforward calculations, we obtain LKx = -1, LCx = -2, RKx = 1.  In
the algorithm, Ii indicates the value of pixel i, and IM indicates the maximum possible pixel value.

1. Initialize

1.1 Set z(0) = 0;

1.2 Form effective connections

Wij  = I M/(1 + | I i  – I k |), k ∈  N( i )

1.3 Find leaders

pi  = H[ ∑
k ∈ N( i )

   Wik  – θp]

1.4 Place all the oscillators randomly on the left branch.  Namely x i ( 0)

takes a random value between LCx and LKx.

2. Find one oscillator j  so that (1) x j ( t ) ≥ xk( t ), where k is currently on

the left branch; (2) pj  = 1.  Then

xj ( t +1) = RKx; z( t +1) = 1 {jump up}

xk( t +1) = xk( t ) + ( LKx - x j ( t )), for k ≠ j .

In this step, the leader on the left branch which is closest to the left
knee is selected.  This leader jumps up to the right branch, and all the other
oscillators move towards LK.

3. Iterate until stop

If ( x i ( t ) = RKx and z( t )  > z ( t- 1))

x i ( t +1) =  x i ( t ) {stay on the right branch}

else if ( x i ( t ) = RKx and  z ( t ) ≤ z( t- 1))

x i ( t ) = LCx; z( t +1) = z( t ) - 1 {jump down}

If ( z( t +1) = 0) go to step 2

else

Si ( t +1) = ∑
k ∈ N( i )

   Wik H( xk( t )  - LK x) - WzH( z( t ) - 0.5)

If ( Si ( t +1) > 0)

xi ( t +1) = RKx; z( t +1) = z( t )  + 1 {jump up}

else
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xi ( t +1) = x i ( t ) {stay on the left branch}

---------------------------------------------------------------------------------------------------------------------

Comparing the above algorithm with the dynamical system of (1)-(5), one can find the
following simplifications.

(a) The dynamic weight Wij  is directly set to Wij  = IM/(1 + |Ii – Ik|).  The intuitive reason for
this choice of weights is that the more pixel i and pixel j are similar to each other, the stronger the
connection between the two corresponding oscillators.  It is worth noting that the algorithm does
not compute normalized weights.  As mentioned in Sect. 3, selective gating can still take place with
this weight setting, even though the weights are not normalized.

(b) The leaders are chosen during initialization.  According to the dynamics described in Sect.
3, lateral potentials, and thus leaders, are determined during a few initial cycles of oscillatory
dynamics.  Since every oscillator is stimulated, and Wij  is set at the beginning, it can be precisely
predicted at the beginning which oscillators will become leaders.  Thus, to save computational
time, the leaders are determined in the initialization step.  It should be clear that the number of
leaders determined in this step does not correspond to the number of resulting segments - a major
image region (segment) may generate many leaders.

There are two critical parameters in the algorithm: Wz and θp, where the former is the strength
of global inhibition and the latter is the threshold for forming high potentials (leaders).  For Wz,
higher values make the algorithm more difficult to group pixels into regions.  Thus, in order for a
region to be grouped together, the algorithm demands a higher degree of homogeneity within the
region.  Generally speaking, given a gray-level image, higher Wz leads to more and smaller
regions.  For θp, higher values make the algorithm more difficult to develop leaders.  Thus fewer
leaders will be developed, and fewer regions result from the algorithm.  On the other hand, regions
produced with a higher θp tend to be more homogeneous.  For image segmentation applications, it
suffices to stop the algorithm when every leader has jumped up once.  See Wang and Terman
(1996) for some discussions on the algorithm.

5.2 Segmenting Real Images
5.2.1 Sum vs. Max: an aerial image

The first image the algorithm is tested on is an aerial image, called Lake, which is shown in
Fig. 7A.  As in the following images to be used, this is a typical gray-level image, where each
pixel is an 8-bit number ranging from 0 to 255 (also called intensity), and pixels with higher values
appear brighter.  The image has 160x160 pixels, and is presented to a LEGION network of
160x160 oscillators.  For this simulation, Wz = 40 and θp = 1200.  Quickly after the image is
presented, the algorithm produces different segments at different time steps.  Fig. 7B-7G display
the first six segments that have been produced sequentially, where a black pixel corresponds to an
oscillator in the active phase and a blank pixel corresponds to an oscillator in the silent phase.  As
shown in the figure, each segment corresponds to a meaningful region in the original image: a
segment is either a lake, a field, or a parkway.  The region in Fig. 7B corresponds to a lake.  The
region in Fig. 7C corresponds to the main lake, except for the lower-left part and on the right side
where the lake region extends to non-lake parts.  The parkway segment in Fig. 7G picks up a
partial parkway network in the original image.  The other segments match well with the fields of
the image.

The entire image is separated into 16 regions and a background.  To simplify the display, we
put all the segments and the background together into one figure, using gray levels to indicate the
phases of oscillator blocks.  Such a display is called a gray map.  The gray map of the results of
this simulation is shown in Fig. 8A, where the background is shown by the black scattered areas.
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Generally speaking, the background corresponds to parts of the image that have high intensity
variations.  Due to the mechanism of fragment removal, these noisy regions stay in the
background, as opposed to many segments that would have been the result without fragment
removal.

In the above algorithm, an oscillator summates all the input from its neighborhood, and if the
overall input is greater than the global inhibition the oscillator jumps to the active phase (see also
(3)).  Another reasonable way of grouping is to replace summation by maximization when
computing Si:

Si = Maxk∈ N(i){ Wik H(xk – θx)} – Wz H(z – θxz) (6)

Intuitively, the maximum operation concentrates on the relation of i with the oscillator in N(i) that
has the strongest coupling with i, but omits the relation between i and N(i) as a whole.  Thus,
grouping by maximization emphasizes pairwise pixel relations, whereas grouping by summation
emphasizes pixel relations in a local field.  

By using (6) in the LEGION algorithm, the Lake image is segmented again.  In this simulation,
Wz = 20 and θp = 1200.  Fig. 8B shows the result of segmentation by a gray map.  The entire
image is segmented into 17 regions and a background, which is indicated by black areas.  Each
segment corresponds well with a relatively homogeneous region in the image.  Interestingly,
except for the parkway region in the lower part of the image, every region in Fig. 8B has a
corresponding one in Fig. 8A.  A comparison between the two figures reveals the difference
between summation and maximization in segmentation.  A closer comparison, however, indicates
that the maximum scheme yields a little more faithful regions.  On the other hand, regions in Fig.
8A appear smoother and have fewer "black holes" - parts of the background.  The smoothing effect
of summation is generally positive, but it may lose important details.  For example, the sizable hole
inside the main lake region of Fig. 8B corresponds to an island in the original image, which is
neglected in the main lake region of Fig. 8A.  Another distinction is that grouping in the maximum
scheme is symmetrical in the sense that if pixel a can recruit pixel b, then b can recruit a as well.
This is because effective weights are symmetrical, namely Wij  = Wji  (see the algorithm).  Because
the maximum scheme appears to produce better results, it will be used in all of the following
simulations.

To show the effects of parameters, we reduce the value of θp from 1200 in Fig. 8B to 1000.
As a result, more regions are segmented, as shown in Fig. 8C where 23 segments plus a
background are produced by the algorithm.  Compared with Fig. 8B, the notable new segments
include an open-theater-like region to the left of the main lake, and its nearby field region.  The
Lake image has been used in the study of Sarkar and Boyer (Sarkar and Boyer 1993a).  As
mentioned in Sect. 2.1, their approach is edge-based.  The reader is encouraged to compare our
results with theirs.

5.2.2 MRI images
The next image to test our algorithm is an MRI (magnetic resonance imaging) image of a

human head, as shown in Fig. 9A.  MRI images constitute a large class of medical images, and
their automatic processing is of great practical value.  This particular image, which we denote as
Brain-1, is a midsagittal section, consisting of 257x257 pixels.  Salient regions of this picture
include the cerebral cortex, the cerebellum, the brainstem, the corpus callosum, the fornix (the
bright stripe below the corpus callosum), the septum pellucidum (the region surrounded by the
corpus callosum and the fornix), the extracranial soft tissue (the bright stripe on top of the head),
the bone marrow (scattered stripes under the extracranial tissue), and several other structures (for
the nomenclature see p. 318 of Kandel et al. 1991).  For this image, a LEGION network of
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257x257 oscillators is used, and Wz = 25 and θp = 800.  Figure 9B shows the result of one
simulation by a gray map.  The Brain-1 image is segmented into 21 regions, plus a background
which is indicated by the black areas.  Of particular interest are two parts of the brain: the upper
part, and the brainstem with part of the spinal cord (to be called "brainstem" for short), parts of the
extracranial tissue, and parts of the bone marrow.  Other interesting segments include the neck
part, the chin part, the nose part, and the vertebral segment.

Though it is useful to treat the brain as a whole in some circumstances, it may also be desirable
to segment the brain into more detailed structures.  To achieve this in LEGION, one can increase
Wz.  But in order not to produce too many regions, θp should usually be increased as Wz
increases.  To show the combined effects, Fig. 9C displays the result of another run with Wz = 40
and θp = 1000, where Brain-1 is segmented to 25 regions plus a background.  Now, the upper
part of the brain is further segmented into the cerebral cortex, the cerebellum, the callosum/fornix
region and its surrounding septum.  Because of the higher Wz, regions in Fig. 9C tend to contain
more background (compare, for example, the two brainstem regions).  However, in the cortex
segment in Fig. 9C, the noisy stripes actually have physical meanings: they tend to match with
various fissures on the cerebral cortex.  With the higher θp, some segments in Fig. 9B cannot
generate any leaders and thus join the background.  

The final segmentation uses another MRI image of a human head, shown in Fig. 10A.  This
image is denoted as Brain-2, consisting of 257x257 gray-level pixels.  Brain-2 is a sagittal section
through one eye.  Salient regions of this picture include the cortex, the cerebellum, the lateral
ventricle (the black hole within the cortex), the eye, the sinus (the black hole below the eye), the
extracranial soft tissue, and the bone marrow.  A LEGION network with 257x257 oscillators is
used for the segmentation task.  In the first simulation, Wz = 20 and θp = 800, and  Fig. 10B
shows the result by a gray map.  Brain-2 is segmented into 17 regions, plus a background which is
indicated by black scattered areas.  One can see from the figure that the entire brain forms a single
segment.  Other significant segments include the eye, the sinus, parts of the bone marrow, and
parts of the extracranial tissue.  The lateral ventricle is put into the background.

In order to generate finer structures, Wz is raised to 35 in the second simulation.  As in Fig. 9,
θp is increased to 1000.  Fig. 10C shows the result of this simulation, where Brain-2 is segmented
into 13 regions plus a background.  As expected, the segments in Fig. 10B become further
segmented or shrunk, and the background becomes more extensive.  Worth mentioning is that the
brain segment in Fig. 10B is segmented into three segments: one corresponding to the cortex and
the other two corresponding to the cerebellum.  Due to the increase of θp, the segments
corresponding to the extracranial tissue and the marrow in Fig. 10B disappear in Fig. 10C.

In the segmentation experiments of this section, our goal was to illustrate the LEGION
mechanism and the lateral potential effectiveness of derived algorithms.  We did not attempt to
produce best possible results by fine tuning of parameters.  One can easily tell this by the simple
rule of setting Wij , the simple choice of N(i), and the values of Wz and θp that have been used in
the simulations.  Therefore, better results can be expected by using more sophisticated schemes of
choosing these parameters.  Indeed, a more elaborate version of the LEGION algorithm has been
applied to segment 3-dimensional MRI and CT (computerized tomography) images, and good
segmentation results have been obtained (Shareef and Wang, in preparation).  

6. Discussion

6.1 Further Remarks on LEGION Computation
In the simulations of Sect. 5, N(i) is set to the eight nearest-neighbors of i.  Larger N(i)'s entail

more computations for determining leaders.  But larger N(i)'s have more flexibility in specifying
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the conditions for creating leaders, which tends to produce better results.  Also, the order of pop-
out of different segments is currently random.  In some situations, however, it might be useful to
influence the order of pop-out by some criteria, such as the size of each region.  LEGION may
incorporate different criteria by ordering leaders accordingly, e.g. by using the global inhibitor in
different ways.

The main difference between our approach to image segmentation and other segmentation
algorithms reviewed in Sect. 2 is that ours is neurocomputational, building on the strengths and the
constraints of neural computation.  Our approach relies on emergent behavior of LEGION to
embody the computation involved in image segmentation.  Methodologically, the computation is
performed by a population of active agents - oscillators in this case - that are driven by pixels,
whereas, in a typical segmentation algorithm, pixels are data to be processed by a central agent -
the algorithm or the neural network trained as a pixel classifier.  That LEGION is a massively
parallel network of dynamical systems with mainly local coupling makes it particularly feasible for
analog VLSI implementation, the success of which would be a major step towards real time
processing of scene segmentation.

A thorny issue with scene segmentation is that often no unique answer exists.  A house, for
example, may be grouped into a single segment if viewed afar.  The same house, if viewed nearby,
may be broken into multiple segments including a door, a roof, windows, etc.  This situation
demands a flexible treatment of scene segmentation, i.e., a system should be able to easily generate
multiple sets of segmentation, each of which should be reasonable.  In LEGION, this flexibility is
reflected to a certain degree by the effects of the parameters of Wz and θp, as discussed in Sect. 5.
As noted there, both Fig. 9B and 9C are arguably reasonable results.  

The LEGION network used so far has only one layer of oscillators.  In Sect. 4, we mentioned
that the oscillatory dynamics of one-layer LEGION has a limited segmentation capacity (see Fig.
6).  It is interesting to note that the human perceptual system is also limited in simultaneously
attending to the objects in a scene (Miller 1956).  We expect that the ability of LEGION improves
significantly when multiple layers are used in subsequent stages.  This multistage processing
provides a natural way out of this fundamental limitation.  In multistage processing, each layer
does not need to segregate more than several segments, and yet the system as a whole can
segregate many more segments than the segmentation capacity - an idea reminiscent of chunking
proposed by Miller (1956).  When the number of segments in an image is greater than the
segmentation capacity, one-layer LEGION will produce a number of segments (simple or
congregate) up to the segmentation capacity (see Fig. 6).  Congregate segments, however, can be
further segmented with another layer of LEGION, whereas simple segments will not segment
further.  With multistage processing, the hierarchical system can provide results of both coarse-
and fine-grain segmentation.  

6.2 Biological Relevance
The relaxation-type oscillator used in LEGION is dynamically very similar to numerous other

oscillators used in modeling neuronal behavior.  Examples include the FitzHugh-Nagumo
equations (FitzHugh 1961; Nagumo et al. 1962), and the Morris-Lecar model (Morris and Lecar
1981).  These can all be viewed as simplifications of the Hodgkin-Huxley equations (Hodgkin and
Huxley 1952).  In (1), the variable x corresponds to the membrane potential of the neuron, and y
corresponds to the channel activation or inactivation state variable which evolves on the slowest
time scale.  The reduction from a full Hodgkin-Huxley model to the two variable model is achieved
by assuming that the other, faster, channel state variables are instantaneous.  The dynamics of the
lateral potential as given in (2) has properties similar to those of certain membrane channels and
excitatory chemical synapses.  The NMDA channel, for example, turns off on a slow time scale
(Traub and Miles 1991).  Moreover, with a sufficiently large input, a cell with these channels can
be transformed from the excitatory to the oscillatory mode.  We note that the lateral potential does
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not act as a temporal integrator of all the input converging on its corresponding oscillator, but
utilizes sharp nonlinearity as embodied by the outer Heaviside function in (2).

The theory of oscillatory correlation is consistent with the growing body of evidence that
supports the existence of neural oscillations in the visual cortex and other brain regions.  In the
visual system, synchronous oscillations have been observed in cell recordings of the cat visual
cortex (Eckhorn et al. 1988; Gray et al. 1989).  These neural oscillations are stimulus-dependent,
and range from 30 to 70 Hz, often referred to as 40 Hz oscillations.  Also, synchronous
oscillations (locking with zero phase lag) occur across an extended brain region only if the stimulus
constitutes a coherent object.  These basic findings have been confirmed repeatedly in different
brain regions and in different animal species (for reviews see Buzsáki et al. 1994 and Singer and
Gray 1995).

The local excitatory connections assumed in LEGION conform with various lateral connections
in the brain.  Relating to the visual cortex, these excitatory connections, which link the excitatory
elements of oscillators, could be interpreted as the horizontal connections in the visual cortex
(Gilbert and Wiesel 1989; Gilbert 1992).  It is known that horizontal connections originate from
pyramidal cells, which are of excitatory type, and pyramidal cells are also the principal target of the
horizontal connections.  Furthermore, at the functional level, physiological recordings from
monkeys suggest that motion-based visual segmentation may be processed in the primary visual
cortex (Stoner and Albright 1992; Lamme et al. 1993).  The global inhibitor (see Fig. 3) receives
input from the entire oscillator network, and feeds back inhibition onto the network.  It serves to
segment multiple patterns simultaneously present in a visual scene, thus exerting a global
coordination.  Crick has suggested that part of the thalamus, the thalamic reticular complex in
particular, may be involved in the global control of selective attention (Crick 1984).  The thalamus
is uniquely located in the brain: it receives input from and sends projections to almost the entire
cortex.  This suggestion and key anatomical and physiological properties of the thalamus prompt
us to speculate that the global inhibitor might correspond to a neuronal group in the thalamus.  The
activity of the global inhibitor should be interpreted as the collective behavior of the neuronal
group.

6.3 Figure-Ground Segregation
The dynamics proposed in this paper separates a scene into a number of major segments and a

background, which corresponds to the rest of the scene.  The major segments combine to form the
foreground, whose corresponding oscillators are oscillatory until the input scene fades away.  The
oscillators corresponding to the background, after a brief beginning period, become excitable and
stop oscillating.  This dynamics effectively gets rid of noisy fragments without either prior
smoothing or postprocessing of removing small regions, the methods often used in segmentation
algorithms.  With this dynamics, typical figure-ground segregation can be characterized as a special
case, where only one major segment is allowed to be separated from the scene.  In this sense, we
claim that our dynamics also provides a potential solution to the problem of figure-ground
segregation.  We allow a foreground to include multiple segments, because this way both scene
segmentation and figure-ground segregation are incorporated in a unified framework.

6.4 Future Topics
In the present study, we have not addressed the role of prior knowledge in image

segmentation.  For example, when people segment the images of Fig. 9A and Fig. 10A, they
inevitably use their knowledge of human anatomy, which describes among other things the relative
size and position of major brain regions.  A more complete system of image segmentation must
address this issue.  Besides prior knowledge, many grouping principles outlined in Sect. 1 have
not been incorporated into the system.  One of the main future topics is to incorporate more
grouping cues into the system.  The global inhibitory mechanism will play a key role in overall
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system coordination: it makes various factors compete with each other, and a final segment is
formed because of strong binding within the segment.

Our study in this paper focuses exclusively on visual segmentation.  It should be noted that
neural oscillations occur in other modalities as well, including audition (Galambos et al. 1981;
Ribary et al. 1991) and olfaction (Freeman 1978).  Strikingly, these oscillations in different
modalities show comparable frequencies.  A recent study extended LEGION to deal with auditory
scene segregation (Wang in press).  With its computational properties and its biological relevance,
the oscillatory correlation approach promises to provide a general neurocomputational theory for
scene segmentation and perceptual organization.
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Figure Caption
Figure 1. A caricature of an image with three objects that appears on a noisy background. The

noiseless caricature is adapted from Terman and Wang (1995).
Figure 2. Nullclines and orbits of a single oscillator (We thank S. Campbell for making this

figure). A . If I > 0 and H = 1, the oscillator is enabled.  The periodic orbit is shown with a
bold curve, and its direction of motion is indicated by the arrowheads.  The left and the right
branches of the x-nullcline are labeled as L  and R , respectively.  LK and RK indicate the left
and the right knees of the cubic, respectively.  B.  If I ≤ 0 and H = 1, the oscillator is excitable.
The fixed point PI on the left branch of the cubic is asymptotically stable.

Figure 3. Architecture of a two dimensional LEGION network with four nearest-neighbor
coupling.  An oscillator is indicated by an open circle, and the global inhibitor is indicated by
the filled circle.

Figure 4. A An image composed of three patterns on a noisy background.  The image is mapped
to a 50x50 LEGION network.  Each square corresponds to an oscillator.  If a square is entirely
covered, the corresponding oscillator receives external input; otherwise, the oscillator receives
no external input.  In the figure, B-E correspond to the case with the inclusion of the lateral
potential, whereas F-J correspond to the case without the lateral potential. B A snapshot at the
beginning of dynamic evolution.  C-E Snapshots subsequently taken shortly after B . F A
snapshot at the beginning of dynamic evolution for the case without the lateral potential. G-J
Snapshots subsequently taken shortly after F.

Figure 5. Temporal evolution of every stimulated oscillator.  The upper three traces show the
combined x activities of the three oscillator blocks representing the three corresponding patterns
indicated by their respective labels.  The fourth trace shows the temporal activities of the
loners, and the bottom trace shows the activity of the global inhibitor.  The ordinates indicate
the normalized activity of an oscillator or the inhibitor.  The simulation took 9,000 integration
steps.

Figure 6. A An image composed of nine patterns mapped to a 30x30 LEGION network. See the
legend of Fig. 4 for explanations. B The image in A is corrupted by 10% noise. C A snapshot
of network activity at the beginning of dynamic evolution.  D-F Snapshots subsequently taken
shortly after C.  

Figure 7. A A gray-level image consisting of 160x160 pixels (courtesy of K. Boyer). B-G
Segments popped out subsequently from the network shortly after the LEGION algorithm is
executed. (We thank E. Cesmeli for his assistance in making this display)

Figure 8. A A gray map showing the result of segmenting Fig. 7A.  The algorithm produces 16
segments plus a background.  B The result of another segmentation using maximization to
compute Si.  The algorithm produces 17 segments plus a background. C The result of another
segmentation similar to B but with a different value for θp.  The system produces 23 segments
plus a background.  The algorithm was run for 1,000 steps for every case.

Figure 9. A A gray-level image consisting of 257x257 pixels (courtesy of N. Shareef). B A gray
map showing the result of segmenting the image by a 257x257 LEGION network.  The system
produces 21 segments plus a background.  C The result of another segmentation with different
values of Wz and θp.  The system produces 25 segments plus a background.  The algorithm
was run for 1,200 steps in both B and C.

Figure 10. A A gray-level image consisting of 257x257 pixels (courtesy of N. Shareef). B A
gray map showing the result of segmenting the image by a 257x257 LEGION network.  The
system produces 17 segments plus a background.  C The result of another segmentation with
different values of Wz and θp.  The system produces 13 segments plus a background.  The
algorithm was run for 1,200 steps in both B and C.
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