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Abstract

We studyimage segmentation on theasis oflocally excitatory globally inhibitory oscillator
networks (LEGION), wherebyhe phases of oscillatorencode the binding opixels. We
introduce a lateral potential for each oscillator so that only those oscillatorstreitiyconnections
from their neighborhood can develop high potentials. Based on the conceptiaiéthigpotential,
a solution to remove noisy regions in an image is proposed for LEGIOWatsihsuppresses the
oscillators corresponding to noisy regions, without affecting those corresponding taegapors.
We show that the resulting oscillator network separates an image into severalegiajos, plus a
background consisting odll noisy regions,and illustratenetwork properties bycomputer
simulation. The network exhibits anatural capacity in segmentinghages. The oscillatory
dynamics leads to a computer algorithm, whiclapplied successfully to segmentimgal gray-
level images. A number of issuesgarding biological plausibility and perceptual organization are
discussed. Wargue thatLEGION provides a novel aneffective framework for image
segmentation and figure-ground segregation.

1. Introduction

The segmentation of a visual scene (image) into a set of coherent patterns (objects) is a
fundamental aspect of perception, which underliesmréety of tasks such asnage processing,
figure-ground segregation, amaditomatic targetecognition. Scene segmentation playsriacal
role in theunderstanding of naturacenes. Although humans perform it with apparesdse, the
general problem of image segmentation remamsolved in sensorinformationprocessing. As
the technology of single-object recognition becomes more and more advanced iryeacgnthe
demandfor a solution toimage segmentation igicreasing since both naturaicenes and
manufacturing applications of computer vision are rarely composed of a single object.

Objects appear in a natural scene as gheuping of similar sensoryfeatures and the
segregation of dissimilar ones. Sensory features are generally taken to be localharsinmnplest
case may correspond to single pixels. To approach the problem of scene segmentation, three basic
issues must be addressed: What are the cues that determine grouping and segi&tatios the
proper representatiofor the result of segmentationHow are thecues used t@ive rise to
segmentation?

Much is known about sensory cuibst are importanfor segmentation. In particulaiestalt
psychology has uncovered a setpahciples guiding thegrouping process ithe visual domain
(Wertheimer1923; Koffka 1935; Rock an&almer1990). These principlesvork together to
produce segmentation. We briefly summarize som&éh@most important principles (see also
Rock and Palmer 1990):
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 Proximity. The closer the features lie to each other, the easielateeyp begrouped into the
same segment.

« Similarity. Features that have similar attributes, suchragness, color, depth, textuedc.,
tend to group together.

» Common fateFeatureghat have similar temporddehavior tend tagroup together. For
instance, a group of featurtésat move coherently (common motiompuld form a single object.
Notice that common fate may lbegarded as one aspect of similarity. We list it separately to
emphasize the importance of time as a separate dimension.

« Connnectednes# uniform, connectedegion, such as a spot, line, more extendedrea,
tends to form a single segment.

» Good continuationA set of featurethatform a smooth and continuous curve tendjtoup
together.

* Prior knowledge If a set of features belong to the safamiliar pattern,they tend togroup
together.

In computer vision algorithm$or image segmentationthe result of segmentation can be
represented in manways. However, it isnot a trivial task to representhe outcome of
segmentation in a neuraktwork. One proposal isnaturally derived fronthe so-callecheuron
doctrine(Barlow 1972), where neurons at higher brain areas are assumed to becorselentive
and eventually a single neuron represeaishsingle object (the grandmother-cedpresentation).
Multiple objects in a visual scengould be represented ke coactivation of multiplemnits at
some level of the nervous system. This representation ifiaa@jes theoreticahnd neurobiological
problems (von der Malsburg 198Abeles 1991; Singerl993). Another proposalrelies on
temporal correlationto encode the bindin@Milner 1974; von der Malsburg 198Bbeles 1982).

In particular, the correlation theory of von der Malsburg (1981) asserts that an object is represented
by the temporal correlation of the firing activities of the scattered cells that encode different features

of the object. Multiple objects are represented by different correlated firing patterns that alternate in

time, each corresponding to a single object.

Temporal correlation provides an elegant way to represent the result of segmentation. A special
form of temporal correlation isscillatory correlation wherethe basic unit is a neural oscillator
(see Terman and Wang 1995; Wang and Terh®@ba). Howeverthis representatiodoesnot,
by itself, revealhow segmentation is achievagsing Gestalt grouping principles.Despite an
extensive body of literature dealing with segmentatisingtemporal correlation (startingerhaps
from von der Malsburg and Schneide86), little progress habeen made ibuilding successful
neural systems forimage segmentation. Therare two major challenges facing the oscillatory
correlation theory.Thefirst challenge ishow to achievefast synchronization within a population
of locally coupled oscillators. Most of the models proposed for achieving phase synchrony rely on
all-to-all connectiongsee Sect. 2 fomoredetails). However, apointed out bySporns et al.
(1991) andWang (1993a), a network withull connections indiscriminately connecidl the
oscillators whichare activatedsimultaneously by differentbjects, because thenetwork is
dimensionless and losesitical information about geometry.The secondchallenge ishow to
achieve fast desynchronization among diffeignatups ofoscillators representing distinabjects.
This is necessary in order to segment multiple objects simultaneously presented.

We have previously proposedhaural network framework tdealwith the problem oimage
segmentation, called Locally Excitatory Globally Inhibitory Oscillator Networks (LEGION) (Wang
and Terman 1995a; Terman and War®95). Each oscillator is modeled asstandardelaxation
oscillator. Local excitation is implemented kyositive coupling between neighboring oscillators
and global inhibition is realized by a global inhibitor. LEGION exhibits the mechaniseleadtive
gating whereby oscillatorstimulated by the same pattern tend sgnchronize due tdocal
excitation and oscillator groups stimulated by different patterns tend to desynchronize due to global
inhibition (Wang and Terman 1995a; Terman and WE®8H). Wehave proverthat, with the
selective gatingnechanism, LEGION rapidly achieves both synchronization wighoups of
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oscillatorsthat are stimulated by connecteelgions and desynchronization between different
groups. In sum, LEGION provides an elegant solution to both challenges outlined above.

In this paper, we studyEGION for segmenting redmages. Before wdemonstratemage
segmentation, the original version of LEGION needs to be extended to handle imagasnyith
tiny (noisy) regions. One such example isshown in Fig. 1,wherethree objects with @oisy
background form a visual image. Without extension, LEGION wuelt eaclregion, nhomatter
how small it is, as a separate segment. Thus, it weattito many tinfragments. Weall this
problemfragmentation A more serious problem that it is difficult tochoose parameters fuat
LEGION is able to achieve more than several (5 to 10) segments (Terman and Wand\Nt@p).
fragmentsmay, thereforecompetewith major imageregions forbecomingsegments, sdhat it
may not be possible to extract the major segments from an image. The problem of fragmentation is
solved by introducing a concept lateral potentiafor eachoscillator. The extended dynamics is
fully analyzed (Wang and Termah996), and the resulting LEGIOMetwork isapplied to gray-
level imagesand yields successful segmentation. preliminary version of this work was
presented in Wang and Terman (1995b).

In the next section we review prior wor&levant to image segmentatiand neurahetworks.
In Section 3, our model is described in detail. In Section 4, computer simulatitres extended
LEGION networkare presented. Section 5 presentthe segmentatiomesults onreal images.
Further discussions concerning our approach are given in Section 6.

2. Related Work
2.1 Image Segmentation Algorithms

Due toits critical importancefor computervision, image segmentatiomas been studied
extensively. Many techniques have been inventéar reviews ofthe subject see Zuckd976;
Haralick 1979; Haralick and Shapiro 1985; Sarkar and Boyer 1993b). Broadly spéladiacare
three categories of algorithms: pixel classification, edge-basgdnization, or region-based
segmentation. A simple classification technique is thresholding: a piasbkigned &pecificlabel
if some measure dhe pixelpasses aertainthreshold. Thisdea can be extended to a complex
form including multiple thresholds whichare determined by pixdhistograms (Kohlerl981).
Edge-based techniques generally start with an edge-detedtjorithm, which is followed by
groupingedge elements into rectilinear or curvilind@mes. These lines are thegroupedinto
boundariedghat can beaised tosegment images into various regidese, forexample, Gemast
al. 1990; Sarkar and Boyer 1993a; Forestal. 1994). Finallyregion-based techniquegerate
directly onregions. Aclassical method is region growing/splitti{gr split-and-merge, see
Horowitz and Pavlidis 197&ucker 1976; Adams anBischof 1994), wheréterative steps are
taken togrow (split) pixels into a connected region afl the pixels in the regiorsatisfy some
conditions. One of the apparent deficits with these algorithms isitdrative (serial) nature (Liou
et al.1991). There are some recent algorithms which are partially paralleletLadd991; Mohan
and Nevatia 1992; and Manjunath and Chellappa 1993).

Most of these techniques rely on domain-specific heuristics to perform segmentation, and no
unified computational framework exists to explain the general phenomenon of scene segmentation
(Haralick and Shapiro 1985). The problem of scene segmentattomgutationally hardGurari
and Wechsler 1982), and largely regarded unsolved.

2.2 Neural Network Efforts

Neural networkshave proven to be successful approach fmattern recognition (Schalkoff
1992; Wang 1993b). Unfortunatelittle work hasbeen devoted to scene segmentation which is
generally regarded as part pfreprocessing (oftermeaning manualsegmentation). Scene
segmentation is a particularly challenging task for neural networks, partly because traditional neural
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networks lack the representational power for encoding multiple objects simultaneously. Interesting
schemes of segmentation based on learning have grepnsed before (Sejnowski and Hinton
1987; Mozert al. 1992). Grossberg and Wyse (1991) proposetbdelfor segmentation based

on the contour detection model Gfossbergand Mingolla (1985; see Govet al. in press for a
computer simulation). However, all of these methods were tested osipalhsynthetiamages,

and it is notclear how they can be extended to handle remhges. Also, Kohonen'self-
organizing maps have beeased forsegmentation based quixel classification(Kohonen 1995;

Koh et al. 1995). A primary drawback of these methodth& thenumber of segments (objects)

is assumed to be knovenpriori.

Because temporal (oscillatory) correlatioffers an elegantway of representingnultiple
objects in neurahetworks (von der Malsburg and Schnei@®B6), most ofthe neuralnetwork
efforts onimage segmentation have centeegdund this theme. In particulahe discovery of
synchronousscillations in the visual cortexastriggered much interest in exploring oscillatory
correlation to solvehe problems of segmentation and figure-grolgajregation. One type of
modelusesall-to-all connections to reach synchronization (Weah@l. 1990; Sompolinsket al.

1991; von der Malsburg and Buhmahf92). Asexplained inSect. 1,these models cannot
extend very far in solvinghe segmentation problem because fundamental information concerning
the geometry amongensoryfeatures idost. Another type of modeuiseslateral connections to
reachsynchrony (Spornt al. 1991; Murataand Shimizu 1993; Schillen angonig 1994).
Unfortunately, it is unclear to what extent these oscillator networks can synchronize on the basis of
local connectivitysince no analysis is given and only simulation resultsmoall networks are
provided. Moreoverrecentinsights into the contrasting behavior betweemusoidal and
relaxation oscillators makedear thatsinusoid-typed oscillators, which encompass most of the
oscillator modelsused, have severe limitations tsupport fast synchronizatioWang 1995;
Terman and Wang 1995; Somers and Kopell in press). In fact, in all of the rabde¢s,nothing

close to a real image has ever been used for testing these models.

3. Model Description

The building block of LEGION, a single oscillatioris defined as a feedback loop between an
excitatory unit; and an inhibitory uni;, whose time derivatives are defined as

X =3 =X+ 2=y + 1 H(p + exg-a ) —6) + § +p (1a)

yi = e(y(1 +tanh(x;/B)) —yi) (1b)

HereH stands for the Heaviside step function, which is defingd(@s= 1 ifv= 0 andH(v) = 0
if v<O0. Ij represent external stimulatiovhich is assumed to lBpplied fromtime Oon, andS

denotes the couplinfjom other oscillators ithe network. p denoteghe amplitude ofGaussian
noise,the mean ofvhich is set top. The negative mean issed toreduce the chance sklf-
generating oscillations, which wilbecome clear in the nexiaragraph. The noise term is
introduced for two purposesChefirst one is obvious: téest therobustness ofhe system. The
second one, perhaps more important, igléy an active role iseparating different input patterns
(for more discussions see Terman and Wang 1995).

The parametet is a small positivenumber. Hence(1), without any coupling or noise and
with constant stimulation, corresponds to a standard relaxation oscillterx-nullcline of (1) is
a cubiccurve,while they-nulicline is a sigmoid function. If > 0 andH = 1, these curves
intersect along the middle branch of the cubieen 3 is small. In this case, weall theoscillator
enabled(seeFig. 2A). It produces atable periodicrbit, which alternates betweesilent and
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activephases of near steady-state behavior. As shoWwigin2A, the silent and thactive phases

correspond tahe leftL and the rightR branches othe cubic, respectively. The transitions
between thewo phase®ccur rapidly(thus referred to agimping. Notice that the trajectory of
the oscillator inphase space jumps betwettie two branches andhen follows closely the
branchesbecause the smadlinduces verydifferent time scales forx- and y-dynamics. The
parametey is used tacontrol the ratio of the times that teelution spends ithesetwo phases.
For a larger value gf, the solution spends a shorter time in the active phaske< @f andH = 1,
the nuliclines of (1) intersect at a stable fixed point along the left branch of the(seblkig. 2B).

In this case (1) produces no periodibit, and the oscillator is referred to ascitable indicating
the oscillatorhas notyet been but can bexcited bystimulation. Anexcitable oscillator may
become oscillatory if it receives, through the t&nargeenough coupling from other oscillators.
Because of this dependency on external stimulati@npscillations arstimulus-dependent. We
say that the oscillator &imulatedf | > 0, andunstimulatedf | < 0. The parametg®? specifies the
steepness ahe sigmoidfunction, and is chosen to be smalllhe oscillator mode(1) may be
interpreted as a modé&br the spiking behavior of a singlaeuron,the envelope of dursting
neuron, or a mean field approximation to a network of excitatory and inhibitory binary neurons.

The primary difference betwegil) andthe model in Terman and Wan@995) is the
introduction of the Heaviside function in whiat> 0 and 0 <6< 1. The parameteris chosen to
be on the samerder of magnitude as so that the exponentiflinction decays on alow time
scale. Itis the Heaviside term which allotlis network to distinguish betweenajor blocks and
noisy fragments. The basic idea is that a major block must contain at leastcolag¢or, denoted
as deader, which lies in the center of a larp@mogeneous region. Thascillator will be able to
receive large lateral excitation from figeighborhood. A noisfragmentdoes notcontainsuch an
oscillator. The variablg; in (1a) determines whether or not an oscillator is a leader. It is referred

to as thdateral potentialof the oscillator, and satisfies the differential equation:

B =A@Q-p)Hl ¥ Tix HXx—6) —6pl - p 2
KON()
HereA > 0, Ty is thepermanentonnection weight (explained latdrpm oscillatork to i, and
N(i) is called theneighborhoodof i. If the weightedsum oscillatori receives froniN(i) exceeds
the thresholdd,, p; approaches 1. If this weighted sum is beliyp; relaxes to 0 on &me scale

determined by, which is chosen to be dhe sameorder ase resulting in aslow time scale. It
follows thatp; can only exceed thiareshold@ in (1a) ifi is able to receive a larggoughlateral
excitationfrom its neighborhood. In order ttevelop a high potential, it is not sufficiethiat a
large number of neighbors pére oscillatory. They must also haveeatain degree agynchrony
in their oscillations. In particular, they muall exceed thehreshold8, at the saméime in their
oscillations.

The purpose of introducinghe lateral potential is that an oscillateith a high potential can
lead the activation of an oscillator bloatorresponding to an object. Thoughhigh-potential
oscillator need not be stimulated, it must be stimulatesvever, in order tgplay the role of
leading an oscillator block; otherwise, the oscillator will not oscillate at all. Thus, we régatiee
leader be always stimulated. More formally, an oscillaterdefined as a leaderpf = 8 andi is

stimulated. The lateral potential of every oscillator is initialized to zero.

The network we study foimage segmentation iswvo dimensional. Figure 3hows the
simplest case of permanent connectivity, where an oscillator is connected only wibhrits
immediate neighbors except on theundaries where no wrap-arounduged. Sucltonnectivity
forms a2-D grid. In general, howeveN(i) should be larger, anthe permanent connection
weights should take on the form of a Gaussian distribution with their distance
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The coupling terng in (1) is given by

S= 3 Wik Hog =6 —W; H(z -64) ®3)
KOING)
where W is the dynamic connection weight fronk to i. The neighborhood ofthe above

summation is chosen to lige same ag2). Insome situations, howevehey should be chosen
differently to achievegood resultsand analternative definitiorwith two different neighborhoods
is given elsewhere (Wang and Terman 1996).

Now let usexplain permanent and dynamic connectigights. Tofacilitate synchrony and
desynchrony (moreliscussions later), we assurtiat there aréwo kinds of synaptic weights
(links) betweertwo oscillators following von der Malsbungho argued for itsneurobiological
plausibility (von der Malsburg 1981; von der Malsburg and Schneider 1986; see alsd 38340k
The permanent weight, @y, embodies the hardwired structure of a network. tf@notherhand,

the dynamic weight, oW, rapidly changes.W; is formed on théasis ofT;, according to the

mechanism of dynamic normalization (Wah§95). Dynamic normalizationwas previously
defined as a two-step procedukarst update dynamic links and thermalization (Wang 1995;
Terman and Wand 995). There are differentvays to realize such normalization. In the
following, we give one way to implement dynamic normalization in differential equations,

U =n@Q-wl —vuy (4a)

Wik = Wr Ti Y g = Wi 5 Ty Ui y; (4b)
JON(G)

The functionu; measures whether oscillatds stimulated, and it is initialized to 0. Tparameter
n determines the rate of updating Whenl; > 0, uy; — 1 quickly because we chooge»v (see
below); otherwise wheh, = O, u; = 0. For thisequation we assumie = O if oscillatori is
unstimulated (otherwise it is easy to enforce this by applying a step functign ofhe parameter
vis chosen to be otne samedrder asg, so thatu; slowly relaxes back to O after the external
stimulus is withdrawn.

We assumehat W, are initialized to (for all i andk. It is easy to sethat if oscillatori is
unstimulatedW;,, remains to be @or all k, and if oscillatork is unstimulatedV;, = O for all i.
Otherwise, ify; = 1 anduy, = 1 for at least onke I N(i), then at equilibrium,

WTT'k Uj Uk
Wy=———— and > Wik =Wy
> Tij uj u; KON()
JONC)

Thus the total dynamiaveights converging to a single oscillator equéls, which gives the
desired normalization. Noticéhat dynamicweights, not permanentweights, participate in
determiningS (see (3)). Moreovek);, can be properly set up in one stephat beginningoased
on external stimulation, which should be useful for engineering applications.

It should be mentionethat weight normalization is not mecessary conditiofor the selective
gating mechanism taork. This conclusion habeen established previously (Terman &viang
1995). With normalizedweights, howeverthe quality of synchronization withieach oscillator
block is better (Terman and Wang 1995).
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In (3), W, is the weight ofnhibition from the global inhibitorz, whoseactivity, also denoted
by z, is defined as

Z =¢(0,—2 (5)

whereo,, = 1 if x; 2 6,,for at least one oscillator ando,, = 0 otherwise. Hence8,, represents
another threshold, and it is chosen so that only an oscillator jumpihg &xtivephasecan trigger
the globalinhibitor. If o, equals 1z - 1. The parametep representshe rate awwhich the
inhibitor reacts to the stimulation from the oscillator network.

The introduction of dateral potentiaprovides a solution téhe problem of fragmentation.
There is an initialperiod whenthe termexgat) exceeds theéhresholdf. During thisperiod,
every stimulated oscillator is enabled. This allows the leaders to receive suféitaeaitexcitation
so that they can achievehah potential. After this initial period,the only oscillators which can
jump up without stimulation from other oscillat@ase theleaders. When a leadejumps up, it
spreads itsactivity to otheroscillators within itsown block, sothey canalso jumpup. These
oscillators are referred to &sllowers Oscillators not in this blockre preventedrom jumping
up, because of the global inhibitor. The oscillators which belong to the noisy fragments will not be
able to jump upeyondthe initial period, because these oscillators will not &ele to develop a
sufficiently high potential by themselves and they cannot be recruited by leddese oscillators
are referred to a®ners In order to be oscillatory beyorttie initial time period, anoscillator
must either be a leader or fallower. Thisindicates that the oscillator ot part of anoisy
fragment, becauseoisy fragments in ammage tend to be smadind isolated (se€ig. 1). The
collection of all noisy regions whose corresponding oscillators are loneafied thebackground
which is not a uniform region and generally discontiguous.

We have proven a number of rigorous resotiscerning thesystem (1)-(5). Our main result
implies that the loners will no longer be able to oscillate aftaniaal time period. Moreover, the
asymptotic behavior of a leader orfalower is preciselythe same as theetwork obtained by
simply removing all the loners. Together with the results in Terman and Wang (1996hpiies
that after a number of oscillation cycles a block of oscillators corresponding to a singlénmagger
region will oscillate insynchrony,while anytwo oscillator blocks corresponding tawo major
regions will desynchronize froreachother. Also,the number of cycles requirefdr full
segmentation is no greater than the number of meg@ons plus one.The details of the analysis
are given in Wang and Terman (1996).

The analysis in Wang andlerman(1996) isconstructive in thesensethat it leads to precise
estimates that the parametersst satisfy. Itshowsthat theresults hold for a robuseinge of
parametewvalues. Moreoverthe analysis does not depend ¢me preciseform of nonlinear
functions in (1). Thespecific cubic and sigmoid functions (deg. 2) areusedbecause of their
simplicity. In addition to the parameter description given earlier, we require thét € 4, anda
be chosen sthat all thestimulated oscillators remain enablied the first cycle, but only leaders
remain enabled during the second cycle. In (2), we simply retpair@ be on the samerder of
magnitude as 1, and 06; < 1. Theparameter) in (4) simply needs to be dhe sameorder of
1.

There are alternative ways of defining the model without affecting its essential dynamics (Wang
and Termaril996). Inparticular, we have given a definition whatgnamic normalization of

connection strengths in (4) is not needed,thatquality ofsynchrony withineach blockand the
flexibility for choosing parameters seem somewhat lessened.

4. Computer Simulation
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To illustratehow the LEGION network is used foimage segmentatiowhile eliminating
fragmentation, we have simulated a 50x50 grid of oscillators with a global inhibitor as defined by
(21)-(5). Wemap the three objects (designated assting atree and amountair) in Fig. 1, and
then add20% noise sothat eachuncovered square has a 208ance of being covered
(stimulated). The resulting image is shown in Fig. 4A.thinsimulation,N(i) is simply thefour
nearest-neighbors without boundary wrap-around. For all the stimulated osclllat@&<2, while
for the otherd = 0. Notice that if oscillataris unstimulatedW, = W; = 0 forall k, andl; does

not need to be negative to prevefitom oscillating. The amplitudep of the Gaussian noise was
set to 0.02. This represents a 10% noise level compathkd &xternaktimulation. We observed
during the simulations that noise facilitated the process of desynchronization.

The differential equationgl)-(5) were solved using both a fourth-order Runge-Kuotéthod
and the adaptive grid o.d.e. solver LSODE. Permanent connections betwedein am@yghboring
oscillators were set t8.0, and fortotal dynamicconnections (seéb)), Wy = 8.0. Dynamic
weightsW;, were set up ahe beginning according t¢4). The following values forthe other
parameters in (1)-(5) were used:= 0.02,a = 0.005,=0.1,y=6.0,6=0.9,A = 0.1, 6, = -
0.56,=70W,=15n=1.0,u=v=0.01,¢=3.0,and8,x = 6y, = 0.1. The value off,
was chosen so that, in order &ohieve ahigh potential, an oscillator must hae#i of four
neighbors active. The simulationresults were robust toonsiderable changes in tparameter
values. Fig. 4B-4E show the instantaneous activity (snapshtht§ oetwork at various stages of
dynamic evolution. The diameter of each black circle represemtsattiiwity of thecorresponding
oscillator. Specifically, ithe range ok values ofall the oscillators is given b¥min and Xmax
then the diameter of the black ciraerresponding to one oscillator is set to be proportional to
(X=Xmin)! XmaxXmin) -

Fig. 4B showsthe snapshot athe beginning of the dynamievolution. This isincluded to
illustrate the random initial conditions. Fig. 4C shows a snapshot shortly-afte4Bz. One can
clearly see the effect of synchrony and desynchralhyhe stimulated oscillatorsvhich belong to
or are the neighbors of tisenare entrained and have larggtivities (in theactivephase). At the
same time, the oscillators stimulated by the rest of the image have very small activities (in the silent
phase). Thus the noisynis segmented from the rest of the image. A stioe later, asshown
in Fig. 4D, the oscillators ithe group representinthe noisy tree reach their activghase and are
separated from the rest of tieage. Fig. 4E showanothersnapshot, whethe noisy mountain
has its turn to be activated and separate from the rest of the input. This successive "pop-out” of the
segments continues in a stable periodic fashion until the input image is withdrawn. To illustrate the
entire segmentation process, Figure 5 shinesemporal evolution of every stimulateskcillator.
The activities of the oscillators stimulated by eacisy object are combined together as traee
in the figure, and so are for the background. Since the oscillators receivixgental stimulation
remain excitable and unable to oscillate throughiogitsimulationprocessthey are excluded from
the display. The threeupper traces represethie activities of the three oscillatbtocks, and the
fourth one representke background consisting dll of the scattereddots. Because of low
potentials, these oscillators quicklyecome excitable evethough theyare enabled at the
beginning. The bottom trace representsativity of the globainhibitor. The synchronywithin
each block and desynchrony between different blocks are clearly shown after three cycles.

To illustrate the role of the laterpbtential, the sameetwork withthe same inpugFig. 4A)
and the samaitial conditionhasbeen simulated without thateral potential. In this case, the
Heaviside function in (1a) is always 1 fevery oscillator. With the random initial condition
shown in Fig. 4F, the network reachestable oscillatory behavior wittour segmentsafter less
than three cycles. The four segmeatsshown in Fig. 4G-4J.Without the laterapotential, the
network cannot distinguish major image regions from noisy fragmentseaglate majaregions
apart.

With a fixed set oparametersthe dynamicabystem of LEGIONcan segmenbnly alimited
number of patterns. This number depends, to a large extettte gatio of the times that a single
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oscillatorspends inthe silent andactive phases. Let us refer to thislimit as thesegmentation
capacityof LEGION. In the above simulation, the number of the nmamcks to be segmented is
within the segmentation capacity. What happens if this number exceeds the segmeapatiy’?
From the analysis in Wang and@ierman(1996), we knowthat thesystem will separatthe entire
image into as many segmentstias capacityallows, whereeach segment magorrespond to one
major block (callegimple segmejor a number of major blocks (calledngregate segmeént To
illustrate thispoint, we showthe following simulation, where we present to a 30X30GION
network with an arbitrarymage containing ninbinary patterns, whickogether formthe phrase
OHIO STATE as shown in Fig. 6A. Wthen addl0% random noise tthe input in a similar
way as in Fig. 4resulting inFig. 6B. We usdhe same parameter values as in the simulations
presented irFig. 4, except thaty = 8.0. Forthis set of parameters, owarlier experiments
showed that the system's segmentation capacity is less than 9. The simulation results are presented
in Fig. 6C-6H. Shortly after the start ofystem evolutionthe LEGIONnetwork segmented the
input of Fig. 6B into five segments, shown in FiggD-6H respectively. Among these five
segmentsthree are simplsegmentgFig. 6D, 6E,and 6H) and twoare congregate segments
(Figs. 6F and 6G). Besides Fig.rBany other simulations have been perforrf@ahe input of

Fig. 6B with different random initial conditions, and the results are comparable with Fithese

are different ways, howevethat thesystem separatale ninenoisy patternsnto five segments.
For thisparticular set oparametersthe segmentation capacity of thEGION network is 5. In
fact, wehave not seen a single simulatimial where more than 5 segmeiai® produced. This
important property othe system, i.e. inaturally exhibits a segmentation capacity, isgood
accord with the well-known psychological principle that there are fundamental limits on the number
of simultaneously perceived objects.

5. Real Images

LEGION can segment gray-level images way similar to segmenting binaiynages. For a
given image, a LEGION network diie same size as the imagih a global inhibitor isused to
perform segmentationEach pixel of the imageorresponds to aoscillator of thenetwork, and
we assume that every oscillator is stimulated whenntlage is applied to theetwork. The main
difference between gray-level and binary images lies in how to set up connedimmngray-level
images, the coupling strength betwéen neighboring oscillators idetermined by the similarity
of two corresponding pixels. Th@mpleway of setting up the couplingtrength addresses only
the grouping principles of proximity, connectedness, and similarity (cf. Sect. 1).

5.1 Algorithm

To segment real images with large numbers of pixels involves integrating a large number of the
differential equations of1)-(5). Toreduce numerical computations on a secamputer, an
algorithm is extracteffom theseequations. The algorithmfollows major steps inthe numerical
simulation of the equations, and it exhibits the essential properties of relaxstibators, such as
two time scales (fast arglow) and the properties a&ynchrony and desynchrony impapulation
of oscillators. Such extraction is quite straightforward becausetdlaeation oscillatonetwork,
much of the dynamics takes place when oscillators are jumping up or judgwry Besides, the
algorithm overcomes the segmentation capacity, which may be desired in some applidébiens.
specifically, the following approximations have been made.

(&) When no oscillator is in the active phase (see Fig. 2), the leader cldbesjumping point
(left knee) among all enabled oscillators is selected to jump up to the active phase.

(b) An oscillator takes onéme step to jump up tehe activephase ifthe net input it receives
from neighboring oscillators and the global inhibitor is positive.

(c) The alternation between the active phase and the silent phase of a single oscillator takes one
time step only.
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(d) All of the oscillators in thactive phase jumpdown if no more oscillators can jump up.
This situation occurs when the oscillators stimulated by the same pattern have all jumped up.

LEGION algorithm
Only thex value of oscillatof, x;, is used irthe algorithm. N(i) is assumed to bthe eight
nearest neighbors ofwithout wrap-around. LK,, RK,, LC, represent the& values of three of

four corner points of #pical limit cycle (seeFig. 2A), whereLC denotes théupper)left corner
of the limit cycle. By straightforward calculations, we obtaky, = -1, LC, = -2, RK, = 1. In

the algorithm]; indicates the value of pixglandly, indicates the maximum possible pixel value.

1. Initialize
1.1Set z(0)=0;
1.2 Form effective connections
W= M+l =1l kOO
1.3 Find leaders

pi= H % W - 6l

KON i)
1.4 Place all the oscillators randomly on the left branch. Namely x;j (0)
takes a random value between LCyand LKj.
2. Find one oscillator J so that (1) Xj (t) = xk(t), where k is currently on
the left branch; (2) pj = 1. Then
Xj(t+l)= RK; z(t+1)=1 {lump up}

Xp(t+1) = xp(t)+( LKy-x j(t)),for kK £ J.

In this step, the leader on the left branch which is closest to the left
knee is selected. This leader jumps up to the right branch, and all the other
oscillators move towards LK.

3. lterate until stop
If( xj(t)= RK¢and z(t) >z (t 1))
xj(t+1)= x(t) {stay on the right branch}
else if ( xj(t)= RK¢iand z(t) < z(t- 1))
xj(t)= LCy; z(t+l)= z(t)-1 {jump down}
If( z(t+1)=0)gotostep?2
else
Si(t+l)= T W Hxk(1) -LK x)-  WHz(t)-0.5)
KON i)
If( Sj(t+1)>0)
Xj(t+1)= RK; z(t+l)= 2z(t) +1 {jump up}

else

10
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xj(t+1) = xj(t) {stay on the left branch}

Comparing the above algorithmith the dynamicalsystem of (1)-(5),one canfind the
following simplifications.

(a) The dynamic weightjj is directly set taV;; = I\y/(1 + |; — I]). The intuitivereason for
this choice of weights is that the more pik@nd pixelj are similar to eacbther, the stronger the
connection between thevo corresponding oscillators. It is worth notitihgit the algorithndoes

not compute normalized weights. As mentioned in Sect. 3, selective gating can stilhtaeith
this weight setting, even though the weights are not normalized.

(b) The leaders are chosen during initialization. Accordinpeodynamics described Bect.
3, lateralpotentials, and thus leaderre determinediuring a fewinitial cycles of oscillatory
dynamics. Since every oscillator is stimulated, #idis set at thédeginning, itcan be precisely

predicted at the beginninghich oscillators willbecomeleaders. Thus, tsavecomputational
time, the leaders are determined in the initializatstep. It should belear that thenumber of
leaders determined in this step does not correspotitetaumber of resultingegments - anajor
image region (segment) may generate many leaders.

There are two critical parameters in the algoritidpand 6, wherethe former is the strength
of global inhibition and théatter is thethreshold for forming higlpotentials(leaders). FoWw,,

higher values make the algorithm more difficulgtoup pixelsinto regions. Thus, irder for a
region to be grouped togethdne algorithm demands a higher degree of homogeneity within the
region. Generallyspeaking,given a gray-level image, high&¥, leads to more and smaller

regions. Foif, higher values makthe algorithm more difficult to develdeaders. Thus fewer
leaders will be developed, and fewer regions result from the algorithm. On thaantkeregions
produced with a highdi, tend to be more homogeneous. Foage segmentatioapplications, it

suffices to stoghe algorithmwhen every leadehasjumped uponce. See Wang anderman
(1996) for some discussions on the algorithm.

5.2 Segmenting Real Images
5.2.1 Sum vs. Max: an aerial image

Thefirst image the algorithm is tested on is an aenmage,calledLake, which is shown in
Fig. 7A. As inthefollowing images to beised,this is atypical gray-levelimage, wheresach
pixel is an 8-bit number ranging from 0 to 255 (also called intensity), and pixels with higher values
appearbrighter. The imagehas 160x160 pixelsand is presented to a LEGION network of
160x160 oscillators. For this simulatio, = 40 and6f, = 1200. Quickly after the image is

presented, thalgorithmproduces different segments at differémte steps. Fig. 7B-7Glisplay
the first six segments that have been produced sequentially, whiaiek gixelcorresponds to an
oscillator in the active phase and a blank poalresponds to aoscillator in the silenphase. As
shown inthe figure, each segmentorresponds to aeaningful region in the originamage: a
segment is either a lake, a field, or a parkw@ke region inFig. 7B corresponds to a lake. The
region in Fig. 7C corresponds to the main lake, exceph#tower-left part and on the right side
wherethe lakeregion extends to non-lakgarts. The parkway segment ifrig. 7G picks up a
partial parkway network irthe originalimage. The othersegmentsnatch wellwith the fields of
the image.

The entire image is separated intor&gions and a background. $wonplify the display, we
put all the segments and thackground together into offigure, using grayevels to indicate the
phases of oscillator blocks. Such a displagaited agray map Thegray map of theresults of
this simulation is shown in Fig. 8A, whettge background is shown biye black scatteredreas.

11
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Generallyspeaking,the background corresponds to partstieé image that havkhigh intensity
variations. Due to themechanism of fragmentemoval, thesenoisy regions stay in the
background, as opposed ftmany segmentthat would have been the result without fragment
removal.

In the above algorithm, an oscillator summatitghe input from itsneighborhood, and if the
overall input is greater than the global inhibition the oscillatorps tothe activephase (see also
(3)). Another reasonablevay of grouping is toreplace summation by maximizatiomhen
computingS:

S = Maxong){ Wik HOx — 69} — W, H(z -6, (6)

Intuitively, the maximum operation concentrates on the relationaath the oscillator inN(i) that
hasthe strongest coupling with, but omits the relation betweérand N(i) as a whole. Thus,
grouping bymaximization emphasizgmirwise pixelrelations, whereas grouping symmation
emphasizes pixel relations in a local field.

By using (6) in the LEGION algorithm, the Lake image is segmented again. In this simulation,
W, = 20 and6, = 1200. Fig. 8B showthe result of segmentation bygeay map. The entire

image is segmented into I&gions and a background, whichinglicated by blaclareas. Each
segmentcorrespondsvell with a relatively homogeneous region ithe image. Interestingly,
exceptfor the parkway region irthe lower part ofthe image, every region ifrig. 8B has a
corresponding one ifig. 8A. A comparison between thvo figuresreveals the difference
between summation amdaximization insegmentation. A closer comparistiwever,indicates
that the maximum scheme yieldéitde more faithfulregions. Orthe otherhand, regions irfrig.
8A appear smoother and have fewer "black holes" - parts of the background. The sneffetitting
of summation is generally positive, but it may lose important details. For example, the lsutable
inside themain lakeregion ofFig. 8B corresponds to asland in the originaimage, which is
neglected in the main lake region of Fig. 8A. Another distinctidghasgrouping inthe maximum
scheme is symmetrical in tisensehat if pixel a can recruit pixeb, thenb can recruita as well.
This is because effective weights are symmetrical, nawigly Wj; (seethe algorithm). Because

the maximum schemappears to produce bettersults, itwill be used inall of the following
simulations.

To show the effects of parameters, we redheevalue off, from 1200 inFig. 8B t01000.
As a result,more regionsare segmented, as shown in Fig. &here 23 segments plus a
backgroundare produced bythe algorithm. Compared witkig. 8B, the notablenew segments
include an open-theater-like region to teft of the mainlake, and its nearbfield region. The
Lake imagehasbeenused inthe study of Sarkar and Boyer (Sarkar and Bo$6©3a). As
mentioned inSect. 2.1,their approach iedge-based.The reader is encouraged to compare our
results with theirs.

5.2.2 MRI images

The next image to tesiur algorithm is an MRI (magnetic resonance imagimgage of a
humanhead, as shown in Fig. 9AMRI images constitute a largdass ofmedicalimages, and
their automatigorocessing is ofreat practicavalue. Thisparticularimage, which we denote as
Brain-1, is amidsagittalsection, consisting of 257x257 pixelsSalientregions of thispicture
include the cerebratortex, the cerebellum, thérainstem,the corpus callosumthe fornix (the
bright stripe belowthe corpus callosum)the septum pellucidum (the regisarrounded by the
corpus callosum and tHernix), the extracraniasoft tissue(the bright stripe on top of theead),
the bone marrow (scattered stripes urtlerextracranialissue),and several other structur@sr
the nomenclature see 818 of Kandelet al. 1991). Forthis image, a LEGION network of

12
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257x257 oscillators isised,and W, = 25 and6, = 800. Figure 9B showthe result of one
simulation by a graynap. The Brain-limage is segmented into 2&gions, plus a background
which isindicated by the blackreas. Ofparticular interest arevo parts ofthe brain: theupper
part, and the brainstem with part of the spinal cord (to be called "brainsteshioidy, parts of the
extracraniakissue,and parts othe bone marrow. Other interestingsegments includéhe neck
part, the chin part, the nose part, and the vertebral segment.

Though it is useful to treat the brain as a whole in some circumstances, dsodye desirable
to segment the brain into more detaigtdictures. Tachievethis in LEGION, one can increase
W,. But in order not to produce too mamnggions, 6, should usually bencreased asV,
increases. To show the combined effects, Fig. 9C displays the result of another NAf}, widD
and 6, = 1000,where Brain-1 is segmented to 25 regiphss a background. Nowthe upper
part of the brain is further segmented into the ceradmdéx,the cerebellum, the callosum/fornix
region and its surrounding septum. BecausthefhigheW,, regions in Fig. 9Gend to contain
more backgroundcompare, for exampleghe two brainstemregions). However, ithe cortex
segment irFig. 9C, the noisy stripesactually havephysical meanings: they tend teatch with
various fissures othe cerebratortex. With the higher 8,, some segments iRig. 9B cannot
generate any leaders and thus join the background.

The final segmentationsesanother MRI image of Aumanhead, shown in Fig. 10A.This
image is denoted as Brain-2, consisting of 257x257 gray-level pixels. Brainsaggttal section
through oneeye. Salientregions of thispicture include thecortex, the cerebellum, thdateral
ventricle (the black hole within theortex),the eye, the sinus(the black holebelow the eye), the
extracranialoft tissue,and thebone marrow. A_LEGION network with 257x257 oscillators is
used forthe segmentatiotask. Inthefirst simulation,W, = 20 and6, = 800, and Fig. 10B
shows the result by a gray map. Brain-2 is segmented into 17 regions, plus a background which is
indicated by black scattered areas. One can seetf@rigurethat the entire braiforms asingle
segment. Other significansegments includéhe eye, the sinus, parts ofthe bone marrow, and
parts of the extracranial tissue. The lateral ventricle is put into the background.

In order to generate finer structur®g, is raised to 35 in the second simulation. A&im. 9,

8 is increased to 1000. Fig. 10C shows the result of this simulation, where Brasegimisnted

into 13 regionsplus a background. As expectdtie segments inFig. 10B become further
segmented or shrunk, and the background becomeseaxrtaesive. Worthmentioning is that the
brain segment in Fig. 10B segmented into three segments: oogesponding téhe cortex and
the othertwo corresponding tche cerebellum. Due to theincrease of6,, the segments

corresponding to the extracranial tissue and the marrow in Fig. 10B disappear in Fig. 10C.

In the segmentation experiments this section, ourgoal was to illustrate the LEGION
mechanism and thiateral potentiakffectiveness of derived algorithms. We did atiempt to
produce best possible results fie tuning of parametersOne careasilytell this by the simple
rule of setting/j, the simple choice dfi(i), and the values A, and 6, that have beensed in
the simulations. Therefore, better results caexpected byusing more sophisticated schemes of
choosing these parameters. Indeethoae elaborateersion ofthe LEGION algorithmhasbeen
applied to segment 3-dimensional MRI and CT (computerteeabgraphy) images, and good
segmentation results have been obtained (Shareef and Wang, in preparation).

6. Discussion

6.1 Further Remarks on LEGION Computation

In the simulations of Sect. Bi(i) is set to the eight nearest-neighbors dfargerN(i)'s entail
more computationfor determiningleaders. ButargerN(i)'s have more flexibility in specifying

13
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the conditions for creating leaders, which tends to probtetierresults. Alsothe order of pop-
out of different segments is currently random. In some situatmveever, itmight beuseful to
influence theorder of pop-out by some criteria, suchtlaes size of eachegion. LEGION may
incorporate different criteria bgrdering leaders accordinglg,g. by usinghe global inhibitor in
different ways.

The main difference betweeour approach tamage segmentatioand other segmentation
algorithms reviewed in Sect. 2 is that ours is neurocomputational, building on the strengths and the
constraints of neural computatiorOur approach relies on emergent behavior of LEGION to
embody the computation involved imagesegmentation. Methodologicallhe computation is
performed by a population @ictiveagents - oscillators in this casehat aredriven by pixels,
whereas, in d@ypical segmentatioalgorithm, pixelsare data to bprocessed by eentral agent -
the algorithm or the neuraletwork trained as a pixetlassifier. That LEGION is a massively
parallel network of dynamical systems with mainly local coupling makes it particularly feasible for
analog VLSI implementation, theuccess of which would be raajor steptowardsreal time
processing of scene segmentation.

A thorny issue withscene segmentation is that oftenumdque answeexists. A house, for
example, may be grouped into a single segment if viewed afar. The same house, iheiaxgd
may bebroken intomultiple segments including door, a roof, windows, etc.This situation
demands a flexible treatment of scene segmentation, i.e., a system should be ablegenesastly
multiple sets of segmentation, each of which should be reasonable. In LEGIOf&xthikty is
reflected to a certain degree by the effects of the paramettsanfd 6,, as discussed in Sect. 5.

As noted there, both Fig. 9B and 9C are arguably reasonable results.

The LEGION network used so far has only one layer of oscillators. In Sect. dhemt®ned
that the oscillatorglynamics of one-layer LEGIONas alimited segmentation capacitgeeFig.
6). It isinteresting to note that the human percepsyatem is alsdimited in simultaneously
attending to the objects in a scgMiller 1956). Weexpect that the ability dfEGION improves
significantly when multiple layers areused in subsequent stages. Thsltistage processing
provides anaturalway out of thisfundamental limitation. In multistagerocessing.each layer
does notneed to segregate more than sevemgmentsand yet thesystem as a whole can
segregate many more segments tthensegmentation capacity - an idea reminiscerthoiking
proposed byMiller (1956). When the number ofegments in ammage is greater than the
segmentation capacity, one-layer LEGION will produce a number of segments (simple or
congregate) up to the segmentation capdsigFig. 6). Congregatesegments, howevecan be
further segmented with another layer ldEGION, whereassimple segments will not segment
further. With multistageprocessingthe hierarchicakystemcan provideresults of both coarse-
and fine-grain segmentation.

6.2 Biological Relevance

The relaxation-type oscillatarsed in LEGION isdynamically very similar taumerousother
oscillators used itmmodeling neuronalbehavior. Examples include theFitzHugh-Nagumo
equations (FitzHugh 1961; Nagurebal. 1962),and the Morris-Lecar model (Morris anhecar
1981). These can all be viewed as simplifications of the Hodgkin-Huxley equations (Hodgkin and
Huxley 1952). In (1), theariablex corresponds tthe membrane potential of timeuron,andy
corresponds tthe channel activation or inactivation state variatech evolves orthe slowest
time scale. The reduction from a full Hodgkin-Huxley model to the two variable model is achieved
by assuming that the other, fastelnannel state variables anstantaneous.The dynamics of the
lateral potential agiven in(2) has propertiesimilar tothose ofcertain membrane channels and
excitatory chemicatynapses.The NMDA channel, for example, turns off on a sldwe scale
(Traub and Miles 1991). Moreover, with a sufficientygeinput, acell with these channels can
be transformed from the excitatory to the oscillatmiyde. Wenote that the lateral potentidbes
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not act as a temporahtegrator ofall the input converging on its corresponding oscillator, but
utilizes sharp nonlinearity as embodied by the outer Heaviside function in (2).

The theory of oscillatory correlation is consistevith the growing body ofevidencethat
supportsthe existence of neural oscillations in the visual cortex and other fegions. In the
visual system, synchronousscillations have beeabserved incell recordings ofthe catvisual
cortex (Eckhorret al. 1988; Grayet al. 1989). These neural oscillations asémulus-dependent,
and range from 30 to 76z, often referred to a0 Hz oscillations Also, synchronous
oscillations (locking with zero phase lag) occur across an extended brain region only if the stimulus
constitutes a coherent object. These bésmings have been confirmed repeatedly in different
brain regions and in differemnimal species (for reviews see Buzsékial. 1994 and Singer and
Gray 1995).

The local excitatory connections assumed in LEGION conform with vaateralconnections
in the brain. Relating to the visuatortex,these excitatorgonnections, whiclink the excitatory
elements ofoscillators, could benterpreted as the horizontal connections in the visual cortex
(Gilbert and Wiesel989; Gilbert1992). It is knowrthat horizontalconnections originate from
pyramidal cells, which are of excitatory type, and pyramidal cells are also the principal target of the
horizontal connections. Furthermore, #te functionallevel, physiological recordings from
monkeys suggeshat motion-based visual segmentation maypdoecessed irthe primary visual
cortex (Stoner and Albright 199Pammeet al. 1993). The global inhibitor(seeFig. 3) receives
input from the entire oscillataretwork, and feeds back inhibition ontbe network. It serves to
segment multiplepatterns simultaneously present in a visgekne, thusexerting a global
coordination. Crickhas suggestethat part of thethalamus,the thalamic reticular complex in
particular, may be involved in the global control of selective attention (Cé8K). The thalamus
is uniquely located in the brain: it receives inpoin andsendsprojections to almost thentire
cortex. This suggestion and kagatomicaland physiological properties of the thalamus prompt
us to speculate that the global inhibitor might correspond to a neuronal groughal#meus. The
activity of the global inhibitorshould beinterpreted as the collectiveehavior of the neuronal

group.

6.3 Figure-Ground Segregation

The dynamics proposed in this paper separates a scene into a number of major segments and a
background, which corresponds to the rest of the scene. The major segondritee to form the
foreground, whose corresponding oscillators are oscillatory until the input scenefaades The
oscillators corresponding the backgroundafter a brief beginningeriod, become excitable and
stop oscillating. This dynamicsffectively gets rid ofnoisy fragments withougither prior
smoothing or postprocessing of removsmgall regions,the methods oftensed insegmentation
algorithms. With this dynamics, typical figure-ground segregation can be characterized as a special
case, where only one major segment is allowed to be separateth&eoene. In thisense, we
claim thatour dynamics also provides potential solution to the problem offigure-ground
segregation. We allow a foregroundiniclude multiplesegmentspecause thisvay bothscene
segmentation and figure-ground segregation are incorporated in a unified framework.

6.4 Future Topics

In the presentstudy, we have notaddressedthe role of prior knowledge inimage
segmentation. For example, whpeople segment the images Fifj. 9A and Fig. 10A, they
inevitably use their knowledge of human anatomy, which describes among othethbingative
size and position of major braregions. Amore completesystem ofimage segmentatiomust
address thisssue. Besides prior knowledgeanygrouping principlesutlined inSect. 1have
not been incorporated into tleystem. One of the mairfuture topics is to incorporate more
grouping cuesnto thesystem. The global inhibitory mechanism will play a key role in overall
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system coordination: it makes various factoosnpetewith eachother,and a final segment is
formed because of strong binding within the segment.

Our study in thispaperfocusesexclusively on visual segmentation. should benoted that
neural oscillations occur in other modalitiesvesll, including audition (Galambost al. 1981;
Ribary et al. 1991) andolfaction (Freemanl978). Strikingly,these oscillations in different
modalities show comparable frequencies. A restmty extended LEGION talealwith auditory
scene segregation (Wang in press). Witltasiputational properties and its biological relevance,
the oscillatory correlation approaphomises to provide general neurocomputational theory for
scene segmentation and perceptual organization.
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Figure Caption

Figure 1. A caricature of an imageith three objectshatappears on a noisy background. The
noiseless caricature is adapted from Terman and Wang (1995).

Figure 2. Nuliclines and orbits of a single oscillathiVe thank S. Campbefbr making this
figure). A. If I > 0 andH = 1, the oscillator i€nabled. The periodic orbit ishownwith a
bold curve, and itglirection of motion is indicated by tle@rowheads. The leftand the right

branches of the-nullcline are labeled ds andR , respectively. LK andRK indicate the left
and the right knees of the cubic, respectivéy.If | < 0 andH = 1, the oscillator is excitable.
The fixed pointP; on the left branch of the cubic is asymptotically stable.

Figure 3. Architecture of atwo dimensional LEGION network wittfour nearest-neighbor
coupling. An oscillator isndicated by aropen circle, andhe global inhibitor is indicated by
the filled circle.

Figure 4. A An image composed of three patterns on a noisy backgrolimel image is mapped
to a 50x50 LEGION network. Each square corresponds to an oscillator. If a soesatieehs
covered, the corresponding oscillator recee®rnal inputotherwise the oscillator receives
no externainput. Inthefigure, B-E correspond tdhe casewith the inclusion of thdateral
potential, whereas F-J correspond to the case witheuateralpotential.B A snapshot at the
beginning of dynami@volution. C-E Snapshots subsequentBkenshortly afterB. F A
snapshot athe beginning of dynamic evolutidor the case without thiateral potential.G-J
Snapshots subsequently taken shortly &ter

Figure 5. Temporal evolution of every stimulatedcillator. The upperthree traceshow the
combinedx activities of the three oscillator blocks representing the three corresponding patterns
indicated by their respectiMabels. The fourth trace shows the temporal activities of the
loners, andhe bottom tracshowsthe activity of the globainhibitor. The ordinatesndicate
the normalized activity of an oscillator or thhibitor. The simulationtook 9,000 integration
steps.

Figure 6. A An image composed of nine patterns mapped to a 30x30 LE@&EDNOrk. See the
legend of Fig. 4 for explanatior8.The image irA is corrupted by 10% nois€ A snapshot
of network activity at the beginning of dynamic evolutidd-F Snapshots subsequentiken
shortly afterC.

Figure 7. A A gray-level imageconsisting of 160x160 pixels (courtesy of Boyer). B-G

Segments popped out subsequently ftbenetwork shortlyafter the LEGION algorithm is
executed. (We thank E. Cesmeli for his assistance in making this display)

Figure 8. A A gray map showing theesult of segmentingig. 7A. The algorithmproduces 16
segments plus a background® The result of another segmentatiosing maximization to
computeS. The algorithm produces 17 segments plus a backgr@lifithe result of another
segmentation similar B but with a different value foff,. Thesystem produces 23 segments
plus a background. The algorithm was run for 1,000 steps for every case.

Figure 9. A A gray-level image consisting of 257x257 pixels (courtesy of N. Shaief) gray
map showing the result of segmenting the image by a 257x257 LEGION netWaglsystem
produces 21 segments plus a backgroutdhe result of anothesegmentation with different
values ofW, and6,. Thesystem produces 25 segments plus a backgrolihe. algorithm
was run for 1,200 steps in bdghandC.

Figure 10. A A gray-level imageconsisting of 257x257 pixels (courtesy of Bhareef).B A
gray mapshowingthe result of segmenting thmage by a&257x257 LEGIONnetwork. The
system produces 17 segments plus a backgro@nhdhe result of another segmentation with
different values ofV, and6,. Thesystem produces 13 segments plus a background. The
algorithm was run for 1,200 steps in b&fandC.
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Figure 1
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Figure 9
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