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Segmentation and Associative Memory

DeLiang Wang, Senior Member, IEEE,and Xiuwen Liu, Associate Member, IEEE

Abstract—Scene analysis is a major aspect of perception
and continues to challenge machine perception. This paper
addresses the scene-analysis problem by integrating a primitive
segmentation stage with a model of associative memory. Our
model is a multistage system that consists of an initial primitive
segmentation stage, a multimodule associative memory, and
a short-term memory (STM) layer. Primitive segmentation is
performed by locally excitatory globally inhibitory oscillator
network (LEGION), which segments the input scene into multiple
parts that correspond to groups of synchronous oscillations. Each
segment triggers memory recall and multiple recalled patterns
then interact with one another in the STM layer. The STM layer
projects to the LEGION network, giving rise to memory-based
grouping and segmentation. The system achieves scene analysis
entirely in phase space, which provides a unifying mechanism
for both bottom-up analysis and top-down analysis. The model
is evaluated with a systematic set of three-dimensional (3-D) line
drawing objects, which are arranged in an arbitrary fashion to
compose input scenes that allow object occlusion. Memory-based
organization is responsible for a significant improvement in
performance. A number of issues are discussed, including
input-anchored alignment, top-down organization, and the role of
STM in producing context sensitivity of memory recall.

Index Terms—Associative memory, grouping, integration, lo-
cally excitatory globally inhibitory oscillator network (LEGION),
scene analysis, segmentation, short-term memory (STM).

I. INTRODUCTION

M UCH of neural network research centers on pattern
recognition [27], [38], where the fundamental premise

is that patterns are presented to the system one at a time. In
reality, however, such an interface can rarely be taken for
granted; when one looks around, it is clear that the scene (or
image) around us is almost invariably composed of multiple
patterns or objects. Many years of study in computer vision
[31] prove that segmenting a scene into meaningful entities for
subsequent processing (e.g., pattern recognition) is just as hard
a problem as invariant pattern recognition. In addition to the
segmentation problem, neural network research also faces what
we call thealignment problem, which refers to the problem
caused by not aligning an input pattern with a stored pattern.
Take a Hopfield net as an illustration, which stores five-digit
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Fig. 1. Example of the alignment problem for the Hopfield net. (a) Five binary
patterns, corresponding to digits “1” through “5,” are stored in a10 � 10

Hopfield net. Standard implementation is followed. (b) An input pattern “4,”
which is perfectly assigned with the stored template of “4,” leads to a perfect
recall of the stored “4.” (c) The same input pattern shifted two pixels to the right
does not yield any useful recall.

patterns in the memory, as shown in Fig. 1(a). Each one of the
digits is correctly recalled if an input pattern is the same as one
of the stored patternsand is perfectly aligned with the stored
pattern. This is shown in Fig. 1(b) for pattern “4.” However, as
shown in Fig. 1(c), the same input that is shifted two pixels to
the right leads to a wrong recall.

Efforts have been made to address the segmentation problem;
in particular, many models of oscillatory associative memory
have been proposed to achieve the recall of multiple patterns [8],
[18], [30], [42] (for a nonoscillatory example see [19]). Com-
pared to traditional associative memory based on attractor dy-
namics, oscillator networks are based on limit-cycle dynamics
and introduce an additional degree of freedom—time. In such
networks, one pattern is represented by a synchronous group of
oscillators and different patterns are represented by oscillator
groups that desynchronize from one another [36], [37]. Thus,
within a period of oscillation, multiple patterns alternate and
take turns to be activated. Although oscillatory dynamics offers
an elegant representation for the result of segmentation, the per-
formance of oscillatory associative memory is limited to very
simple stimuli. A major reason is the alignment problem; mul-
tiple patterns need to be presented so that each is aligned with
the corresponding stored template. This requirement leads to
double predicaments. First, one should not control the spatial
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Fig. 2. Superimposed array of the four binary patterns corresponding to
numerals “0” through “3.”

arrangement among patterns; indeed, there are unlimited ways
of arranging a fixed number of patterns. Second, such memory
models can recognize a superposition of patterns that is impos-
sible for our visual system. This is illustrated in Fig. 2, where
a superposition of four binary pixel arrays corresponding to the
numerals “0” to “3” is shown. We are hard pressed to recognize
the scene, whereas such superpositions are often used to test
segmentation of associative memory. This “super-performance”
results from the failure of taking into account that objects in the
real world are opague in general and in three-dimensional (3-D)
space, occlusion among the objects makes it impossible to su-
perpose objects in the way shown in Fig. 2.

A more promising line of research separates segmenta-
tion from recognition and tackles on segmentation directly.
Grossberg and Wyse [6] proposed a model for segmentation
based on contour detection and subsequent region filling-in.
Wang and Terman [44] proposed the use of locally excitatory
globally inhibitory oscillator network (LEGION) for image
segmentation, which is based on synchrony within each block
of neural oscillators representing pixels that likely belong to the
same object and desynchrony between the blocks. Also, Yen
and Finkel [46] used oscillator networks for extracting salient
contours. In these networks, segmentation is based on primitive
Gestalt rules such as proximity and pixel/orientation similarity
and there is no involvement of recognition. Image segmentation
has been, for a long time, a major topic in computer vision and
image processing and a variety of computer algorithms have
been proposed [16], [31]. Despite a lot of effort, the segmen-
tation problem eludes a general solution [41]. It has become
clear that there are limitations to bottom-up segmentation
based only on primitive grouping rules such as proximity and
local similarity. It is well documented that prior knowledge
and recognition influence the way human subjects parse a
scene [2], [23] and a complete solution to segmentation would
require an integration of bottom-up, primitive segmentation and
top-down, knowledge driven segmentation. Little investigation,
within neural networks or beyond, has been targeted to such an
integration (see also [41]).

Motivated by the preceding observations, this paper takes
an integrated approach to addressing the scene-analysis
problem; namely, by integrating primitive segmentation and
memory-based segmentation. The resulting model is a mul-
tistage system encompassing initial primitive segmentation,
multimodule associative memory and short-term memory

(STM) that allows for interaction between multiple recalled
patterns. Underlying the multistage model is a phase space rep-
resentation, whereby different patterns attain different phases
or occur at different times. Our model has been evaluated using
a systematic database of 3-D line drawing objects that are
arranged in an arbitrary fashion and so can occlude one another.
With these test scenes, a number of conceptual issues are ex-
posed and addressed, including alignment, pattern completion
and interaction, and further grouping and segmentation based
on memory recall. Overall, our system successfully resolves
a number of key issues in scene analysis and significantly
enhances the scene-analysis ability of neural networks.

The rest of the paper is organized as follows. Section II intro-
duces the architecture and gives an overview of the system, the
detailed description of which is given in Section III. Section IV
provides simulation results and further discussions are given in
Section V.

II. NETWORK ARCHITECTURE ANDMOTIVATION

Because primitive segmentation can organize a scene into
structures, or objects, based on very general principles such as
proximity and local similarity, for scene analysis it is important
to perform primitive segmentation first and have recognition
operate on structured objects rather than pixels directly. This
computational strategy is sensible for the following two rea-
sons. First, natural scenes are structured and our perceptual
system normally responds to structured objects, not pixels.
Second, structured objects can be much easier to analyze
computationally than unstructured ones. In contrast, stored
patterns in most associative memory models are random bit
strings rather than structured objects.

Fig. 3 shows the network architecture for our model and its
flow of computation is as follows. An input image is first pro-
cessed by a segmentation layer and its results are fed to the
associative memory layer which consists of multiple memory
modules. The memory layer is fed to an STM layer, where in-
teraction takes place between multiple recalled patterns from
the memory. The STM layer also feeds back to the segmenta-
tion layer for refining the results of primitive segmentation, i.e.,
to perform further grouping and segmentation. It is the STM
layer that embodies the result of scene analysis. We note that
terms like STM1 have different meanings in different commu-
nities and what they mean here will become clear in Section III.

Fig. 4 shows a simple example of a scene that our system is
proposed to deal with. There are two objects: the pyramid-like
object is at the front and it partially occludes the cube-like ob-
ject. The task of primitive segmentation, ideally, is to group
black pixels into connected contours and segment the contours
that belong to different objects. It is well-known that T-junc-
tions play a critical role in separating occluding contours from
occluded contours [22]. Thus, we apply a T-junction detection
step to the input image and its results are utilized in primitive
segmentation.

1More specifically, the use of STM in this paper is not intended to be ex-
planatory from the cognitive perspective. Rather it corresponds to a distinct
stage of computation that processes and temporarily holds recall results from
the memory layer.
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Fig. 3. Architecture of the scene-analysis system, which is composed of the segmentation layer, the memory layer, and the STM layer. Arrowheads indicate
directions of network connection.

We employ a LEGION network for primitive segmentation
because of its ability to segment a variety of real images (e.g.,
[28]) and the oscillatory correlation representation it realizes. In
oscillatory correlation, a segment (structure) is represented by a
synchronized oscillator group and different segments are repre-
sented by desynchronized groups [33], [37]. Because relaxation
oscillators are the building blocks for LEGION, only one seg-
ment is active at any time from the segmentation layer and this
greatly facilitates a solution to the alignment problem.

An active segment, which is a contour pattern in this study,
inputs simultaneously to the multiple modules in the memory
layer, as shown in Fig. 3. Each memory pattern is stored in
a separate module through a specific coupling between units.
Separate modules are used for different patterns in order to
avoid difficulties with overlapping storage as well as with
arbitrary spatial arrangements among overlapping patterns
that are inevitably introduced when multiple patterns are first
stored. There are two potential losses with such a design: lack
of useful interaction between memory patterns and higher

storage costs in terms of units and connections. As explained
below, the first loss is compensated for with the inclusion of
the STM layer. The second loss is largely eliminated by using a
locally coupled network for each module instead of commonly
used all-to-all connections. Locally connected networks can
be used for storing patterns because objects used in our study
and natural objects in general, are all connected patterns.
When a pattern is stored in a module, its center of gravity is
calculated—easily done in a neural network representation.
Meanwhile, when an active pattern from the segmentation
layer feeds to the memory layer, the center of gravity of the
active pattern is also calculated and it is used to align with the
center of gravity of a stored pattern. This is how the alignment
problem is addressed in our model. However, an active pattern
of the segmentation layer may not always correspond to a
whole object; e.g., the two parts of the cube-like object in Fig. 4
would be segmented apart and each be treated as a separate
segment by the segmentation layer. Thus, a shifting operation
is also carried out when an active pattern of the segmentation
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Fig. 4. Example scene that consists of two patterns: a pyramid and a cube (the
latter occluding the former).

layer feeds to the memory layer. Such shifting starts from the
center of gravity and gradually extends away from the center.

The STM layer plays a critical role in achieving
memory-based grouping and segmentation. This layer re-
ceives input from the memory layer. In the case of successful
memory recall, the recalled pattern imprints on the STM layer.
If multiple recalls result from the memory layer, the recalled
patterns with proper position adjustment then interact in STM,
resulting in a common part. The activated pattern in the STM
layer then projects to the segmentation layer (see Fig. 3). The
projection from the STM layer to the segmentation layer serves
to further group separate segments or segment a single segment
in the segmentation layer. Note that the STM layer embodies
the final outcome of scene analysis in our model.

III. M ODEL DEFINITION

Before we define each component in Fig. 3 mathematically,
let us describe a cycle of computation and the role of each com-
ponent. When an input scene, generally consisting of multiple
objects with occlusions, is presented to the segmentation layer
T-junction detection first operates on the scene. The result of
T-junction detection is used to sever connections between the
two branches of a T-junction. Afterwards, LEGION dynamics
ensures that only oscillators in the segmentation layer corre-
sponding to connected components of the input scene are syn-
chronized and different segments are active at different times.
An active segment from the segmentation layer is then fed to all
the modules of the memory layer, within each of which a suc-
cessful recall ensues if the active segment is a proper part of the
stored pattern. All recalled memory patterns input to the STM
layer with position adjustment, where interaction among the re-
calls leads to the activation of a common part. The activated pat-
tern in the STM layer projects down to the segmentation layer
and this top-down input may perform further grouping (and seg-
mentation) by synchronizing different segments of the segmen-
tation layer that are part of the STM pattern. As a result, the
original segment in the segmentation layer may recruit other os-
cillators of the layer to form a larger segment. The following de-
sign ensures that the recurrent system of Fig. 3 stabilizes quickly
after a segment first emerges from the segmentation layer. This
stable activity continues until the segment becomes inactive and
another one active, as oscillatory dynamics in the segmentation
layer proceeds. After a few oscillation periods, the oscillatory
activity in the entire system stabilizes and the result of scene
analysis is embodied in the alternating activity of the STM layer.

A. Segmentation Layer

The segmentation layer is defined as a standard LEGION
array. Before we specify LEGION dynamics, let us discuss
T-junction detection. Due to its importance in organizing 3-D
surfaces in a scene, T-junction detection has been studied
previously [14], [25]. Given that we deal with 3-D line drawing
patterns as illustrated in Fig. 4, we propose the following local
and parallel algorithm that efficiently performs T-junction
detection in this situation. It is worth noting that some of the
ideas extend to more general scenarios, such as curvilinear
junctions.

For T-junction detection, we conduct a local topology anal-
ysis based on the assumption that lines are one-pixel wide. Ob-
serve that a typical T-junction has three branches, two of which
fit a smooth contour.

Algorithm for T-junction detection for 3-D
line-drawing scenes (cf. Fig. 5 ):
1. Identify plausible junction
pixels by checking the number of
pixels in the eight-nearest neigh-
borhood of a pixel. If the number is
greater than 2, the pixel is marked as
a plausible junction point.

2. Group connected plausible junc-
tion points into junction clusters, by
iteratively expanding a cluster to ad-
jacent junction points. {This step is
needed due to finite resolution of a
line.}

3. For each junction cluster, detect
its number of adjacent pixels, called
end points. If the number is 3, con-
tinue; otherwise, no T-junction for
this cluster.

4. Trace each end point away from
the cluster until it meets another
cluster. Estimate a straight line from
the end point to the meeting point. If
the maximum distance of all the traced
pixels to the line is less than 1.2
pixels, then the orientation of the
end point is taken to be the orien-
tation of the line; otherwise back-
track from the meeting point until the
threshold is satisfied.

5. Check if the orientations of any
two end points of a junction cluster
are the same. If so, a T-junction is
found.

Fig. 5 illustrates the algorithm. Fig. 5(a) magnifies a region
around a typical T-junction. A detected junction cluster is shown
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Fig. 5. Example of T-junction detection. (a) Part of an input image with a T-junction. (b) Clusters and end points. Cluster pixels are shown in checker and end
pixels in gray. (c) Detected T-junction and the modified lateral connections. Here, the lateral connections between checker and gray pixels are set to zero and other
connections remain unchanged.

as the group of checker pixels in Fig. 5(b). In this case, the
cluster is found to be a T-junction. As a result, connections be-
tween the pixels belonging to the two branches of a T-junction
are removed in the LEGION network as defined below. In this
case, as shown in Fig. 5(c), the connections between checker
and gray pixels are set to zero due to T-junction detection.

Each oscillator in the LEGION network is defined as

(1a)

(1b)

(For more details on the above definition, see [33] and [43]).
Here, represents external stimulation to oscillator, de-
notes the overall coupling to the oscillator, andis the ampli-
tude of a Gaussian noise term. Noise plays a role of assisting
desynchronization in addition to testing the robustness of the
system. The parameteris a small positive number. Thus, if
coupling and noise are ignored andis a constant, (1) defines a
typical relaxation oscillator with two time scales, similar to the
van der Pol oscillator [35] (for a recent review, see [40]). The

-nullcline (i.e.,) is a cubic function and the-nullcline is a sig-
moid function [see Fig. 6(a)]. If , the two nullclines inter-
sect only at a point along the middle branch of the cubic. This is
shown in Fig. 6(a). In this case, the oscillator produces a stable
limit cycle, which alternates between a phase of relatively high

values and a phase of relatively lowvalues, called theactive
andsilentphases, respectively [see Fig. 6(a)]. These two phases
exhibit near steady-state behavior and correspond to the right
branch and the left branch of the cubic, respectively. In con-
trast, the transition between the two phases takes place rapidly
and it is referred to as jumping. The parameterdetermines
relative times that the limit cycle spends in the two phases—a
larger produces a relatively shorter active phase. If ,
the two nullclines of (1) intersect also at a stable fixed point on
the left branch of the cubic, as shown in Fig. 6(b). In this case,
no oscillation occurs. An oscillator is stimulated if and
unstimulated if . As such, oscillations in (1) are stim-
ulus-dependent. In the segmentation layer, an oscillator is stim-
ulated when its corresponding pixel is on an object boundary
[or black pixels, see Fig. 5(a)] and otherwise unstimulated. The
above oscillator may be interpreted as a model of action poten-

Fig. 6. Behavior of a single relaxation oscillator. (a) A stimulated oscillator.
The bold curve indicates the limit cycle of the oscillator and the arrows indicate
the direction of motion (double arrows indicate jumping). (b) An unstimulated
oscillator, which approaches the stable fixed point. (c) Thex activity of the
oscillator with respect to time. The parameter values are:" = 0:04, � = 9,
� = 0:1, � = 0:02, andI = 0:8.

tial generation, where represents the membrane potential of a
neuron and represents the level of activation of ion channels,
or oscillating bursts of neuronal spikes. Fig. 6(c) depicts typical

activity.
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In (1a), denotes the coupling from other oscillators in the
network as well as inhibition received from global inhibitors

Max

(2)

Here, is the connection weight from oscillatorto and
, the coupling neighborhood of, is a set of eight nearest

neighbors of . equals 1 if and only if bothand are stim-
ulated and they are not on the different branches of a T-junction;
otherwise, equals 0. The symbol stands for the Heavi-
side step function. An oscillator affects its neighbors only when
it is in the active phase, i.e., when itsactivity is positive. In
addition, oscillator receives input from the corresponding unit
of the STM layer, whose activity is denoted by. The weight
of this top-down connection is and this connection, together
with a diffuse top-down inhibition from the STM layer [last term
of (2)], helps to achieve memory-based organization. Note that
for a stimulated oscillator to receive top-down excitation two of
its neighboring oscillators also need to be stimulated and receive
top-down excitation. This condition is introduced to ensure that
the oscillator corresponding to the intersecting pixel of a T-junc-
tion (see Fig. 5) is not recruited by the occluded pattern.is a
threshold, which is always set to 0.5.

There is a pair of inhibitors within the LEGION layer: a fast
inhibitor and a slow inhibitor . In (2), is the weight of
fast inhibition and is defined as

(3)

where if for at least one oscillator and
otherwise. If equals 1, . The parameter

controls how fast reacts to external stimulation and it may
be tuned to change the speed of fast inhibition for computa-
tional use. This fast global inhibition leads to desynchronization
among different oscillator groups, or segments in the segmenta-
tion layer.

The lateral connectivity in the LEGION layer, which em-
bodies the results of T-junction detection, supports primitive
segmentation. Memory-based organization, on the other hand,
relies on top-down input from the STM layer [see (2)]. De-
pending on the oscillatory input from the segmentation layer,
STM activity changes quickly from one pattern to another.
In order to be effective, a top-down input must be able to
modify the phases of relevant oscillators rapidly; in particular,
a top-down input must be able to quickly establish synchrony
among oscillator groups that are currently desynchronous. How
can one achieve this in continuous phase space? The main idea
is to use strong top-down excitation to create a new fixed point
on the right branch of the cubic and have oscillators with large
phase differences approach the fixed point. As a result, when
these oscillators jump down to the left branch of the cubic there
can be a large phase compression. (We skip analytical subtleties
here and instead refer to Terman and Wang [33] for extensive
analysis on phase compression.) This is illustrated in Fig. 7.
Fig. 7(a) shows two oscillators, and , with a large phase
separation. A strong top-down excitation lifts the cubic to a

Fig. 7. Top-down synchronization with large phase separation. The cubics
are thex-nullclines of the oscillators and the sigmoid is they-nullcline.
(a) Synchrony in jumping up betweenO andO is induced by strong top-down
excitation, which creates a stable fixed point on the higher branch of the sigmoid.
(b) Synchrony in jumping down is mediated by slow inhibition.

much higher position and the fixed point thus created is a stable
one, just like the one in Fig. 6(b). Both and approach
the fixed point. Fig. 7(b) shows a later time, when and
are much nearer geometrically. Without further perturbation,
however, and will be trapped at the fixed point. To make
them jump back is the role of the slow inhibitor.

The slow inhibitor in the LEGION layer is stimulated when
any oscillator jumps to the active phase and its activity increases
slowly but decays quickly

(4)

where in the first term signifies slow increase with as a
parameter and the second term realizes fast decay. Slow in-
crease gives time for oscillators with large phase differences to
get near to the fixed point. When exceeds [see (2)], the



260 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002

inhibitor nullifies top-down excitation. When this happens, as
shown in Fig. 7(b), both and jump down to the silent
phase with a much smaller phase difference than when they
started in Fig. 7(a).

B. Memory Layer

The memory layer consists of multiple memory modules,
each of which stores one pattern and is a locally connected
network with global inhibition. This architecture is very sim-
ilar to a standard LEGION network. However, we do not em-
ploy LEGION since, within each module, no multiple recalls
can occur, thus no need for oscillations. A locally coupled net-
work can be used for storage because each stored pattern is by
itself a connected pattern. As mentioned in the previous section,
local connectivity results in substantial reduction of connec-
tions, compared to standard associative memory models with
all-to-all connectivity. Each stored object is a line drawing pat-
tern. Initial storage is simply set so that neighboring units have
a connection strength of 1 if they both belong to the pattern and

1 otherwise.
When there is no external stimulus to a module, the module

stays silent. When a stimulus occurs, the units corresponding
to the stimulus are activated. Activated units that belong to the
stored pattern propagate the activation through local positive
links, whereas activated units that do not belong to the memory
pattern trigger the global inhibitor that in turn shuts off the entire
module. Thus, the global inhibitor makes sure that only a subset
of the units corresponding to the stored pattern can produce a
successful recall. In addition, it is desirable that a recalled pat-
tern does not extend beyond the stimulated regions of the input
scene. In Fig. 4, for example, this means that a recall is consid-
ered unsuccessful if the recalled pattern, when aligned with the
input segment that triggers the recall, extends beyond the areas
occupied by the two objects. This can also be implemented via
the global inhibitor. A successfully recalled pattern projects to
the STM layer.

More specifically, a unit in a memory module is defined
as

(5)

where indicates total input to the unit (superscript indi-
cates the memory layer), defined as

(6)
where , a binary number, represents external input from the
segmentation layer, is the local coupling weight that en-
codes the stored pattern, and denotes the global inhibitor of
the memory module.

The global inhibitor in this layer becomes activated when
at least one unit that does not belong to the stored pattern is
active, or when a unit is active that does not correspond to any

Fig. 8. Example of memory recall. (a) A stored pattern. (b) An input image
shown on the left leads to a recall shown on the right. (c) Another input image
shown on the left leads to a recall shown on the right.

stimulated area of the input scene. Also, the inhibitor plays a
role of resetting when the external input is withdrawn:

(7)

where indicates the activity of a unit that is not involved
in storage and is a threshold set to 0.1. is 1 if the corre-
sponding unit in the segmentation layer belongs to a stimulated
region and 0 otherwise. Thus, the second part within the first
term detects whether a memory unit corresponding to no stimu-
lated area is activated. The third Heaviside function implements
resetting when there is no external stimulation.

Fig. 8 shows an example of memory recall. Fig. 8(a) is a
stored pattern. In Fig. 8(b), an incomplete input but correctly
aligned with the stored pattern is presented. Units that directly
receive the external input are first activated and their activation
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quickly propagates until the entire stored pattern is recalled. The
right side of Fig. 8(b) shows a snapshot of the stable activity of
the memory module after thresholding with[see (8)], whereby
partial pattern completion is achieved successfully. When the
input is withdrawn, the global inhibitor is activated and the net-
work quickly settles to the silent state. Fig. 8(c) shows the same
input pattern but shifted so that it is no longer aligned with the
stored pattern. When it is presented, even though some units re-
ceive direct input, the module remains below the threshold be-
cause of the global inhibition. We point that, although a memory
module does not exhibit translation invariance, the system as a
whole does, as explained in Section III-D.

C. STM Layer

The STM layer computes an input-aligned intersection of re-
called patterns from the memory layer. Given its simple func-
tion, the STM layer does not have lateral connections within the
layer. Specifically, unit is defined as

(8)

where indexes a memory module. The first summation in (8)
represents the corresponding projections from all the memory
modules. These projections are based on locations. The second
summation computes how many memory modules are activated;
a memory module is activated if one of its units is active. This
subtractive and diffuse inhibition ensures that only those STM
units that are stimulated by every activated memory module can
be triggered.

In summary, the STM layer becomes activated when triggered
by the memory layer. Because the memory layer does partial
pattern completion, the active pattern in the STM layer repre-
sents a whole pattern, not a fragment. When multiple patterns
are recalled from different memory modules, the activated pat-
tern in STM corresponds to the input-aligned intersection of
these recalled patterns.

D. Further Notes on Interactions Between Layers

To ensure the stability of the entire network, an active seg-
ment is input to the memory layer only when the segment is
stable; in other words, when all the oscillators of the segment are
in the active phase. This is achieved by a window function pro-
posed by Wang [39] that prevents the projection to the memory
layer when oscillators are either jumping up or down. Also,
to compensate for positional misalignment due to the possi-
bility that an active segment from the segmentation layer is only
part of a pattern, systematic shifting away from the center of
gravity is performed before the segment reaches each individual
memory module. Such shifting might be performed by a hypoth-
esized shifter circuit in the brain [1]. Like the shifter circuit,
feedforward shifts from the segmentation layer to the memory
layer are paired with the feedback shifts from the memory layer
to the STM layer so that the pattern recalled in STM reflects
the position of the input segment. This is illustrated in Fig. 9,

Fig. 9. STM layer performing an intersection of multiple recalled patterns
from the memory layer. Two recalled patterns are a triangle and a parallelogram.
The black pixels denote the common part between the two patterns and it
represents STM activity.

where a part of a triangle pattern in the segmentation layer re-
calls a whole triangle and the recalled triangle is positioned in
the STM with proper alignment with the input segment. In other
words, the position of an input pattern anchors those of recalled
patterns. Only in this way can an appropriate intersection be ap-
plied to multiple recalled patterns. This is again illustrated in
Fig. 9, whereby another pattern—a parallelogram—is recalled
and STM records as a result a common part between the two
objects. Because of the dynamics in memory recall, such inter-
section must contain the input segment as a part and thus at least
as large as the input segment.

From Fig. 9, it may seem desirable that the two objects are
both recalled, instead of their intersection. This would be readily
achieved by introducing oscillations into the STM layer. How-
ever, we consider that, on the whole, intersection is a better
choice because the input is underconstrained when it can yield
multiple recalls. In general, underconstrained input may yield
many “hallucinated” patterns. Imagine seeing black through a
small aperture. This black aperture is consistent with countless
patterns, but it would be perceived as the aperture itself, not
the patterns that are compatible with the aperture. On the other
hand, we acknowledge that, under certain conditions, it may be
more appropriate for an underconstrained input to recall each
of the compatible patterns, particularly if the number of such
patterns is small and when some recalled patterns can trigger
memory-based grouping thus resolving the ambiguity.

From the definition of the system it is clear that only the
segmentation layer generates intrinsic oscillations. Other layers
essentially follow limit-point dynamics. It is worth noting that
driven by oscillations in the LEGION layer both the memory
layer and the STM layer exhibit oscillations too. Such oscil-
lations are driven by oscillating input and they should be dis-
tinguished from intrinsic oscillations in the segmentation layer.
Memory-based organization is carried out through top-down
connections from the STM layer to the LEGION network. These
top-down connections are nonspecific to individual patterns (see
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Fig. 10. Database of 50 line-drawing objects. These objects are stored in the memory layer. These patterns are available online at the anonymous ftp site
“ftp.cis.ohio-state.edu/pub/leon/Liu.”

Fig. 3), but carry only the phase information from the STM layer
to the LEGION network. Top-down organization is both medi-
ated by and embedded in phase. Because of the interaction be-
tween primitive segmentation and memory-based organization,
the system usually takes a number of oscillation cycles to reach
a stable solution.

IV. RESULTS

A. Test Database

To systematically evaluate the performance of our system, we
use a database of 50 3-D line drawing objects. These objects
were created by Stark and Bowyer [32] for 3-D object recogni-
tion. Because we were unable to use their generation program,
we scanned in their objects from the paper and selected 50 from
a total of 101 objects that had reasonable scanning quality. From

the scanned version, we then extracted vertices and reproduced
a line drawing version, which is almost identical to the original.
Fig. 10 shows the 50 discretized line-drawing objects used in
our evaluation. We now provide these objects in both picture
and line-drawing formats online to facilitate use and compar-
ison by other researchers.

For all of the subsequent simulations, each memory module
has units and stores one discretized object (see
Fig. 10). Both the segmentation layer and the STM layer consist
of units.

B. Memory-Based Grouping and Segmentation

The system defined in Section III is implemented and differ-
ential equations are solved using the fourth-order Runge–Kutta
method. The following parameter values are used: ,

, , , , and .
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Fig. 11. Memory-based grouping with the input scene of Fig. 4. (a) Result of
primitive segmentation, which yields three segments shown as three snapshots
of the segmentation layer. As in subsequent figures, some cropping is done to
highlight areas occupied by patterns. (b) Temporal behavior of the segmentation
layer. The top two panels show the combinedx activity for the cube and
the pyramid, respectively. The bottom two panels show the activity for the
fast inhibitor and the slow inhibitor, respectively. A total number of 400 000
integration steps are shown and top-down input is activated at integration
step 160 000. (c) Two snapshots of the STM layer, showing the cube and the
pyramid, respectively.

The following connection weights are used in (2): ,
, , and . The system behavior is

robust for a considerable range of parameter values. Moreover,
the appropriate range of parameter values can be derived from
a singular perturbation analysis as done in [33].

There are two stages of computation: the first stage performs
primitive segmentation based on T-junction detection and LE-
GION dynamics and the second stage performs memory-based
organization. In our simulations, to simplify computation, prim-
itive segmentation is performed first without top-down involve-
ment or slow inhibition. From earlier analysis on LEGION net-
works, it is clear that this stage takes at most as many oscillation
periods as the segmentation capacity [33], [44], which can be
calculated directly [15].

We first demonstrate memory-based grouping in Fig. 11.
Fig. 11(a) shows the result of primitive segmentation from
the segmentation layer, after T-junction detection. Due to
occlusion, the cube is broken into two disconnected segments.

Fig. 11(b) shows the temporal traces of the segmentation
layer. From these traces one can easily tell that the primitive
segmentation stage ends when the slow inhibitor is activated;
this also corresponds to higheractivity shown in the first two
traces. The first segment emerging from the segmentation layer
after the second stage starts is the pyramid, as shown in the
second panel of Fig. 11(b). While it is active, the oscillators
corresponding to the other two segments are silent. This
segment triggers the memory layer and the recalled pattern
that is input to the STM layer is the stored pyramid. After the
first segment jumps down to the silent phase, all the activity in
the memory layer and the STM layer disappears. The second
segment jumping to the active phase is a part of the cube.
This segment recalls the entire cube from the memory layer,
which then enters STM. The retained cube in STM feeds to the
segmentation layer and this top-down input synchronizes the
entire cube on the segmentation layer [see (2)], as shown in the
top panel of Fig. 11(b). Thus, driven by memory, the two parts
of the cube are grouped. Fig. 11(c) shows the instantaneous
activity (snapshot) of the STM layer at two different times,
corresponding, respectively, to when the cube and the pyramid
are active. Note that the units corresponding to the whole cube
are simultaneously active in the STM layer.

Fig. 12 demonstrates how memory helps further segmenta-
tion where primitive segmentation fails due to the failure of
T-junction detection. Fig. 12(a) shows an input image with two
objects, one of which partly occludes another. Fig. 12(b) shows
the result of initial segmentation after T-junction detection. Two
kinds of error occur. First, the two-block platform is segmented
into two segments due to correct T-junction detection. We call it
an error for the following reason even though T-junction detec-
tion does what it is supposed to do. A single object—the plat-
form—is broken into pieces by primitive segmentation, which
fails to perform correct scene analysis if nothing else is done.
Second, due to the arrangement of the two objects, the middle
intersection point between the two objects is hard to detect by
any T-junction detection algorithm. As a result, the two objects
form the same segment. Because the top segment can uniquely
recall the memory pattern of the platform, the activated STM
layer through its top-down projections recruits the lower block
of the platform. As a result, the oscillators corresponding to
the whole platform are synchronized in the segmentation layer.
This is shown in the top panel of Fig. 12(c), which gives the
temporal traces of the segmentation layer. An additional effect
of this is that the combined segment of cube/platform is prop-
erly separated in phase space and after the platform segment
jumps down the nonoccluded part of the cube jumps up. Thus,
driven by memory a wrong segment is further and correctly sep-
arated. Such segmentation then results in the completion of the
whole cube pattern. As shown in Fig. 12(c), the system behaves
correctly afterwards. As in Fig. 11(c), Fig. 12(d) shows two
snapshots of the STM layer, when the cube and the platform
are active, respectively.

C. Systematic Evaluation

With the full database of 50 objects and a large number of
simulations with different scenes composed of these objects, nu-
merically solving the differential equations becomes computa-
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Fig. 12. Memory-based segmentation. (a) An input scene that consists of two
patterns: a platform and a cube, the former occluding the latter. (b) Result of
primitive segmentation, which yields two segments shown as two snapshots of
the segmentation layer. (c) Temporal behavior of the segmentation layer. The
top two panels show the combinedx activity for the platform and the cube,
respectively. The bottom two panels show the activity for the fast inhibitor and
the slow inhibitor, respectively. A total number of 400 000 integration steps
are shown and top-down input is activated at integration step 160 000. (d) Two
snapshots of the STM layer, showing the platform and the cube, respectively.

tionally prohibitive. Thus, we have abstracted a clock-based al-
gorithm that produces equivalent behavior to the original system
and used the algorithm for the following evaluation. The clock
algorithm labels a segment by an integer that increases by 1
every time when an active segment jumps down, except for the
active segment itself, which is labeled “1” when it jumps down
to the silent phase. The segment to jump up next is the one with
the largest label.

In order to systematically test the model’s capability in an-
alyzing various scenes, we compose scenes that are composed
of two to six patterns; these patterns are randomly positioned
and have random depth relations for producing proper occlu-
sion. Given that disconnected parts of an image are readily seg-
mented in the segmentation layer, we require that each test scene
is spatially connected. Note that, even with this stipulation, a
huge number of scenes can be so composed.

One such scene is shown in Fig. 13(a), with four objects: one
table, two chairs, and one recliner. These objects are arranged
in a relatively realistic setting with proper occlusion. Fig. 13(b)
shows the result of primitive segmentation. This stage yields
nine segments, none of which corresponds to a single object.
The result of the integrated analysis by our system is shown in
Fig. 13(c) with four subsequent snapshots of the STM layer.
In this case, all four objects are successfully segmented and
recalled.

Fig. 14 documents the rate of successful analysis with respect
to the number of objects in a scene. Note that each disconnected
component in an input scene is analyzed independently; thus, we
use only connected scenes. We include the case of one object
for comparison purposes, since the system is known to behave
correctly. By a correct analysis we mean that every object is
correctly segmented and recognized by the memory layer. Each
data point in Fig. 14 is derived from 1000 random test trials. The
upper curve shows the result of the integrated system and the
lower curve shows, for comparison, the result of primitive seg-
mentation alone. For scenes with multiple objects, the system
achieves good success rates, which decrease as the number of
objects composing a scene increases. The performance of the
integrated system is much better than that of primitive segmen-
tation alone.

The main reason for analysis errors in the integrated system is
that more line drawings crowd a scene and T-junction detection
tends to produce more errors. Many of such scenes are hard for
humans to discern. Fig. 15(a) shows a typical failure example,
which is composed of four objects: two chairs, one bench, and
one triangle-like wedge. Fig. 15(b) shows the result of primitive
analysis, which yields two segments due to failed T-junction
detection. The failure is mainly caused by accidental alignment
between different objects, which happens from time to time. As
shown in Fig. 15(c), no object is recalled as a result.

Corrupting a scene by adding noisy line drawings does not
disrupt system performance so long as such drawings can be
segmented from the rest of the scene via primitive segmenta-
tion. Even when primitive segmentation fails, memory-based
segmentation can correct many errors (see Fig. 12). Obviously,
there are always scenarios when the system is fooled by such
corruption, which is reflected by the fact that the system per-
formance decreases with more line drawings on a scene. On the
other hand, removing parts of an object on an input scene leads
to a situation similar to that caused by occlusion.

V. DISCUSSION

The system proposed here represents an integrated approach
to scene analysis. When a scene is presented, the system first
performs primitive segmentation using a LEGION layer, which
yields multiple segments in time. As a result, later stages of the
system can concentrate on processing a segment at a time, in-
cluding positional alignment and recognition. This processing
strategy resembles the essential role of visual attention in
human scene analysis [24], [26]. It is well documented that
visual attention selects a part of a scene at a time for further
processing and different parts of a scene are processed through
shifts of attention. Such selection is carried out either overtly
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Fig. 13. Another scene-analysis example. (a) An input scene with four line-drawing objects. (b) Result of primitive segmentation, which yields ninesegments
shown as nine snapshots of the segmentation layer. (c) Four snapshots of the STM layer, showing the four objects resulting from integrated analysis.

through eye movements, or covertly when the eyes stay still
[26]. A critical issue is what attracts attention, locations or
objects? In other words, is attention object-based and loca-
tion-based? This is an unresolved issue in visual psychophysics,

although recent evidence seems to be more supportive of the
object-based view [20], [22] [24]. Our model is consistent with
object-based attention (see also [39]), because the segmentation
layer yields segments that are organized structures. Our model
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Fig. 14. Correct analysis rate with respect to the number of objects in a
connected scene. Each data point is obtained from 1000 randomly generated
connected scenes. The solid line shows the correct percentage of the
integrated system and the dash line shows the correct percentage of primitive
segmentation.

further suggests that “objects” that are attended to result from
primitive segmentation. This is consistent with recent evidence
from studying both healthy subjects and neuropsychological
patients suggesting that attention applies to segments directly
[4]. On the other hand, our model differs from the attention
models of Koch [12] and Wolfe [45]; in these models, selection
is based on winner-take-all competition between various
locations of different activation levels that are determined by
local feature detection and thus corresponds to location-based
attention.

It is interesting to note that attention has a limited capacity
in terms of how many objects can be simultaneously attended
to (“4” is an often cited number for visual attention [26]). The
limited capacity of visual attention is quite compatible with the
notion of a segmentation capacity in LEGION. The latter refers
to that a LEGION network, due to limited temporal resolution,
can segment only a limited number of patterns [44]. This ca-
pacity is closely related to the ratio of an oscillation period to
the interval of an active phase of a single oscillator (cf. Fig. 11).

It is perhaps revealing to contrast the above capacity
mechanism with the capacity theory of the CAPS cognitive
architecture [9], [10]. In CAPS, implemented as a production
system with a working memory, the capacity is determined by
the total amount of activation available in working memory.
Total activation can be divided among different processes
(productions) and newly fired processes may reduce the ac-
tivation levels of current processes in working memory, thus
preventing the total activation from exceeding a threshold.
The main difference between the two capacity mechanisms
is that, in LEGION, capacity results from the time when an
oscillating segment is in the silent phase, the period within
which other segments can reach the active phase. Thus, the
LEGION capacity is an intrinsic property oftime, whereas the
notion of total activation is not. On the other hand, one could
view the LEGION mechanism as a neural realization of the
activation notion in CAPS. Unified treatment of perception,
memory and attention has also been studied previously in

Fig. 15. Example of failed scene-analysis. (a) An input scene with four
line-drawing objects. (b) Result of primitive segmentation, which yields two
segments shown as two snapshots of the segmentation layer. (c) The two
corresponding snapshots of the STM layer, showing no object resulting from
integrated analysis.

symbolic models of cognitive architecture, among which EPIC
[21] and ACT-R/PM [3] are prominent examples. Both EPIC
and ACT-R/PM include a perceptual (and motor) module, but
do not assume an explicit, limited capacity for information pro-
cessing. Rather capacity stems from the demand that multiple
tasks may have to use the same perceptual/motor processes and
thus have to be scheduled. Our system targets at a lower-level
processing than EPIC and ACT-R/PM. For example, the visual
module in those models assumes a format of input that is highly
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processed, including shape and size. In other words, unlike
our system, they do not deal with stimuli at the level of pixels.
On the other hand, the higher level of modeling enables those
systems to explain psychological data, which our model does
not address presently. It would be a fascinating topic for future
research to investigate whether our system possesses similar
explanatory power as those of CAPS, EPIC, and ACT-R/PM.

Although the memory layer stores each pattern in a separate
memory module, our system exhibits context sensitivity through
the pathway from the memory layer to the STM layer. Take for
example a pattern “OSU” that has a part “S.” If “ OSU” is the
only pattern stored, an input “S” recalls the whole pattern of
“OSU.” When there are other stored patterns in the memory that
also have “S” as a part (such as “USC”), the presentation of “S”
recalls only the common part among “OSU” and those stored
patterns. Thus, what is recalled by a particular input depends on
the whole memory, or the rest of the memory is the context for
a specific stored pattern. This context dependency has an inter-
esting effect: when memory becomes larger in size the system
tends to need a larger part to uniquely recall a stored pattern.

Our system can readily distinguish a new pattern from a
stored pattern. When a new pattern is contained in an input
scene, after segmentation there will be a time when this pattern
is active in the segmentation layer while the pattern does
not recall any pattern from the memory layer and thus the
STM layer is totally silent. This time window could provide
an opportunity for the memory layer to store the pattern.
This behavior is different from that of many other associative
memory models (e.g., [7]), which cannot distinguish a novel
input from stored patterns but instead force memory to produce
a recall every time.

It is worth emphasizing that our system performs scene anal-
ysis entirely in phase space, or in time. Primitive segmentation is
carried out by the LEGION network, which yields intrinsic os-
cillations and organizes an input scene into different segments
that correspond to synchronous oscillations. Other parts of the
system exhibit driven oscillations and synchrony because of the
oscillatory input from the segmentation layer. Our phase space
mechanism provides a way to unify bottom-up and top-down
analyses in neural networks.

There is a growing body of neurobiological evidence that
supports synchronous oscillations as a neural mechanism for
binding sensory features into perceptual objects [11], [17], [29].
In addition, recent psychophysical results lend strong support to
the idea that phase relations among sensory features give rise to
perceptual organization [5], [13], [34].

Our system has a number of limitations. Although it pro-
vides a solution to the alignment problem and translation in-
variance, it does not address other forms of invariance in pat-
tern recognition, such as size, rotation, or distortion. To deal
with size and rotation invariance, a promising extension would
allow a systematic way of varying the spatial scale and orien-
tation of a segment from the segmentation layer, in addition
to shifting (see also [1]). Such variation should be limited to
a plausible range. To deal with distortion invariance, the cur-
rent recall method, which yields a successful match only when
a segment is a proper part of a stored pattern, should be ex-
tended so that a substantial match with a stored pattern is suffi-

cient to produce a recall. Other challenging recognition issues,
such as recognizing nonrigid 3-D objects (e.g., a human body)
from two-dimensional views, are clearly beyond the capability
of our exceedingly simple memory system. As acknowledged
earlier, our design of the STM model does not allow a single seg-
ment to recall more than one pattern. On the other hand, visual
perception reveals that there are genuinely ambiguous figures,
where appropriate processing should output multiple interpre-
tations instead of a common subset among these interpretations
[23]. Another limitation occurs when a segment recalls the same
pattern multiple times at different positions. Again in this sit-
uation, the STM layer finds the common part of the multiple
occurrences of the same pattern. If the segment does not recall
any other pattern in the memory layer, the appropriate output
from the STM layer should be just that pattern. These limita-
tions notwithstanding, the issues dealt with in this paper, such as
memory-based grouping and segmentation, must be addressed
in any comprehensive scene-analysis system.

To conclude, we have proposed a scene-analysis network
that integrates primitive segmentation and associative memory,
and the integration is achieved in phase space. When a scene
is presented to the system, it is first segmented by a LEGION
network, which produces alternating segments. At any time,
at most one segment interacts with the memory layer and the
common part from multiple recalls is registered in the STM
layer. Through the top-down projections from STM, the seg-
mentation layer performs further grouping (pattern completion)
and segmentation. As a result, the integrated system exhibits
complete location invariance as well as context sensitivity
in memory recall and handles object occlusion properly,
overcoming several hurdles in neural computing. We have
demonstrated that memory-based organization significantly
improves the scene-analysis performance.
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