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Abstract—Scene analysis is a major aspect of perception
and continues to challenge machine perception. This paper
addresses the scene-analysis problem by integrating a primitive
segmentation stage with a model of associative memory. Our
model is a multistage system that consists of an initial primitive
segmentation stage, a multimodule associative memory, and
a short-term memory (STM) layer. Primitive segmentation is
performed by locally excitatory globally inhibitory oscillator
network (LEGION), which segments the input scene into multiple
parts that correspond to groups of synchronous oscillations. Each
segment triggers memory recall and multiple recalled patterns
then interact with one another in the STM layer. The STM layer
projects to the LEGION network, giving rise to memory-based )
grouping and segmentation. The system achieves scene analysis
entirely in phase space, which provides a unifying mechanism
for both bottom-up analysis and top-down analysis. The model
is evaluated with a systematic set of three-dimensional (3-D) line
drawing objects, which are arranged in an arbitrary fashion to
compose input scenes that allow object occlusion. Memory-based
organization is responsible for a significant improvement in
performance. A number of issues are discussed, including ©
input-anchored alignment, top-down organization, and the role of
STM in producing context sensitivity of memory recall.
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Fig.1. Example of the alignment problem for the Hopfield net. (a) Five binary

patterns, corresponding to digits “1” through “5,” are stored ih0ax 10
Index Terms—Associative memory, grouping, integration, lo- Hopfield net. Standard implementation is followed. (b) An input pattern “4,”

cally excitatory globally inhibitory oscillator network (LEGION), which is perfectly assigned with the stored template of “4,” leads to a perfect

scene analysis, segmentation, short-term memory (STM). recall of the stored “4.” (c) The same input pattern shifted two pixels to the right
' ' does not yield any useful recall.

|. INTRODUCTION patterns in the memory, as shown in Fig. 1(a). Each one of the

UCH of neural network research centers on pattedigits is correctly recalled if an input pattern is the same as one
recognition [27], [38], where the fundamental premisef the stored patternand is perfectly aligned with the stored
is that patterns are presented to the system one at a timepdttern. This is shown in Fig. 1(b) for pattern “4.” However, as
reality, however, such an interface can rarely be taken fehown in Fig. 1(c), the same input that is shifted two pixels to
granted; when one looks around, it is clear that the scene {be right leads to a wrong recall.
image) around us is almost invariably composed of multiple Efforts have been made to address the segmentation problem;
patterns or objects. Many years of study in computer vision particular, many models of oscillatory associative memory
[31] prove that segmenting a scene into meaningful entities foave been proposed to achieve the recall of multiple patterns [8],
subsequent processing (e.g., pattern recognition) is just as Ha&), [30], [42] (for a nonoscillatory example see [19]). Com-
a problem as invariant pattern recognition. In addition to thgared to traditional associative memory based on attractor dy-
segmentation problem, neural network research also faces winatics, oscillator networks are based on limit-cycle dynamics
we call thealignment problemwhich refers to the problem and introduce an additional degree of freedom—time. In such
caused by not aligning an input pattern with a stored pattemetworks, one pattern is represented by a synchronous group of
Take a Hopfield net as an illustration, which stores five-digiscillators and different patterns are represented by oscillator
groups that desynchronize from one another [36], [37]. Thus,
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(STM) that allows for interaction between multiple recalled
patterns. Underlying the multistage model is a phase space rep-
resentation, whereby different patterns attain different phases
or occur at different times. Our model has been evaluated using
a systematic database of 3-D line drawing objects that are
arranged in an arbitrary fashion and so can occlude one another.
With these test scenes, a number of conceptual issues are ex-
posed and addressed, including alignment, pattern completion
and interaction, and further grouping and segmentation based
on memory recall. Overall, our system successfully resolves
Fig. 2. Superimposed array of the four binary patterns corresponding & NUMber of key issues in scene analysis and significantly
numerals “0” through “3.” enhances the scene-analysis ability of neural networks.

The rest of the paper is organized as follows. Section Il intro-
es the architecture and gives an overview of the system, the
ailed description of which is given in Section Ill. Section IV

ovides simulation results and further discussions are given in

ection V.

arrangement among patterns; indeed, there are unlimited w.
of arranging a fixed number of patterns. Second, such mem
models can recognize a superposition of patterns that is imp
sible for our visual system. This is illustrated in Fig. 2, wher
a superposition of four binary pixel arrays corresponding to the

numerals “0” to “3” is shown. We are hard pressed to recognize |l NETWORK ARCHITECTURE ANDMOTIVATION

the scene, whereas such superpositions are often used to tegkcause primitive segmentation can organize a scene into
segmentation of associative memory. This “super-performancgructures, or objects, based on very general principles such as
results from the failure of taking into account that objects in thgroximity and local similarity, for scene analysis it is important
real world are opague in general and in three-dimensional (348) perform primitive segmentation first and have recognition
space, occlusion among the objects makes it impossible to ggerate on structured objects rather than pixels directly. This
perpose objects in the way shown in Fig. 2. computational strategy is sensible for the following two rea-
A more promising line of research separates segmengans. First, natural scenes are structured and our perceptual
tion from recognition and tackles on segmentation directlgystem normally responds to structured objects, not pixels.
Grossberg and Wyse [6] proposed a model for segmentati®acond, structured objects can be much easier to analyze
based on contour detection and subsequent region filling-tamputationally than unstructured ones. In contrast, stored
Wang and Terman [44] proposed the use of locally excitatopatterns in most associative memory models are random bit
globally inhibitory oscillator network (LEGION) for image strings rather than structured objects.
segmentation, which is based on synchrony within each blockFig. 3 shows the network architecture for our model and its
of neural oscillators representing pixels that likely belong to tHeow of computation is as follows. An input image is first pro-
same object and desynchrony between the blocks. Also, Yegssed by a segmentation layer and its results are fed to the
and Finkel [46] used oscillator networks for extracting salie@ssociative memory layer which consists of multiple memory
contours. In these networks, segmentation is based on primitinedules. The memory layer is fed to an STM layer, where in-
Gestalt rules such as proximity and pixel/orientation similariéigraction takes place between multiple recalled patterns from
and there is no involvement of recognition. Image segmentatith't memory. The STM layer also feeds back to the segmenta-
has been, for a long time, a major topic in computer vision ati@n layer for refining the results of primitive segmentation, i.e.,
image processing and a variety of computer algorithms haigeperform further grouping and segmentation. It is the STM
been proposed [16], [31]. Despite a lot of effort, the segmel@yer that embodies the result of scene analysis. We note that
tation problem eludes a general solution [41]. It has becorffms like STM have different meanings in different commu-
clear that there are limitations to bottom-up segmentatid¥fies and what they mean here will become clear in Section Il1.
based only on primitive grouping rules such as proximity and Fig. 4 shows a simple example of a scene that our system is
local similarity. It is well documented that prior knowledgeProposed to deal with. There are two objects: the pyramid-like
and recognition influence the way human subjects parseoBject is at the front and it partially occludes the cube-like ob-
scene [2], [23] and a complete solution to segmentation wouRft: The task of primitive segmentation, ideally, is to group
require an integration of bottom-up, primitive segmentation akdack pixels into connected contours and segment the contours
top-down, knowledge driven segmentation. Little investigatioff)at belong to different objects. It is well-known that T-junc-

within neural networks or beyond, has been targeted to suchtigs play a critical role in separating occluding contours from
integration (see also [41]). occluded contours [22]. Thus, we apply a T-junction detection

Motivated by the preceding observations, this paper takalep to the input image and its results are utilized in primitive

an integrated approach to addressing the scene-analy§igmentation.
problem; namely, by integrating primitive segmentation and

memory_based segmentation. The resulting model is a mu|}More specifically, the use of STM in this paper is not intended to be ex-
lanatory from the cognitive perspective. Rather it corresponds to a distinct

t'Stage system encpmpassmg initial primitive segmentati age of computation that processes and temporarily holds recall results from
multimodule associative memory and short-term memotlye memory layer.
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Fig. 3. Architecture of the scene-analysis system, which is composed of the segmentation layer, the memory layer, and the STM layer. Arrovelteads indic
directions of network connection.

We employ a LEGION network for primitive segmentatiorstorage costs in terms of units and connections. As explained
because of its ability to segment a variety of real images (e.gelow, the first loss is compensated for with the inclusion of
[28]) and the oscillatory correlation representation it realizes. the STM layer. The second loss is largely eliminated by using a
oscillatory correlation, a segment (structure) is represented bigally coupled network for each module instead of commonly
synchronized oscillator group and different segments are repgged all-to-all connections. Locally connected networks can
sented by desynchronized groups [33], [37]. Because relaxatig@ used for storing patterns because objects used in our study
oscillators are the building blocks for LEGION, only one setand natural objects in general, are all connected patterns.
ment is active at any time from the segmentation layer and tijghen a pattern is stored in a module, its center of gravity is
greatly facilitates a solution to the alignment problem. calculated—easily done in a neural network representation.

An active segment, which is a contour pattern in this studyjeanwhile, when an active pattern from the segmentation
inputs simultaneously to the multiple modules in the memofgsyer feeds to the memory layer, the center of gravity of the
layer, as shown in Fig. 3. Each memory pattern is stored &ttive pattern is also calculated and it is used to align with the
a separate module through a specific coupling between unitenter of gravity of a stored pattern. This is how the alignment
Separate modules are used for different patterns in orderpimblem is addressed in our model. However, an active pattern
avoid difficulties with overlapping storage as well as wittof the segmentation layer may not always correspond to a
arbitrary spatial arrangements among overlapping pattemubole object; e.g., the two parts of the cube-like object in Fig. 4
that are inevitably introduced when multiple patterns are firgtould be segmented apart and each be treated as a separate
stored. There are two potential losses with such a design: laggment by the segmentation layer. Thus, a shifting operation
of useful interaction between memory patterns and highisralso carried out when an active pattern of the segmentation
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Fig. 4. Example scene that consists of two patterns: a pyramid and a cube
latter occluding the former).

257

A. Segmentation Layer

The segmentation layer is defined as a standard LEGION
array. Before we specify LEGION dynamics, let us discuss
T-junction detection. Due to its importance in organizing 3-D
surfaces in a scene, T-junction detection has been studied
previously [14], [25]. Given that we deal with 3-D line drawing
grgetterns as illustrated in Fig. 4, we propose the following local

nd parallel algorithm that efficiently performs T-junction

detection in this situation. It is worth noting that some of the

layer feeds to the memory layer. Such shifting starts from tk
center of gravity and gradually extends away from the centerJ.
The STM layer plays a critical role in achieving
memory-based grouping and segmentation. This layer P/
ceives input from the memory layer. In the case of success
memory recall, the recalled pattern imprints on the STM layer.
If multiple recalls result from the memory layer, the recalled
patterns with proper position adjustment then interact in STM,
resulting in a common part. The activated pattern in the STM
layer then projects to the segmentation layer (see Fig. 3). The
projection from the STM layer to the segmentation layer serves

ideas extend to more general scenarios, such as curvilinear
nctions.

For T-junction detection, we conduct a local topology anal-
sis based on the assumption that lines are one-pixel wide. Ob-
ﬁ'rve that a typical T-junction has three branches, two of which

a smooth contour.

I@Igorithm for T-junction detection for 3-D

line-drawing scenes (cf.
1. Identify plausible junction
pixels by checking the number of

Fig. 5 ):

to further group separate segments or segment a single segmentPiX€ls in the eight-nearest neigh-

in the segmentation layer. Note that the STM layer embodies
the final outcome of scene analysis in our model.

I1l. M ODEL DEFINITION

Before we define each component in Fig. 3 mathematically,
let us describe a cycle of computation and the role of each com-
ponent. When an input scene, generally consisting of multiple
objects with occlusions, is presented to the segmentation layer
T-junction detection first operates on the scene. The result of
T-junction detection is used to sever connections between the
two branches of a T-junction. Afterwards, LEGION dynamics
ensures that only oscillators in the segmentation layer corre-
sponding to connected components of the input scene are syn-
chronized and different segments are active at different times.
An active segment from the segmentation layer is then fed to all
the modules of the memory layer, within each of which a suc-
cessful recall ensues if the active segment is a proper part of the
stored pattern. All recalled memory patterns input to the STM
layer with position adjustment, where interaction among the re-
calls leads to the activation of a common part. The activated pat-
tern in the STM layer projects down to the segmentation layer
and this top-down input may perform further grouping (and seg-
mentation) by synchronizing different segments of the segmen-
tation layer that are part of the STM pattern. As a result, the
original segment in the segmentation layer may recruit other os-
cillators of the layer to form a larger segment. The following de-
sign ensures that the recurrent system of Fig. 3 stabilizes quickly
after a segment first emerges from the segmentation layer. This
stable activity continues until the segment becomes inactive and
another one active, as oscillatory dynamics in the segmentation
layer proceeds. After a few oscillation periods, the oscillatory

borhood of a pixel. If the number is
greater than 2, the pixel is marked as
a plausible junction point.

2. Group connected plausible junc-
tion points into junction clusters, by
iteratively expanding a cluster to ad-
jacent junction points. {This step is
needed due to finite resolution of a
line.}

3. For each junction cluster, detect
its number of adjacent pixels, called

end points. If the number is 3, con-

tinue; otherwise, no T-junction for

this cluster.

4. Trace each end point away from
the cluster until it meets another
cluster. Estimate a straight line from
the end point to the meeting point. If
the maximum distance of all the traced
pixels to the line is less than 1.2
pixels, then the orientation of the

end point is taken to be the orien-
tation of the line; otherwise back-
track from the meeting point until the
threshold is satisfied.

5. Check if the orientations of any
two end points of a junction cluster
are the same. If so, a T-junction is
found.

activity in the entire system stabilizes and the result of sceneFig. 5 illustrates the algorithm. Fig. 5(a) magnifies a region
analysis is embodied in the alternating activity of the STM layearound a typical T-junction. A detected junction cluster is shown
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Fig. 5. Example of T-junction detection. (a) Part of an input image with a T-junction. (b) Clusters and end points. Cluster pixels are shown imdrauker a
pixels in gray. (c) Detected T-junction and the modified lateral connections. Here, the lateral connections between checker and gray piretearasedtdther
connections remain unchanged.

-

as the group of checker pixels in Fig. 5(b). In this case, th
cluster is found to be a T-junction. As a result, connections be \x =0 y=0
tween the pixels belonging to the two branches of a T-junctio

are removed in the LEGION network as defined below. In this
case, as shown in Fig. 5(c), the connections between checl

. . K K Silent Active
and gray pixels are set to zero due to T-junction detection. phase 2 phase
Each oscillatog in the LEGION network is defined as 1 \
— -
2 -1 0 1 2\ X

j:i=3a:i—a:?+2—yi+li+5i+p (la)
notes the overall coupling to the oscillator, amés the ampli-
tude of a Gaussian noise term. Noise plays a role of assistir
desynchronization in addition to testing the robustness of tF
van der Pol oscillator [35] (for a recent review, see [40]). The
z-nullcline (i.e.,) is a cubic function and thenulicline is a sig-
moid function [see Fig. 6(a)]. If > 0, the two nullclines inter- 2

time
and it is referred to as jumping. The parametedetermines ©
relative times that the limit cycle spends in the two phases—&g. 6. Behavior of a single relaxation oscillator. (a) A stimulated oscillator.
larger o produces a relatively shorter active phasel I& 0, The bold curve indicates the limit cycle of the oscillator and the arrows indicate
no oscillation occurs. An oscillator is stimulatedif> 0 and 7 = 0.1.p = 0.02,andl = 0.8.
unstimulated if/ < 0. As such, oscillations in (1) are stim-
ulus-dependent. In the segmentation layer, an oscillator is stitial generation, where represents the membrane potential of a

. @; @
i =¢ <a <1 + tanh <ﬁ)) — yz> . (1b) v
system. The parameteris a small positive number. Thus, if
sect only at a point along the middle branch of the cubic. This i 1
shown in Fig. 6(a). In this case, the oscillator produces a stab z
limit cycle, which alternates between a phase of relatively higlg ©
. . <
x values and a phase of relatively lawalues, called thactive =
andsilentphases, respectively [see Fig. 6(a)]. These two phas:
exhibit near steady-state behavior and correspond to the rig 2
the direction of motion (double arrows indicate jumping). (b) An unstimulated
ulated when its corresponding pixel is on an object boundamguron and, represents the level of activation of ion channels,

(For more details on the above definition, see [33] and [43]) //—
Stable fixed point /\
coupling and noise are ignored ahds a constant, (1) defines a
branch and the left branch of the cubic, respectively. In cor
the two nuliclines of (1) intersect also at a stable fixed point q{%cillator, which approaches the stable fixed point. (c) Thactivity of the
[or black pixels, see Fig. 5(a)] and otherwise unstimulated. Tloe oscillating bursts of neuronal spikes. Fig. 6(c) depicts typical

Here, I; represents external stimulation to oscillatotS; de-
\ X
typical relaxation oscillator with two time scales, similar to the
trast, the transition between the two phases takes place rapit
the left branch of the cubic, as shown in Fig. 6(b). In this casescillator with respect to time. The parameter values arez 0.04, « = 9,
above oscillator may be interpreted as a model of action potenactivity.
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In (1a), S; denotes the coupling from other oscillators in the Stable fixed point
network as well as inhibition received from global inhibitors A

|

S; :ManEN(i)WikH(xk) — WfH (Zf — 9)
WL H (ui — 6) (1 — H (2, — 0))

—WH(ZH(uk—H)—9>. 2) i
k
Here, W, is the connection weight from oscillatérto ¢ and
o \
A
\ x

oL

N (%), the coupling neighborhood 6f is a set of eight nearest

neighbors of. W;;, equals 1 if and only if bothh andk are stim- 2

ulated and they are not on the different branches of a T-junction

otherwise,W;;, equals 0. The symbalf stands for the Heavi- 0,

side step function. An oscillator affects its neighbors only when __ ' . —

it is in the active phase, i.e., when itsactivity is positive. In

addition, oscillatot receives input from the corresponding unit

of the STM layer, whose activity is denoted by. The weight

of this top-down connection i/, and this connection, together

with a diffuse top-down inhibition from the STM layer [last term

of (2)], helps to achieve memory-based organization. Note tha

for a stimulated oscillator to receive top-down excitation two of

its neighboring oscillators also need to be stimulated and receivt [

top-down excitation. This condition is introduced to ensure that

the oscillator corresponding to the intersecting pixel of a T-junc-

tion (see Fig. 5) is not recruited by the occluded pattéris.a

threshold, which is always set to 0.5. = 7 1]
There is a pair of inhibitors within the LEGION layer: a fast

inhibitor =y and a slow inhibitor,. In (2), W, is the weight of

fast inhibition andz is defined as

iy = ¢ (00— 27) )

whereo,, = 1 if z; > 6 for at least one oscillator and
0o = 0 otherwise. Ifo, equals 1z — 1. The parametep
controls how fast; reacts to external stimulation and it may ' ' " ' ' ' ‘ \ -
be tuned to change the speed of fast inhibition for computa-
tional use. This fast global inhibition leads to desynchronization (b)
among different oscillator groups, or segments in the segmenta-

~_

a)

Stable fixed point

Slow
inhibition

tion layer. Fig. 7. Top-down synchronization with large phase separation. The cubics
The lateral connectivity in the LEGION layer, which em-are thez-nuliclines of the oscillators and the sigmoid is tgenulicline.
bodies the results of T-junction detection, supports primitiy@) Synchronyinjumping up betweéh, and), is induced by strong top-down
. R excitation, which creates a stable fixed point on the higher branch of the sigmoid.
segmentatlon. Mempry-based organization, on the other hap§synchrony in jumping down is mediated by slow inhibition.
relies on top-down input from the STM layer [see (2)]. De-
g?rrl]\/?lr;%tglri]t thfhgimggtorgiéﬂru;rfé?nmot:: S;?t:riniug:;?:rrﬁuch higher position and the fixed point thus created is a stable
y ges q y e p one, just like the one in Fig. 6(b). Boih; and O, approach
In order to be effective, a top-down input must be able

. X . . . e fixed point. Fig. 7(b) shows a later time, whéqn and O,
modify the phases of relevant oscillators rapidly; in partlcular,re much nearer geometrically. Without further perturbation,

a top-down. input must be able to quickly establish SynChror}%wever,Ol andO- will be trapped at the fixed point. To make
among oscillator groups that are currently desynchronous. HQw

can one achieve this in continuous phase space? The main id €m jump back is the role of the slow inhibitay.
) uous p P Co '%fhe slow inhibitor in the LEGION layer is stimulated when
is to use strong top-down excitation to create a new fixed poip

on the right branch of the cubic and have oscillators with lar aﬁy oscillator jumps to the active phase and its activity increases

phase differences approach the fixed point. As a result, wr%jﬁww but decays quickly

these oscillators jump down to the left branch of the cubic there Gy = e (0o — 25) — (1 — 00) 25 4

can be a large phase compression. (We skip analytical subtleties

here and instead refer to Terman and Wang [33] for extensimberee in the first term signifies slow increase with as a
analysis on phase compression.) This is illustrated in Fig. Jarameter and the second term realizes fast decay. Slow in-
Fig. 7(a) shows two oscillatorg); andO-, with a large phase crease gives time for oscillators with large phase differences to
separation. A strong top-down excitation lifts the cubic to get near to the fixed point. Wher, exceedd [see (2)], the



260 IEEE TRANSACTIONS ON SYSTEMS, MAN AND CYBERNETICS—PART B: CYBERNETICS, VOL. 32, NO. 3, JUNE 2002

inhibitor nullifies top-down excitation. When this happens, a:
shown in Fig. 7(b), bothD; and O5 jump down to the silent
phase with a much smaller phase difference than when th
started in Fig. 7(a).

B. Memory Layer

The memory layer consists of multiple memory modules
each of which stores one pattern and is a locally connect:
network with global inhibition. This architecture is very sim- @
ilar to a standard LEGION network. However, we do not em
ploy LEGION since, within each module, no multiple recalls
can occur, thus no need for oscillations. A locally coupled ne
work can be used for storage because each stored pattern i<
itself a connected pattern. As mentioned in the previous sectic ’<\‘
local connectivity results in substantial reduction of connec
tions, compared to standard associative memory models w
all-to-all connectivity. Each stored object is a line drawing pat
tern. Initial storage is simply set so that neighboring units hav
a connection strength of 1 if they both belong to the pattern ar
—1 otherwise. )

When there is no external stimulus to a module, the modu
stays silent. When a stimulus occurs, the units correspondii
to the stimulus are activated. Activated units that belong to tt
stored pattern propagate the activation through local positi
links, whereas activated units that do not belong to the memo
pattern trigger the global inhibitor that in turn shuts off the entir ’<'\ :>
module. Thus, the global inhibitor makes sure that only a subs
of the units corresponding to the stored pattern can produce
successful recall. In addition, it is desirable that a recalled pe
tern does not extend beyond the stimulated regions of the ing
scene. In Fig. 4, for example, this means that a recall is consi
ered unsuccessful if the recalled pattern, when aligned with tlic ©
input segment that triggers the recall, extends beyond the af?@.ss. Example of memory recall. (a) A stored pattern. (b) An input image
occupied by the two objects. This can also be implemented gi@mwn on the left leads to a recall shown on the right. (c) Another input image
the global inhibitor. A successfully recalled pattern projects f°Wn on the leftleads to a recall shown on the right.
the STM layer.

More specifically, a unitn,; in a memory module is defined stimulated area of the input scene. Also, the inhibitor plays a

as role of resetting when the external input is withdrawn:
m; :Sz]w —m; (5) Zm :Z[(H(m; —9_) —i—H(mz—Q) (1_Rz)]
M indi i i indi-
whereS;* indicates total |npu.t to the unit (superscrijgt indi tmle— ZIZ‘M . (7)
cates the memory layer), defined as -

wherem, indicates the activity of a unit that is not involved

SM=H|[IM+ Z Wi H (my, —0) | — H(zmn—0)  instorage and~ is a threshold set to 0.%; is 1 if the corre-
EEN(3) sponding unit in the segmentation layer belongs to a stimulated
(6) region and 0 otherwise. Thus, the second part within the first
whereZ}, a binary number, represents external input from thgrm detects whether a memory unit corresponding to no stimu-
segmentation layekV;}’ is the local coupling weight that en-|ated area is activated. The third Heaviside function implements

codes the stored pattern, angd denotes the global inhibitor of resetting when there is no external stimulation.

the memory module. Fig. 8 shows an example of memory recall. Fig. 8(a) is a
The global inhibitorz,,, in this layer becomes activated wherstored pattern. In Fig. 8(b), an incomplete input but correctly
at least one unit that does not belong to the stored patterraiigned with the stored pattern is presented. Units that directly
active, or when a unit is active that does not correspond to amceive the external input are first activated and their activation
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quickly propagates until the entire stored pattern is recalled. The
right side of Fig. 8(b) shows a snapshot of the stable activity of
the memory module after thresholding witfsee (8)], whereby
partial pattern completion is achieved successfully. When the
input is withdrawn, the global inhibitor is activated and the net-
work quickly settles to the silent state. Fig. 8(c) shows the same
input pattern but shifted so that it is no longer aligned with the
stored pattern. When it is presented, even though some units re-
ceive direct input, the module remains below the threshold be-
cause of the global inhibition. We point that, although a memory
module does not exhibit translation invariance, the system as a
whole does, as explained in Section IlI-D.

C. STM Layer

The STM layer computes an input-aligned intersection of re-
called patterns from the memory layer. Given its simple func-
tion, the STM layer does not have lateral connections within the
layer. Specifically, units; is defined as Fig. 9. STM layer performing an intersection of multiple recalled patterns

from the memory layer. Two recalled patterns are a triangle and a parallelogram.
The black pixels denote the common part between the two patterns and it

;= H [Z H (mﬁq —6) represents STM activity.
P

_ Z H Z Hm? —0) -0 —w () where a part of a triangle pattern in the segmentation layer re-
- - ! ’ calls a whole triangle and the recalled triangle is positioned in

the STM with proper alignment with the input segment. In other
wherep indexes a memory module. The first summation in (&ords, the position of an input pattern anchors those of recalled
represents the corresponding projections from all the memaytterns. Only in this way can an appropriate intersection be ap-
modules. These projections are based on locations. The secgfigy to multiple recalled patterns. This is again illustrated in
summation computes how many memory modules are activategy 9 whereby another pattern—a parallelogram—is recalled
a memory module is activated if one of its units is active. Thisnhd STM records as a result a common part between the two
subtractive and diffuse inhibition ensures that only those STM)jects. Because of the dynamics in memory recall, such inter-
units that are stimulated by every activated memory module cggction must contain the input segment as a part and thus at least
be triggered. as large as the input segment.

Insummary, the STM layer becomes activated when triggeredrrom Fig. 9, it may seem desirable that the two objects are
by the memory layer. Because the memory layer does parighh recalled, instead of their intersection. This would be readily
pattern completion, the active pattern in the STM layer reprgehieved by introducing oscillations into the STM layer. How-
sents a whole pattern, not a fragment. When multiple patter@iger, we consider that, on the whole, intersection is a better
are recalled from different memory modules, the activated pahoice because the input is underconstrained when it can yield
tern in STM corresponds to the input-aligned intersection gfyitiple recalls. In general, underconstrained input may yield
these recalled patterns. many “hallucinated” patterns. Imagine seeing black through a
small aperture. This black aperture is consistent with countless
patterns, but it would be perceived as the aperture itself, not

To ensure the stability of the entire network, an active setiie patterns that are compatible with the aperture. On the other
ment is input to the memory layer only when the segment fend, we acknowledge that, under certain conditions, it may be
stable; in other words, when all the oscillators of the segment anere appropriate for an underconstrained input to recall each
in the active phase. This is achieved by a window function prof the compatible patterns, particularly if the number of such
posed by Wang [39] that prevents the projection to the memapgtterns is small and when some recalled patterns can trigger
layer when oscillators are either jumping up or down. Alsanemory-based grouping thus resolving the ambiguity.
to compensate for positional misalignment due to the possi-From the definition of the system it is clear that only the
bility that an active segment from the segmentation layer is ordggmentation layer generates intrinsic oscillations. Other layers
part of a pattern, systematic shifting away from the center egsentially follow limit-point dynamics. It is worth noting that
gravity is performed before the segment reaches each individdélen by oscillations in the LEGION layer both the memory
memory module. Such shifting might be performed by a hypottayer and the STM layer exhibit oscillations too. Such oscil-
esized shifter circuit in the brain [1]. Like the shifter circuit)ations are driven by oscillating input and they should be dis-
feedforward shifts from the segmentation layer to the memotipguished from intrinsic oscillations in the segmentation layer.
layer are paired with the feedback shifts from the memory laybtemory-based organization is carried out through top-down
to the STM layer so that the pattern recalled in STM reflectonnections from the STM layer to the LEGION network. These
the position of the input segment. This is illustrated in Fig. 2op-down connections are nonspecific to individual patterns (see

D. Further Notes on Interactions Between Layers
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Fig. 10. Database of 50 line-drawing objects. These objects are stored in the memory layer. These patterns are available online at the anotgmous ftp si
“ftp.cis.ohio-state.edu/pub/leon/Liu.”

Fig. 3), but carry only the phase information from the STM layahe scanned version, we then extracted vertices and reproduced
to the LEGION network. Top-down organization is both media line drawing version, which is almost identical to the original.
ated by and embedded in phase. Because of the interactionfig- 10 shows the 50 discretized line-drawing objects used in
tween primitive segmentation and memory-based organizatianyr evaluation. We now provide these objects in both picture
the system usually takes a number of oscillation cycles to reamtd line-drawing formats online to facilitate use and compar-
a stable solution. ison by other researchers.

For all of the subsequent simulations, each memory module
has256 x 256 units and stores one discretized object (see

Fig. 10). Both the segmentation layer and the STM layer consist
A. Test Database of 512 x 512 units.

To systematically evaluate the performance of our system, we
use a database of 50 3-D line drawing objects. These objeréts
were created by Stark and Bowyer [32] for 3-D object recogni- The system defined in Section Il is implemented and differ-
tion. Because we were unable to use their generation programntial equations are solved using the fourth-order Runge—Kutta
we scanned in their objects from the paper and selected 50 fromathod. The following parameter values are used: 0.02,
atotal of 101 objects that had reasonable scanning quality. Fram= 6.5, 5 = 0.1, p = 0.0005, ¢ = 0.5, andy = 0.375.

IV. RESULTS

Memory-Based Grouping and Segmentation
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Fig. 11(b) shows the temporal traces of the segmentation
’<-} layer. From these traces one can easily tell that the primitive
segmentation stage ends when the slow inhibitor is activated;
S this also corresponds to highemactivity shown in the first two
(a) traces. The first segment emerging from the segmentation layer

after the second stage starts is the pyramid, as shown in the
I second panel of Fig. 11(b). While it is active, the oscillators
Cube °;ﬂm/m/um/\_ﬂ/|_ﬁ/\_ﬁ/ﬁ corresponding to the other two segments are silent. This
3 20000 00000 segment triggers the memory layer and the recalled pattern
that is input to the STM layer is the stored pyramid. After the
s first segment jumps down to the silent phase, all the activity in
) OWM the memory layer and the STM layer disappears. The second
Pyramid T : . segment jumping to the active phase is a part of the cube.
° o ™ This segment recalls the entire cube from the memory layer,
which then enters STM. The retained cube in STM feeds to the
segmentation layer and this top-down input synchronizes the
Fast Inhibitor entire cube on the segmentation layer [see (2)], as shown in the
o 200000 2a0000 top panel of Fig. 11(b). Thus, driven by memory, the two parts
of the cube are grouped. Fig. 11(c) shows the instantaneous
st activity (snapshot) of the STM layer at two different times,
— corresponding, respectively, to when the cube and the pyramid
are active. Note that the units corresponding to the whole cube
are simultaneously active in the STM layer.
(b Fig. 12 demonstrates how memory helps further segmenta-
tion where primitive segmentation fails due to the failure of
T-junction detection. Fig. 12(a) shows an input image with two
objects, one of which partly occludes another. Fig. 12(b) shows
the result of initial segmentation after T-junction detection. Two
kinds of error occur. First, the two-block platform is segmented
© into two segments due to correct T-junction detection. We call it
an error for the following reason even though T-junction detec-
Fig. 11. Memory-based grouping with the input scene of Fig. 4. (a) Resulttibn does what it is supposed to do. A single object—the plat-

primitive segmentation, which yields three segments shown as three snapsmﬁn_is broken into pieces by primitive segmentation which
of the segmentation layer. As in subsequent figures, some cropping is don !

highlight areas occupied by patterns. (b) Temporal behavior of the segmentazaﬁs to perform correct scene analysis if nothing else is done.
layer. The top two panels show the combinedactivity for the cube and Second, due to the arrangement of the two objects, the middle

e i, especiel,The bt 1o gl shol 0 2cua ¢ fversecion point between the two objects s hard o cetectby
integration steps are shown and top-down input is activated at integrat®RY T-junction detection algorithm. As a result, the two objects
step 160000. (c) Two snapshots of the STM layer, showing the cube and fogm the same segment. Because the top segment can uniquely
pyramid, respectively. recall the memory pattern of the platform, the activated STM
layer through its top-down projections recruits the lower block
The following connection weights are used in @);, = 1.75, Of the platform. As a result, the oscillators corresponding to
W; = 1.5, W, = 15.5, andW = 8.5. The system behavior is the whole platform are synchronized in the segmentation layer.
robust for a considerable range of parameter values. MoreovEtis is shown in the top panel of Fig. 12(c), which gives the
the appropriate range of parameter values can be derived frigfporal traces of the segmentation layer. An additional effect
a singular perturbation analysis as done in [33]. of this is that the combined segment of cube/platform is prop-
There are two stages of computation: the first stage perfor@dy separated in phase space and after the platform segment
primitive segmentation based on T-junction detection and LEiMps down the nonoccluded part of the cube jumps up. Thus,
GION dynamics and the second stage performs memory-bagéien by memory a wrong segment is further and correctly sep-
organization. In our simulations, to simplify computation, primaratEd. Such segmentation then results in the completion of the
itive segmentation is performed first without top-down involvewhole cube pattern. As shown in Fig. 12(c), the system behaves
ment or slow inhibition. From earlier analysis on LEGION netcorrectly afterwards. As in Fig. 11(c), Fig. 12(d) shows two
works, itis clear that this stage takes at most as many oscillati®@h@pshots of the STM layer, when the cube and the platform
periods as the segmentation capacity [33], [44], which can BEE active, respectively.
calculated directly [15]. , .
We first demonstrate memory-based grouping in Fig. 1% Systematic Evaluation
Fig. 11(a) shows the result of primitive segmentation from With the full database of 50 objects and a large number of
the segmentation layer, after T-junction detection. Due ®Bimulations with different scenes composed of these objects, nu-
occlusion, the cube is broken into two disconnected segmentgrically solving the differential equations becomes computa-

Slow Inhibitor
-3

E L J
o 200000 400000
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One such scene is shown in Fig. 13(a), with four objects: one
table, two chairs, and one recliner. These objects are arranged
in a relatively realistic setting with proper occlusion. Fig. 13(b)
shows the result of primitive segmentation. This stage yields
nine segments, none of which corresponds to a single object.
The result of the integrated analysis by our system is shown in
Fig. 13(c) with four subsequent snapshots of the STM layer.
In this case, all four objects are successfully segmented and
recalled.

Platform . . Fig. 14 documents the rate of successful analysis with respect

0 200000 400000 to the number of objects in a scene. Note that each disconnected

componentin aninput scene is analyzed independently; thus, we
o use only connected scenes. We include the case of one object

Cube OWM for comparison purposes, since the system is known to behave
at .

. e o correctly. By a correct analysis we mean that every object is

(a)

correctly segmented and recognized by the memory layer. Each
o data pointin Fig. 14 is derived from 1000 random test trials. The
PR WY N Y s e N ¥ WY o B U upper curve shows the result of the integrated system and the
Fast Inhibitor [ . , lower curve shows, for comparison, the result of primitive seg-
° 200000 “oo0e0 mentation alone. For scenes with multiple objects, the system
achieves good success rates, which decrease as the number of
o objects composing a scene increases. The performance of the
Slow Inhibitor ettt integrated system is much better than that of primitive segmen-
& prren yre i tation alone.
The main reason for analysis errors in the integrated system is
© that more line drawings crowd a scene and T-junction detection

tends to produce more errors. Many of such scenes are hard for
humans to discern. Fig. 15(a) shows a typical failure example,
which is composed of four objects: two chairs, one bench, and
one triangle-like wedge. Fig. 15(b) shows the result of primitive
analysis, which yields two segments due to failed T-junction
detection. The failure is mainly caused by accidental alignment
@ between different objects, which happens from time to time. As
shown in Fig. 15(c), no object is recalled as a result.

Fig. 12. Memory-based segmentation. (a) An inpu_t scene that consists of tWOCorrupting a scene by adding noisy line drawings does not
patterns: a platform and a cube, the former occluding the latter. (b) Resultsé)f t t f | hd . b
primitive segmentation, which yields two segments shown as two snapshot Gprupt system performance so long as suc rawings can be

the segmentation layer. (c) Temporal behavior of the segmentation layer. B@gmented from the rest of the scene via primitive segmenta-

top two panels show the combinedactivity for the platform and the cube, tion. Even when primitive segmentation fails, memory-based

respectively. The bottom two panels show the activity for the fast inhibitor and . . .

the slow inhibitor, respectively. A total number of 400000 integration ste&eQmentatlon can correct many errors (see Fig. 12). Obviously,

are shown and top-down input is activated at integration step 160 000. (d) Tiwere are always scenarios when the system is fooled by such

snapshots of the STM layer, showing the platform and the cube, respectivelborruption, which is reflected by the fact that the system per-
formance decreases with more line drawings on a scene. On the

tionally prohibitive. Thus, we have abstracted a clock-based @ther hand, removing parts of an object on an input scene leads
gorithm that produces equivalent behavior to the original systéma situation similar to that caused by occlusion.
and used the algorithm for the following evaluation. The clock
algorithm labels a segment by an integer that increases by 1
every time when an active segment jumps down, except for the
active segment itself, which is labeled “1” when it jumps down The system proposed here represents an integrated approach
to the silent phase. The segment to jump up next is the one wiithscene analysis. When a scene is presented, the system first
the largest label. performs primitive segmentation using a LEGION layer, which

In order to systematically test the model’s capability in anselds multiple segments in time. As a result, later stages of the
alyzing various scenes, we compose scenes that are compaystem can concentrate on processing a segment at a time, in-
of two to six patterns; these patterns are randomly positioneldiding positional alignment and recognition. This processing
and have random depth relations for producing proper occktrategy resembles the essential role of visual attention in
sion. Given that disconnected parts of an image are readily sagman scene analysis [24], [26]. It is well documented that
mented in the segmentation layer, we require that each test sceraal attention selects a part of a scene at a time for further
is spatially connected. Note that, even with this stipulation,@ocessing and different parts of a scene are processed through
huge number of scenes can be so composed. shifts of attention. Such selection is carried out either overtly

V. DISCUSSION
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(a)

(b)

(c)

Fig. 13. Another scene-analysis example. (a) An input scene with four line-drawing objects. (b) Result of primitive segmentation, which yselgsairts
shown as nine snapshots of the segmentation layer. (c) Four snapshots of the STM layer, showing the four objects resulting from integrated analysis.

through eye movements, or covertly when the eyes stay séilthough recent evidence seems to be more supportive of the
[26]. A critical issue is what attracts attention, locations asbject-based view [20], [22] [24]. Our model is consistent with

objects? In other words, is attention object-based and loa#ject-based attention (see also [39]), because the segmentation
tion-based? This is an unresolved issue in visual psychophysiayger yields segments that are organized structures. Our model
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Fig. 14. Correct analysis rate with respect to the number of objects in a
connected scene. Each data point is obtained from 1000 randomly generated
connected scenes. The solid line shows the correct percentage of the
integrated system and the dash line shows the correct percentage of primitive
segmentation.

further suggests that “objects” that are attended to result from
primitive segmentation. This is consistent with recent evidence
from studying both healthy subjects and neuropsychological
patients suggesting that attention applies to segments directly
[4]. On the other hand, our model differs from the attention
models of Koch [12] and Wolfe [45]; in these models, selection
is based on winner-take-all competition between various (b)
locations of different activation levels that are determined by
local feature detection and thus corresponds to location-based
attention.

It is interesting to note that attention has a limited capacity
in terms of how many objects can be simultaneously attended
to (“4” is an often cited number for visual attention [26]). The
limited capacity of visual attention is quite compatible with the
notion of a segmentation capacity in LEGION. The latter refers
to that a LEGION network, due to limited temporal resolution,
can segment only a limited number of patterns [44]. This ca-
pacity is closely related to the ratio of an oscillation period to
the interval of an active phase of a single oscillator (cf. Fig. 11).

It is perhaps revealing to contrast the above capacity
mechanism with the capacity theory of the CAPS cognitive ©
architecture [9], [10]. In CAPS, implemented as a production
system with a working memory, the capacity is determined b _ _ . ,

L . . . g. 15. Example of failed scene-analysis. (a) An input scene with four
the total amount of activation available in Worklng memOW'rne-drawing objects. (b) Result of primitive segmentation, which yields two
Total activation can be divided among different processesgments shown as two snapshots of the segmentation layer. (c) The two
(productions) and newly fired processes may reduce the gpresponding snapshots of the STM layer, showing no object resulting from
. . . integrated analysis.
tivation levels of current processes in working memory, thus
preventing the total activation from exceeding a threshold.

The main difference between the two capacity mechanissgmbolic models of cognitive architecture, among which EPIC

is that, in LEGION, capacity results from the time when aff1] and ACT-R/PM [3] are prominent examples. Both EPIC
oscillating segment is in the silent phase, the period withamd ACT-R/PM include a perceptual (and motor) module, but
which other segments can reach the active phase. Thus, dbenot assume an explicit, limited capacity for information pro-
LEGION capacity is an intrinsic property ¢ifne, whereas the cessing. Rather capacity stems from the demand that multiple
notion of total activation is not. On the other hand, one coutdsks may have to use the same perceptual/motor processes and
view the LEGION mechanism as a neural realization of th@us have to be scheduled. Our system targets at a lower-level
activation notion in CAPS. Unified treatment of perceptiorprocessing than EPIC and ACT-R/PM. For example, the visual
memory and attention has also been studied previously mrodule in those models assumes a format of input that is highly
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processed, including shape and size. In other words, unligient to produce a recall. Other challenging recognition issues,
our system, they do not deal with stimuli at the level of pixelsuch as recognizing nonrigid 3-D objects (e.g., a human body)
On the other hand, the higher level of modeling enables thdsem two-dimensional views, are clearly beyond the capability

systems to explain psychological data, which our model doesour exceedingly simple memory system. As acknowledged
not address presently. It would be a fascinating topic for futuearlier, our design of the STM model does not allow a single seg-
research to investigate whether our system possesses sinmilant to recall more than one pattern. On the other hand, visual
explanatory power as those of CAPS, EPIC, and ACT-R/PM perception reveals that there are genuinely ambiguous figures,

Although the memory layer stores each pattern in a separatieere appropriate processing should output multiple interpre-
memory module, our system exhibits context sensitivity througations instead of a common subset among these interpretations
the pathway from the memory layer to the STM layer. Take f¢23]. Another limitation occurs when a segment recalls the same
example a patternOSU' that has a partS” If “* OSU is the pattern multiple times at different positions. Again in this sit-
only pattern stored, an inpuSS® recalls the whole pattern of uation, the STM layer finds the common part of the multiple
“OSU” When there are other stored patterns in the memory thatcurrences of the same pattern. If the segment does not recall
also have S’ as a part (such adJSC), the presentation ofS'  any other pattern in the memory layer, the appropriate output
recalls only the common part amon@®SU’ and those stored from the STM layer should be just that pattern. These limita-
patterns. Thus, what is recalled by a particular input dependst@ms notwithstanding, the issues dealt with in this paper, such as
the whole memory, or the rest of the memory is the context faremory-based grouping and segmentation, must be addressed
a specific stored pattern. This context dependency has an inierany comprehensive scene-analysis system.
esting effect: when memory becomes larger in size the systenTo conclude, we have proposed a scene-analysis network
tends to need a larger part to uniquely recall a stored patternthat integrates primitive segmentation and associative memory,

Our system can readily distinguish a new pattern from a&nd the integration is achieved in phase space. When a scene
stored pattern. When a new pattern is contained in an inpsitpresented to the system, it is first segmented by a LEGION
scene, after segmentation there will be a time when this pattéetwork, which produces alternating segments. At any time,
is active in the segmentation layer while the pattern doas most one segment interacts with the memory layer and the
not recall any pattern from the memory layer and thus t@mmon part from multiple recalls is registered in the STM
STM layer is totally silent. This time window could providelayer. Through the top-down projections from STM, the seg-
an opportunity for the memory layer to store the pattermentation layer performs further grouping (pattern completion)
This behavior is different from that of many other associativend segmentation. As a result, the integrated system exhibits
memory models (e.g., [7]), which cannot distinguish a novebmplete location invariance as well as context sensitivity
input from stored patterns but instead force memory to produite memory recall and handles object occlusion properly,
a recall every time. overcoming several hurdles in neural computing. We have

It is worth emphasizing that our system performs scene anéemonstrated that memory-based organization significantly
ysis entirely in phase space, or in time. Primitive segmentatioriigproves the scene-analysis performance.
carried out by the LEGION network, which yields intrinsic os-
cillations and organizes an input scene into different segments ACKNOWLEDGMENT
that correspo.nd t.o synchr onous oscillations. Other parts of theI'he authors thank the three anonymous referees whose com-
system exhibit driven oscillations and synchrony because of the . . :
. : : ments improved the presentation of this paper.
oscillatory input from the segmentation layer. Our phase space
mechanism provides a way to unify bottom-up and top-down
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