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ABSTRACT

Speech segregation, or the cocktail party problem, has proven to be
extremely challenging. While efforts in computational auditory
scene analysis have led to considerable progress in voiced speech
segregation, little attention has been given to unvoiced speech
which lacks harmonic structure and has weaker energy, hence
more susceptible to interference. We describe a novel approach to

address this problem. The segregation process occurs in two stages:

segmentation and grouping. In segmentation, our model
decomposes the input mixture into contiguous time-frequency
segments by analyzing sound onsets and offsets. Grouping of
unvoiced segments is based on Bayesian classification of acoustic-
phonetic features. The proposed model yields very promising
results.

1. INTRODUCTION

Segregation of target speech from its acoustic background, or the
cocktail party problem, is one of the most challenging problems in
signal processing. This problem is especially difficult in the
monaural (one microphone) situation, where one cannot utilize
spatial filtering to separate sounds from different locations.
Various methods, such as spectral subtraction [2] and subspace
analysis [6], have been proposed for monaural speech
enhancement. However, these methods usually make strong
assumptions on acoustic interference and therefore cannot address
the variability of interference in real environments.

On the other hand, human listeners with normal hearing are
capable of dealing with sound intrusions, even in the monaural
condition. According to Bregman, the human auditory system
segregates a target sound from interference through a process
called auditory scene analysis (ASA) [3]. ASA generally takes
place in two stages: segmentation and grouping. In the first stage,
the auditory system decomposes the acoustic mixture into
segments, each of which corresponds to a contiguous time-
frequency (T-F) region and contains sound energy mainly from one
source. In grouping, the auditory system integrates the segments
from the target source to form a target stream. Bregman’s ASA
account has motivated the emerging area of computational ASA
(CASA) study, which aims to achieve the human sound
segregation performance by incorporating ASA principles [4].

There have been many efforts on developing CASA systems
for speech segregation. Most of the previous studies use
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harmonicity as the major organizational cue and have achieved
considerable success in dealing with voiced speech [4]. However,
few studies have dealt with unvoiced speech. Unvoiced speech
segregation is a more difficult problem because of two reasons.
First, unvoiced speech lacks the harmonic cue and is often noise-
like acoustically. Second, sound energy of unvoiced speech is
usually much weaker than that of voiced speech; as a result,
unvoiced speech is more susceptible to interference.

In this paper we describe a monaural CASA system that
segregates unvoiced speech from non-speech interference. This
system extends our previous effort in this direction [11] [13]. Our
system follows the two established stages of ASA: segmentation
and grouping. In segmentation, we generate segments for both
voiced and unvoiced speech using a multiscale analysis of onsets
and offsets of auditory events. In grouping, we detect segments
dominated by the target and group them into the target stream. A
key part of the second stage is Bayesian classification of acoustic-
phonetic features in order to distinguish segments dominated by
unvoiced speech from those dominated by non-speech interference.
The features for classification include segment spectrum and
segment duration.

The remainder of the paper is organized as follows. Sect. 2
addresses the question of how much speech is unvoiced. Sect. 3
describes the details of the proposed system. Sect. 4 presents
evaluation results. Sect. 5 concludes the paper.

2. HOW MUCH SPEECH IS UNVOICED?

For English, unvoiced speech sounds come from the following
consonant categories [14]:

e Stops: /t/, /d/, /p/, b/, /k/, and /g/.

o Fricatives: /s/, /z/, f/, NI, Ifl, 13/, 10/, /8/, and /h/.

o Affricates: /ff/ and /d3/.
Eight among them, i.e. /t/, /p/, /k/, /s/, /I, /f/, /0/, and Af/, are
considered unvoiced. In addition, /h/ may be pronounced either in
the voiced or the unvoiced manner.' Note that an affricate is a stop
followed by a fricative so stops and fricatives are the two main
categories comprising unvoiced speech.

Dewey conducted an extensive analysis of the relative

frequencies of individual phonemes in written English [5] and
concluded that unvoiced sounds account for 21.0% of all

! The TIMIT corpus [8] separates the voiced and unvoiced versions of /h/,
from which we have estimated that 56.0% of /h/ pronunciations are
unvoiced. This ratio is used in our subsequent estimates.
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phonemes. For spoken English, a similar analysis by French,
Carter, and Koenig on 500 telephone conversations containing a
total of about 80,000 words [7] concluded that unvoiced phonemes
account for about 24.0%. Another extensive, phonetically labeled
corpus is the TIMIT, which contains 6,300 sentences read by 630
different speakers from various dialect regions in America [8].
Many of the same sentences in the TIMIT are read by multiple
speakers and there are a total of 2,342 different sentences. We have
performed an analysis of relative phoneme frequencies for distinct
sentences in the TIMIT corpus, and found that unvoiced phonemes
account for 23.1%. Table 1 shows the occurrence percentages of
six phoneme categories from these studies. It is remarkable that
these percentages are quite comparable despite that the fact that
written, read, and conversational speech are different in many ways.
In particular, the total percentages of the six consonant categories
are nearly the same for the three different kinds of speech.

Table 1. Occurrence percentages of six consonant categories

Phoneme types Conversational | Written | TIMIT
Voiced Stop 6.7 6.9 7.9
Unvoiced Stop 15.1 11.9 12.8
Voiced Fricative 7.5 9.5 7.7
Unvoiced Fricative 8.6 8.6 9.8
Voiced Affricate 0.3 0.4 0.6
Unvoiced Affricate 0.3 0.5 0.5
Total 38.5 37.8 39.3

Table 2. Duration percentage of six consonant categories

Phoneme types Conversational | TIMIT
Voiced Stop 5.6 5.2
Unvoiced Stop 16.2 12.9
Voiced Fricative 5.3 5.8
Unvoiced Fricative 9.6 12.0
Voiced Affricate 0.3 0.6
Unvoiced Affricate 0.4 0.7
Total 37.4 37.2

A related question is the relative duration of unvoiced speech in
spoken English. Unfortunately, the reported data on the telephone
conversations in [7] do not contain durational information. To get
an estimate, we use the durations obtained from a phonetically
transcribed subset of the Switchboard corpus [9], which also
consists of phone conservations. The amount of labeled data in [9],
i.e. seventy-two minutes of conversation, is much smaller than that
in [7]. Hence we do not use the labeled Switchboard corpus for
phoneme frequency analysis; instead we insert the median
durations from the transcription to the occurrence frequency data in
[7] to deduce the relative durations of unvoiced sounds. Table 2
shows the resulting duration percentages of six phoneme categories,
along with those from the TIMIT corpus. Once again, the
percentages from the conversational speech are comparable with
those from the read speech. In terms of overall time duration,
unvoiced speech accounts for 26.2% in phone conversations and
25.6% in the TIMIT corpus.

The above two tables show that unvoiced sounds account for
more than 20% of spoken English in terms of both occurrence
frequency and time duration. In addition, voiced stops, fricatives,
and affricates are often not totally voiced Therefore, unvoiced
speech may occur more than suggested by the data shown above.
Unvoiced consonants provide crucial information for speech
recognition.

3. MODEL DESCRIPTION

Our model for unvoiced speech segregation first decomposes the
input signal into T-F units, each corresponding to a bandpass filter
response within a time frame. It then segregates unvoiced speech in
two stages: segmentation and grouping. Specifically, the input
signal is decomposed in the frequency domain with a 128-channel
gammatone filterbank [15] with center frequency ranging from 50
Hz to 8 kHz. The filtered signal is further divided into 20-ms
frames with 50% overlapping between neighboring frames.

The computational goal of our system is to identify the ideal
binary mask [16], which equals 1 for all the T-F units that contain
more target energy than interference energy and 0 for all the other
units. With a binary T-F mask, one can resynthesize target speech
by retaining the signals within T-F units labeled 1 and rejecting
others. For more discussion of this computational goal, see [16].
As an example, Fig. 1(a) shows a male utterance, “He then offered
his own estimate of the weather, which was unenthusiastic,” and
Fig. 1(b) shows a mixture of this utterance and crowd noise from a
playground. Figs. 1(c) and 1(d) show, respectively, the ideal binary
mask for this mixture and the corresponding resynthesized target,
which is very similar to the clean utterance in Fig. 1(a).

3.1 Segmentation

We segment the input signal via a multiscale analysis of event
onsets and offsets. Onset and offset are important ASA cues [3],
corresponding to sudden intensity increases and decreases. For this
we apply the system described in [11]. First, the intensity of each
gammatone filter output is smoothed to different degrees. The
smoothing process reduces the intensity fluctuations that do not
correspond to actual onsets and offsets. The degree of smoothing is
referred to as the scale and a larger scale yields a smoother output.
Second, at each scale, the system marks the peaks and valleys of
the first-order derivative of the smoothed intensity as onsets and
offsets. Close onsets and offsets at adjacent frequency channels are
connected into onset and offset fronts. The system then matches
individual onset and offset fronts to form segments. Finally, the
system performs multiscale integration from the largest scale to the
smallest scale in an iterative manner. More specifically, at each
scale, the system first locates more accurate boundaries for the
segments obtained at a larger scale. Then, it forms new segments
outside the existing segments.

Fig. 1(e) shows the bounding contours of the obtained
segments for the aforementioned mixture of speech and crowd
noise. Compared with Fig. 1(c), the computed segments cover
most speech-dominant regions, including those dominated by
unvoiced speech. On the other hand, some segments corresponding
to the interference are also formed.

3.2 Grouping

A segment obtained in the previous stage may be dominated by
voiced target, unvoiced target, or interference. Since our goal is to
segregate unvoiced speech, we need to group segments dominated
by unvoiced target. In addition, we also need to group segments
dominated by voiced target since these segments may also include
unvoiced target. Note that an unvoiced sound is often coarticulated
with a neighboring voiced sound, and therefore both sounds may
be put into the same segment during segmentation [11].

We first segregate voiced target using our previous voiced
segregation system [12] with target pitch obtained from a clean
utterance using Praat [1]. The resulting target stream is denoted by
Sr. Then we identify the segments dominated by voiced target
according to this stream. We consider a segment to be dominated
by voiced target if:
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e More than half of its total energy is included in the voiced
time frames, and
e More than half of its energy in the voiced frames is
included in the stream, SIT.
All the segments dominated by voiced target are grouped into the
segregated voiced stream, yielding a new stream, denoted by S7.

For remaining segments, we group the segments dominated by
unvoiced speech by using an algorithm recently proposed for
fricative and affricate segregation [13].

A segment dominated by unvoiced target is likely located at
unvoiced time frames, though it may contain some T-F units at
voiced time frames since stops, fricatives, and affricates often
contain both voiced and unvoiced signal (see Sect. 2). This
property is, however, not shared by many interference-dominated
segments that may have significant energy in voiced frames. Such
segments are removed as follows.

Let Hy be the hypothesis that a segment is dominated by
interference, H; that the segment dominated by a stop, a fricative,
or an affricate, and H, that the segment dominated by any other
phoneme. Let u,, denote a T-F unit at frequency channel ¢ and
frame m, and X(c, m) the intensity of signal in this unit. We label
voiced frames that unlikely contain fricatives, affricates, or stops,
according to the segregated voiced target Sy. A voiced frame m is
so labeled if

P(H, | X7(m)) < P(Hy | X7(m)) M

where X7(m) = [Xr(1, m), X7 (2, m), ..., Xr(N,, m)], N. = 128 is the
total number of channels, and

Xy (eom) = {X (em) if tom < 57 @
0 else

In other words, X7(m) corresponds to the spectrum of SIT at frame
m. A segment is removed if its energy in these labeled frames is
greater than 50% of its total energy or if it occupies more than 5
labeled frames; the latter condition amounts to that the T-F region
of the segment in the labeled frames is longer than 50% of the
average duration of unvoiced phonemes. As a result of this step,
most of the segments dominated by interference are removed. We
find that this step increases the robustness of the system and
greatly reduces the computational burden for the following
segment classification.

We classify the remaining segments as dominated by either
unvoiced speech or interference, on the basis of segment spectrum
and segment duration. Let s be a remaining segment lasting from
frame m, to m,. Let Xy(m) = [X(1, m), X\(2, m), ..., X{(N,, m)] and

Xv = [Xv(ml)’ Xv(ml+l)a seey )(v(mZ)]’ Where
X(c,m) ifu,,es 3)
0 else

Xs(cam) :{

s is classified as dominated by unvoiced speech if:
P(H,| X,)> P(H, | X,) @

As in [13], to simplify the computation of P(H,|X,) and P(H, X)),
we consider the dependence only between consecutive frames and
add the duration as an additional feature. As a result, (4) becomes:

m,—1
P s T P LD X
1 s »Us

m=m

50

Frequency (Hz) Frequency (Hz) Frequency (Hz) Frequency (Hz)

005 115 2 25 3 35
Time (S)

005 115 225 3 35

Time (S)
Fig. 1. Speech segregation. (a) Waveform of a male utterance,
“He then offered his own estimate of the weather, which was
unenthusiastic.” (b) Waveform of the utterance mixed with
crowd noise from a playground at 0 dB SNR. (c) Ideal binary
mask of the mixture. (d) Speech resynthesized from the ideal
binary mask. (e¢) Bounding contours of obtained segments for
the mixture. The background is indicated by gray. (f)
Segregated voiced target, Sy, and (g) the corresponding
resynthesized speech. (h) Final segregated target, S3, and @1)
the corresponding resynthesized speech.

m,—1 ' 1 ' d
>P(Hy| X,(m),d) | | P(Holl)é ET ; ()r;;(;r;v), 5) )

m=m,

where d, is the segment duration.

The probabilities required for calculating (1) and (5) are
obtained from training. A multilayer perception (MLP) with 1
hidden layer and 5 hidden units is trained to distinguish fricatives,
affricates, and stops from other phonemes. Another MLP with the
same configuration is trained to distinguish unvoiced stops,
fricatives, and affricates from interference. The output from the
two MLPs provides the required posterior probabilities.

In [13], Gaussian mixture models (GMMs) are trained to model
different phonemes and interference. The classification is based on
the likelihoods from the GMMs. To deal with the potential
mismatching between the actual interference and the interference
used for training, a confidence measure had to be used. Here,
instead of modeling target and interference separately, we train
MLPs to distinguish between target and interference. Therefore, no
confidence measure is needed.

All the segments classified as unvoiced speech are grouped into
the target stream, yielding the final target stream, denoted by S3.
To illustrate the system performance, Figs. 1(f), 1(g), 1(h), and 1(i)
show SIT, S;, and their corresponding waveform signals,
respectively, for the mixture of speech and crowd noise in Fig.
1(b). As seen from the figure, S7 includes a majority of the
unvoiced target, which is missing from Sy — the segregated voiced
target. At the same time, S; also includes a little more interference.
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4. EVALUATION

We use the training part of the TIMIT corpus for our training
purposes. Twenty utterances from the testing part of the TIMIT
corpus are used for testing. We have collected 100 environmental
intrusions, 90 for training and 10 for testing. These intrusions have
a large variety, including traffic and wind noises (see [11] [13]).

We evaluate the system performance by comparing the
segregated target with the ideal binary mask — the stated
computational goal of our system. Two error measures are used
here: energy loss, which is the relative target energy missed by the
system, and noise residue, which is the relative interference energy
retained by the system [12]. Table 3 shows the percent energy loss
of stops with respect to their total energy, and that of fricatives and
affricatives. Fricatives and affricatives are evaluated together
because they are quite similar and there are not many affricates in
the testing data. Each value represents the average of 200 mixtures.
Our system recoveres about 60% ~ 70% of stops and near 80% of
fricatives and affricates for a range of SNR levels. Most of the stop
energy is recovered by grouping segments dominated by voiced
target, which suggests that stops tend to be coarticulated with
neighboring voiced sounds. Most of the energy from fricatives and
affricates is recovered from the segments dominated by unvoiced
target.

Table 3. Percent energy loss for stops, fricatives, and
affricates. “F&A” refers to fricatives and affricates
St St S;

Stop | F&A | Stop | F&A | Stop | F&A
0 76.1 | 86.5 | 47.9 | 774 | 39.5 | 234
5 759 | 863 | 449 | 77.6 | 36.5 | 22.0
10 7531 86.2 | 403 | 77.6 | 31.2 | 19.1
15 74.7 | 86.1 | 38.1 | 77.5 | 31.8 | 21.9
20 74.5 | 86.0 | 35.1 | 76.9 | 30.2 | 22.8

SNR (dB)

Table 4. Percent total energy loss and total noise residue
Sy S S

Prr | Pve | Per | Pve | Per | P
0 214 | 45 [ 133 | 115 | 92 | 132
5 184 1.6 | 86 | 52 | 64 | 5.8
10 166 05 | 72 | 1.8 | 49 | 2.0
15 1551 02 | 65 | 06 | 43 | 0.7
20 152101 | 58 | 02 | 3.8 | 0.3

SNR (dB)

Table 4 shows the percent energy loss (denoted by Ppg;) and the
percentage of noise residue (denoted by Pyz) for all the speech
sounds in the testing corpus. Again, each value is the average of
200 mixtures. As shown in the table, our overall system groups
much more target energy in comparison with voiced segregation
only. Although the current system also includes a certain amount
of interference into the target stream when segregating unvoiced
speech, the amount is not significant compared to the interference
in original mixtures. By taking advantage of coarticulation between
neighboring phonemes our system recovers significantly more stop
energy than a previous system that segregates stop consonants
using onset detection and feature-based classification, especially at
low SNR levels [10]. In addition, our model recovers nearly 10%
more of fricative/affricate energy than the system described in
[13].

5. CONCLUSION

After an analysis of unvoiced speech, we have described a CASA
study on unvoiced speech segregation. The proposed model
generates segments with a multiscale analysis of event onsets and
offsets. Unvoiced speech with strong coarticulation with
neighboring voiced speech is segregated by grouping segments
dominated by voiced target. Other unvoiced sounds are further
segregated by classifying acoustic-phonetic features of the speech
signal. The model successfully groups most of unvoiced speech
without including much interference.

Our work represents the first systematic effort on unvoiced
speech segregation. Our results, plus earlier CASA successes on
voiced speech segregation, suggest that CASA is a very promising
approach to addressing the cocktail party challenge.
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