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Abstract We present a neurocomputational model for

auditory streaming, which is a prominent phenomenon of

auditory scene analysis. The proposed model represents

auditory scene analysis by oscillatory correlation, where a

perceptual stream corresponds to a synchronized assembly

of neural oscillators and different streams correspond to

desynchronized oscillator assemblies. The underlying neu-

ral architecture is a two-dimensional network of relaxation

oscillators with lateral excitation and global inhibition,

where one dimension represents time and another dimen-

sion frequency. By employing dynamic connections along

the frequency dimension and a random element in global

inhibition, the proposed model produces a temporal

coherence boundary and a fissure boundary that closely

match those from the psychophysical data of auditory

streaming. Several issues are discussed, including how to

represent physical time and how to relate shifting syn-

chronization to auditory attention.

Keywords Auditory streaming � Oscillatory correlation �
Relaxation oscillator � Shifting synchronization �
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Introduction

A listener in a realistic environment is typically exposed to

an acoustic input from different sound sources. Yet the

human listener with normal hearing has no problem in

organizing the elements of the input into their underlying

sources to perceive the acoustic environment. This process

of organization, called auditory scene analysis (ASA), is a

main part of auditory perception which pertains to the per-

ceptual grouping of auditory stimuli into coherent auditory

streams (Bregman 1990). A stream is an auditory object that

corresponds to a sound source in the physical world.

The ability of the auditory system to organize the

acoustic input is exemplified by the fact that a listener is

capable of speech communication in a cocktail party. The

problem that auditory scene analysis must solve in such an

environment is popularly known as the cocktail party

problem, a term coined by Cherry (1953). The sound wave

that impinges on the eardrum is, quoting Helmholtz (1863,

p. 26), ‘‘complicated beyond conception.’’ Despite intense

effort aiming to construct a machine that can solve the

cocktail party problem, ‘‘we are still far from achieving

machine performance that is comparable with that of

human listeners’’ (Wang and Brown 2006, p. 36). ASA is a

truly remarkable accomplishment by the auditory system.

According to Bregman (1990; see also Yost 1997 and

Warren 1999), auditory organization is governed by

mechanisms that are analogous to Gestalt grouping prin-

ciples revealed in visual perception. Major ASA

mechanisms include:

• Proximity in frequency. When listening to two tones of

different frequencies, the tones that are close in

frequency tend to be grouped into the same stream.

• Proximity in time. Similar to proximity in frequency,

tones close in time (fast presentation) are likely to be

grouped into the same stream.

• Common onset and offset. If two sounds have the same

onset time or, to a lesser degree, the same offset time,

they tend to be grouped into one stream.
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• Common amplitude and frequency modulation. Simul-

taneous tones that undergo the same kind of amplitude

or frequency modulation tend to be grouped into the

same stream.

• Familiarity. Components that belong to the same

familiar pattern have the tendency to be grouped.

Of the above mechanisms, proximity in frequency and

time is considered of primary importance in ASA. While

familiarity is viewed as a top-down, schema-based process,

the other ASA mechanisms belong to primitive organiza-

tion which is viewed as a bottom-up, innate process.

According to Bregman (1990), ASA is mainly a primitive

process which is aided by schema-based organization.

Although much of the work in computational auditory

scene analysis (CASA) is driven by performance concerns,

i.e., to develop algorithms for solving the cocktail party

problem (Wang and Brown 2006), this paper presents a

neurocomputational model for auditory scene analysis. In

particular, we are interested in quantitatively simulating a

set of perceptual data pertinent to auditory streaming, or

stream segregation of alternating tones. The auditory

streaming phenomenon occurs when a sequence of alter-

nating high- and low-frequency tones is presented to

listeners (Miller and Heise 1950; Bregman and Campbell

1971; van Noorden 1975). The perceptual organization of

alternating tones critically depends on the frequency dif-

ference between the high tones and the low tones and the

rate of presentation (or time difference). Roughly speaking

(see section ‘‘Auditory streaming phenomenon’’ for

details), larger frequency separation or faster presentation

leads to the segregation of a tone sequence into two streams,

one corresponding to high tones and the other low tones.

Smaller frequency separation or slower presentation results

in a single stream that consists of all high and low tones.

With intermediate levels of frequency separation and pre-

sentation rate, perception is ambiguous: A listener at a time

may organize a tone sequence in either way and can switch

between the two with conscious effort. The psychophysical

data from auditory streaming experiments provide a major

source of empirical evidence for Bregman’s ASA account

of auditory organization (Bregman 1990).

A number of computational models have been proposed

to account for the auditory streaming phenomenon (see

among others Beauvois and Meddis 1991; Wang 1996;

McCabe and Denham 1997; Baird 1997; Brown and Cooke

1998; Norris 2003; Almonte et al. 2005; see Brown and

Wang 2006 for a recent review). Inspired by neurophysi-

ological evidence supporting coherent neural oscillations in

the auditory system (see section ‘‘Biological plausibility’’),

we further develop an oscillatory correlation model that

was originally proposed by Wang (1996). The two most

important aspects of the model are:

• Stream segregation is represented by oscillatory corre-

lation. That is, a stream corresponds to an assembly of

synchronized neural oscillators, and multiple streams

correspond to different oscillator assemblies that are

desynchronized. Hence stream segregation corresponds

to the formation of oscillator assemblies (von der

Malsburg and Schneider 1986). See Wang (2005) for a

comprehensive account of oscillatory correlation theory

for general scene analysis.

• The neural architecture is a two-dimensional LEGION

network, where building blocks are relaxation oscilla-

tors and the connectivity among the oscillators is of two

kinds: Local (lateral) excitation and global inhibition.

The two dimensions correspond to time and frequency.

In particular, physical time is converted into a separate

dimension via a set of systematic delays, corresponding

to a kind of place coding (Helmholtz 1863; Jeffress

1948; Licklider 1951).

In this model, small separation in frequency and time is

translated into strong excitatory connections between

oscillators, which encourage synchronization. On the other

hand, large frequency separation between high and low

tones results in weak excitatory connections that cannot

overcome global inhibition, causing multiple desynchro-

nized assemblies, or segregated streams. On the basis of

this model, Wang (1996) qualitatively simulated the

dependency of auditory streaming on frequency and time

proximity as well as the perceptual phenomena of sequen-

tial capturing and competition among different

organizations.

A major extension of Wang’s model was made by

Norris (2003). With a more accurate implementation of

oscillatory dynamics, Norris introduces a measure of syn-

chrony as the proportion of the time when oscillators are

simultaneously active compared to the time when any is

active. This measure allows him to quantitatively evaluate

Wang’s model on auditory streaming data. His version of

the model gives a reasonable match to human data,

although the match is not close. Also, he extends the ori-

ginal model to simulate two additional aspects of auditory

streaming: Grouping by onset synchrony and stream bias

adaptation, the latter pertaining to the gradual build up and

decay of stream segregation. The extension adds a new set

of excitatory connections among the oscillators whose

corresponding onset detectors are activated simultaneously,

and a time-dependent bias to each oscillator.

In the context of modeling auditory scene analysis by

oscillatory correlation, this study introduces a new mech-

anism of dynamic connectivity to quantitatively simulate

the auditory streaming phenomenon. This mechanism

allows for connection strengths along frequency to

dynamically change with respect to tone repetition time,
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which is the interval between the onset times of two con-

secutive tones in a sequence of alternating high and low

tones. This way of forming dynamic connections, together

with some randomness in global inhibition, enables us to

obtain a close match to a set of quantitative data of auditory

streaming.

The next section describes the auditory streaming phe-

nomenon. Section ‘‘Model description’’ describes the

oscillatory correlation model and its implementation. Sec-

tion ‘‘Simulation results’’ presents simulation results and

comparisons with related models. In Section ‘‘Discussion,’’

we discuss several issues related to our model, including its

biological foundation, the representation of time, and the

shifting synchronization theory for auditory streaming.

Auditory streaming phenomenon

Extending the experiments by Miller and Heise (1950) and

Bregman and Campbell (1971), Van Noorden (1975)

conducted a thorough study on the perception of alternating

tone sequences. In sequences where pure tones follow one

another in quick succession, his experiments show that

listeners do not process each tone individually. Instead, the

listener perceives a sequence of alternating tones with

small frequency separation to be coherent—the entire

sequence forms a single stream—while a sequence of

alternating tones with large frequency separation is per-

ceptually segregated into two separate streams, one for

high tones and one for low tones. The frequency separation

at which a coherent stream segregates into two separate

ones also depends on tone repetition time (TRT), or inter-

onset interval, which is the time interval between the onset

times of two successive tones in a sequence. Furthermore,

depending on TRT, there exists a frequency range in which

the listener can switch between the percept of a coherent

stream and that of segregated streams, using selective

attention.

Based on these observations, van Noorden introduces

two boundaries called temporal coherence boundary

(TCB) and fission boundary (FB), to quantitatively

describe the frequency differences of alternating tones that

cause the listener to perceive one percept over another,

with respect to different TRTs. In his experiments, each

tone in an alternating sequence is 40 ms long, and he varies

TRT between 48 and 200 ms. His experimental results are

summarized in Fig. 1. Given a TRT, for frequency sepa-

ration above the TCB the listener inevitably loses the

perception of temporal coherence and segregates the

alternating tones into two streams, and for frequency sep-

aration below the FB the listener always perceives the

alternating tones as one coherent stream. Between the two

boundaries is the ambiguous region, where the listener can

perceive either one coherent stream or two segregated ones,

and may switch between the two different percepts either

spontaneously or with conscious attentional control. From

the experimental results in Fig. 1, we can see that TCB

shows clear dependence on TRT whereas FB is basically

independent of TRT.

Model description

Our oscillatory correlation model for auditory streaming is

a two-dimensional (2-D) network of relaxation oscillators

where the two dimensions correspond to frequency and

time, respectively. Figure 2 shows the network architec-

ture. The existence of a frequency dimension is well

supported by the anatomy and physiology of the cochlea

and the prevalence of tonotopic organization throughout

the auditory system (Kandel et al. 1991). We assume that

the dimension of time is formed via a systematic set of

delay lines which are arranged so that delays increase from

left to right; the biological plausibility of a separate time

dimension will be discussed in section ‘‘Representation of

time.’’ The network receives time-varying input from an

input layer, which corresponds to auditory peripheral

analysis. To focus on the modeling of the auditory

streaming phenomenon, we have opted for a simplified

version of peripheral analysis, which amounts to the

detection of a specific frequency component at a particular

time (see also Wang 1996; Norris 2003); the reader is

referred to Wang and Brown (2006) for more biologically
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Fig. 1 Psychophysical measurements of auditory streaming by van

Noorden (1975). The data show a temporal coherence boundary and a

fission boundary. This figure is redrawn from McAdams and Bregman

(1979) and Beauvois and Meddis (1996) with original data from van

Noorden (1975). For the alternating-tone sequences used in van

Noorden’s study, the frequency of the lower tone is fixed at 1,000 Hz,

and the frequency of the higher tone is shown on the ordinate
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realistic modeling of auditory periphery. Therefore, an

oscillator in the 2-D network is stimulated by an external

input of a specific frequency at a specific time relative to

the present time. Consistent with physiology and psycho-

physics, the frequency dimension has a logarithmic scale.

On the other hand, the time dimension is assumed to be

linear (see Section ‘‘Representation of time’’ for more

discussion).

Model of a single oscillator

The building block of the proposed model is a single

relaxation oscillator, i, which is defined as interacting pair

of an excitatory unit xi and an inhibitory unit yi (Terman

and Wang 1995):

_xi ¼ f ðxi; yiÞ þ Ii þ Si þ q ð1aÞ
_yi ¼ egðxi; yiÞ ð1bÞ

where f(xi, yi) = 3xi-xi
3 + 2-yi and gðxi; yiÞ ¼ fa½1þ

tanhðxi=bÞ� � yig: Ii denotes external stimulation to the

oscillator and Si represents the overall coupling from the

other oscillators in the network as well as from a global

inhibitor. The symbol q denotes the amplitude of an

intrinsic Gaussian noise term.

The parameter e in (1b) is chosen to be a small, positive

number. As a result, when the coupling and noise terms are

ignored, Eq. 1 defines a typical relaxation oscillator with

two time scales (van der Pol 1926; Wang 1999). The x-

nullcline ( _x ¼ 0) and y-nullcline of (1) are a cubic curve

and a sigmoid, respectively, as shown in Fig. 3a. For

Ii [ 0, the two nullclines intersect only on the middle

branch of the cubic, and (1) gives rise to a stable periodic

orbit. In this case, the oscillator is referred to as enabled.

The periodic solution alternates between an active phase of

high values of x, and a silent phase of low values of x. The

alternation between the two phases takes place on a fast

time scale compared to the behavior within each of the two

phases. For Ii \ 0, the two nullclines intersect on the left

branch of the cubic, and (1) produces a stable fixed point as

shown in Fig. 3b. In this case, no oscillation occurs and the

oscillator is referred to as excitable.

The above analysis shows that whether the state of an

oscillator is enabled or excitable depends solely on external

stimulation. Hence the oscillation is stimulus dependent.

Figure 3c illustrates the typical x activity of an enabled

oscillator, which resembles a spike train. Relaxation

oscillators have been widely used as models of single

neurons, where x is interpreted as the membrane potential

High

Low

Input
Layer

Global Inhibitor

Time

Frequency

Delay Lines

Fig. 2 Model diagram. The proposed model consists of a two-

dimensional oscillator network where the two dimensions correspond

to time and frequency. Each oscillator receives input from its

corresponding frequency channel in the input layer via a delay line.

‘‘High’’ and ‘‘Low’’ indicate frequency. In the network each

oscillator, shown as an open circle, is laterally connected with other

oscillators through excitatory and dynamically changing links. For

clarity the figure only shows lateral connections from one typical

oscillator. In addition, a global inhibitor, shown as the filled circle, is

connected with every oscillator

a

b

c

Fig. 3 Behavior of a single relaxation oscillator. (a) Enabled

oscillator. An enabled oscillator produces a stable periodic orbit

shown in bold with the direction of movement indicated by the

arrows. The periodic solution alternates between an active phase of

relatively high values of x, and a silent phase of relatively low values

of x, and the jumps between the two phases are indicated by double

arrows. (b) Excitable oscillator. In this state, the oscillator produces a

stable fixed point at a low value of x. (c) Temporal activity of an

enabled oscillator. The curve shows the x activity of the oscillator
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of a neuron and y the activation state of ion channels

(FitzHugh 1961; Nagumo et al. 1962; Morris and Lecar

1981). Relaxation oscillations may also be interpreted as

oscillating bursts of neuronal impulses, and in this inter-

pretation x corresponds to the envelope of a burst.

Network connectivity

The network shown in Fig. 2 is composed of identical

relaxation oscillators as defined in Eq. 1. The connectivity

among the oscillators has two components: Lateral exci-

tation and global inhibition. Similar to Wang (1996), lateral

excitation takes on the form of a 2-D Gaussian function; in

other words, the connection strength between two oscilla-

tors falls off exponentially as shown in Fig. 4.

Furthermore, we extend the idea of dynamic connections

(von der Malsburg 1981; Wang 1995) by allowing the

weights of lateral connections to change dynamically,

depending on the state of the network. Examining Fig. 1

reveals that the upper bound of frequency separation to

maintain temporal coherence increases dramatically with

increasing TRT. This suggests a change in the shape of the

Gaussian connectivity with respect to a change in TRT. We

propose to dynamically adapt the width of the Gaussian

function along the frequency dimension so that it widens

with increasing TRT. The increased strengths will serve to

enlarge the frequency range of temporal coherence at large

TRTs. Specifically, Gaussian dynamic connectivity is

described as:

Jij ¼ exp � ðtj � tiÞ2

r2
t

þ ðfj � fiÞ2

r2
f

" #( )
HðxiÞHðxjÞ ð2Þ

where Jij stands for the weight of connection from oscil-

lator j to oscillator i, ti and fi denote the position of i along

the time and frequency axes, respectively, and rt and rf

represent the widths of the Gaussian function along the

time and frequency axis, respectively. The function H(x) is

a Heaviside function used to detect whether oscillator i is in

the active phase, and it equals 1 if x is greater than or equal

to 0 and equals 0 otherwise.

Note that the frequency axis is on a logarithmic scale so

that the frequency subtraction in (2) corresponds to a fre-

quency ratio on a linear frequency scale. Self connectivity

Jii is set to 0. rf represents the dynamic Gaussian width

along the frequency dimension depending on TRT. This

implies that the model needs a map of tone onsets, which

we assume to be available to the network. The idea of

having a map of tone onsets for modeling auditory

streaming has been proposed by Norris (2003). We propose

the following sigmoidal relationship between rf and TRT:

rf ¼ Lf þ
Uf � Lf

1þ exp½�jf ðR� hf Þ�
ð3Þ

where R is a parameter that represents the rhythmic period

of an auditory stimulus, which corresponds to TRT when

simulating the auditory streaming phenomenon. Uf and Lf

denote the upper and lower bounds of the Gaussian width

along the frequency axis, and jf and hf are the parameters

of the sigmoid. We have adopted a curve fitting algorithm

for logistic functions (Cavallini 1993) on a preliminary set

of data points in order to choose appropriate values of the

parameters, and the resulting values are: Uf = 11, Lf =

2.3, jf ¼ 0:03; and hf ¼ 226: In addition, we set rt ¼ 50

which is much larger than Uf. This implies that the con-

nection strengths taper off more slowly along the time

dimension than along the frequency axis, or the connec-

tions along the time axis are relatively stronger.

With this extension, the connection strengths in frequency

now dynamically change according to the stimulus presen-

tation rate. Such short-term weight adaptation is consistent

with physiological evidence relating to rapid task-dependent

plasticity of spectrotemporal receptive fields (Fritz et al.

2003). Another requirement for the weight adaptation is a

map of detected onsets in order to compute R, or TRT in this

paper. Various onset detecting neurons have been identified

in the auditory system (Pickles 1988; Popper and Fay 1992).

Although we equate R with TRT in this study, R representing

the rhythmic period of an external auditory input is a broad

concept that is not limited to modeling auditory streaming.

Jones and colleagues have argued that general auditory

events exhibit rhythmic structure, and auditory streaming is

influenced by rhythmic organization of auditory stimuli

(Jones et al. 1981, 1995). Large and Jones (1999) model the

tracking of auditory events using an oscillator network.
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Fig. 4 Two-dimensional Gaussian lateral connectivity. This pattern
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Effort has also been made to perform onset and offset

detection and employ detected onsets and offsets to segment

real signals (Smith 1994; Hu and Wang 2007).

The role of global inhibition is to desynchronize mul-

tiple oscillator assemblies representing different streams.

The global inhibitor, z, is defined as:

_z ¼ /ðr1 � zÞ: ð4Þ

In this formulation, r1 ¼ 1 if at least one oscillator is in

the active phase, and r1 ¼ 0 otherwise. If none of the

oscillators in the network are in the active phase, the global

inhibitor will not receive any input and z will approach 0

rapidly; in this case, oscillators in the network will not

receive any inhibition. If at least one oscillator is in the

active phase, z will rapidly approach 1, exerting inhibition

on the entire network.

As discussed in the Section ‘‘Auditory streaming phe-

nomenon,’’ between the TCB and the FB, listeners are able

to switch between the percepts of temporal coherence and

segregated streams, either spontaneously or through

attentional control. Depending on TRT, there can be a large

range of frequency differences where ambiguous streaming

occurs (see Fig. 1). Given an oscillator network with fixed

parameters, the network likely approaches stable behavior.

In other words, the oscillator network tends not to show

ambiguous behavior. To model the spontaneity and con-

scious control in auditory streaming, we introduce a

random element in the inhibitory connections of the global

inhibitor, which is well situated to influence the outcome of

oscillator assembly formation. Specifically, we introduce a

new variable, rz, whose activity is randomly generated

depending on the parameter R:

rz ¼ random 0;
Ur

1þ exp½�jrðR� hrÞ�

� �
ð5Þ

Again, we use a sigmoidal function to define the random

activity due to its natural bounds. Ur gives the upper bound

of the random activity. jr and hr denote the parameters for

the sigmoid. The random function indicates a uniform

distribution in a range from 0 to a value specified by the

sigmoid. Following similar logistic curve fitting described

earlier leads to the following parameter values: Ur = 0.27,

jr ¼ 0:03; and hr ¼ 166:

We now define the overall coupling of the oscillator

network to oscillator i, the term Si from Eq. 1, which

combines lateral excitation and global inhibition:

Si ¼
1

1þ
P

j

HðxjÞ
þ c

Ni

2
64

3
75X

j

JijHðxjÞ � ð1þ rzÞWzz ð6Þ

Here Ni denotes the number of the enabled (stimulated)

oscillators that have the same frequency coordinate as that

of oscillator i, i.e., they are on the same row in the model

diagram of Fig. 2. The first term in (6) specifies the amount

of lateral excitation received by i. The weighted sum in the

term allows for the strengths of excitatory connections to

increase as more oscillators are activated. On the other

hand, the increase of the lateral excitation is subject to two

normalizing factors: The total number of active oscillators

and the number of the enabled isofrequency oscillators. c is

a constant that specifies the relative importance of these

two factors. Physiologically speaking, such a form of

normalization is an instance of shunting (divisive) inhibi-

tion (Arbib 2003). The second term in (6) specifies the

connection from the global inhibitor, and Wz is the weight

of the global inhibition. In this study, we set c ¼ 0:2 and

Wz = 0.96.

In Wang (1996), dynamic connection weights were

normalized so that each oscillator has the equal strength

of excitatory connections. Such weight normalization is

introduced primarily for the purpose of facilitating syn-

chronization within an oscillator assembly (Wang 1995;

Terman and Wang 1995). The two normalizing factors

in (6) serve different purposes—the aim here is to reg-

ulate the growth of lateral excitation in an activity-

dependent way.

LEGION dynamics and implementation

The segregation network defined above, with lateral exci-

tation and global inhibition, may be viewed as a LEGION

network; LEGION, introduced by Terman and Wang

(1995; see also Wang and Terman 1995), stands for locally

excitatory globally inhibitory oscillator network. Terman

and Wang (1995) have conducted an extensive analysis of

LEGION dynamics. In particular, LEGION is governed by

the selective gating mechanism, where an enabled oscil-

lator jumping to the active phase rapidly recruits the

oscillators stimulated by the same pattern, while preventing

oscillators representing other patterns from jumping up.

Synchronization within an oscillator assembly—those

stimulated by the same pattern—and desynchronization

among different assemblies are reached rapidly in

LEGION networks. Desynchronized oscillators do not stay

in the active phase simultaneously.

In terms of computer implementation, Terman and

Wang (1995) originally integrate the differential equations

defining LEGION numerically using the standard fourth-

order Runge–Kutta method. The Runge–Kutta method has

a high degree of accuracy but is slow when dealing with a

sizable network. Later, Linsay and Wang (1998) developed

a more specific numerical method for relaxation oscillator

networks. Their method is based on analyzing the charac-

teristic behavior of relaxation oscillations in the singular

12 Cogn Neurodyn (2008) 2:7–19
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limit, thus called the singular limit method. The idea is to

solve the system in the singular limit when it evolves on the

slow time scale, while approximating the system when it

evolves on the fast time scale. The singular limit method

substantially improves the computational efficiency of

LEGION implementation without losing much of numeri-

cal accuracy.

Although the singular limit method makes it possible

to implement a reasonably sized LEGION network, it

still requires significant computation time when dealing

with large-scale networks. Here we adopt an algorith-

mic approximation described in Wang (1996). The

algorithmic steps are given below (see Wang 1996,

p. 427):

• When no oscillator is in the active phase, the one

closest to the jumping point among all enabled

oscillators is selected to jump to the active phase.

• An enabled oscillator jumps to the active phase

immediately if the overall coupling it receives is

positive (cf. Eq. 6).

• The alternation between the active phase and the silent

phase of an oscillator takes one time step only.

• All of the oscillators in the active phase jump down if

no more oscillators can jump up. The situation occurs

when the oscillators of the same assembly have all

jumped up.

This algorithm preserves the essential properties of

assembly formation, i.e., synchronization and desynchro-

nization. However, it is a high-level approximation to the

underlying dynamics, and caution needs to be exercised

when observations are generalized. Also, the original

analysis on LEGION does not treat lateral connections

that are introduced to synchronize multiple connected

oscillator blocks, as used in our model. In this situation,

global inhibition is needed to inhibit not only the oscillators

that do not receive excitatory input from the currently

active oscillators but also those that receive relatively weak

lateral excitation. Nonetheless, Norris (2003) found that

this approximation produces very similar results to those

produced by the numerically accurate, singular limit

method.

Simulation results

As stated earlier, an input stimulus—a sequence of

alternating tones—is represented as a shifting binary

matrix on the 2-D oscillator network shown in Fig. 2,

where a binary element of the matrix indicates the pres-

ence or absence of the stimulus at a particular frequency

and a particular time. The delay lines in the network

provide a form of short-term memory (STM) that keeps a

recent history of external stimulation. In order to relate to

real time, the time difference between two neighboring

isofrequency oscillators is set to 10 ms. This representa-

tion of time is consistent with standard spectrogram and

cochleagram representations where the input waveform is

divided into time frames of typically 10 or 20 ms. The

number of oscillators in a row needs to be large enough

so that a sequence of slowly presented tones can be

adequately represented in the network. To simulate the

data in Fig. 1, we use 600 ms as the length of STM.

Figure 5 shows a typical snapshot of an alternating tone

sequence presented to our model network.

To be consistent with the gamma frequency range (30–

70 Hz) of synchronous oscillations in the brain (Eckhorn

et al. 1988; Gray et al. 1989; Brosch et al. 2002; Fries

et al. 2007), we set the frequency of intrinsic oscillations of

each oscillator to 50 Hz, translating to a period of 20 ms.

With a 10-ms frame shift, this means that an input will be

updated twice by the network during one cycle of execut-

ing the algorithm given in Section ‘‘LEGION dynamics

and implementation.’’ Specifically, the external input to the

network is updated once at the beginning of the first step of

the algorithm and once after the last step, i.e., once before

jumping up and once after jumping down. In the algorithm,

external stimulation enables an oscillator. Therefore,

depending on the input, appropriate oscillators will be

stimulated during each oscillation period.

Quantitative evaluation

We measure the behavior of the proposed model in terms

of oscillator synchrony and desynchrony. To relate the

Time frame

Fr
eq

ue
nc

y

TRT

Fig. 5 Snapshot of an alternating tone sequence presented to the

proposed model. Each oscillator is indicated by a square, and the

tones are indicated by black horizontal bars. The network represents

60 time frames, corresponding to 600 ms. Each tone is 40 ms long

and the tones are presented with the TRT of 100 ms
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network behavior to the psychophysical results shown in

Fig. 1, a metric is needed to measure the degree of auditory

streaming (Norris 2003). As long as external input is

continuously provided, the model will keep on looping

through the four steps given in Section ‘‘LEGION

dynamics and implementation.’’ The x value of an oscil-

lator indicates whether it is in the active phase, or is active.

For each oscillation cycle, or looping through the 4-step

algorithm once, we consider the model in the coherent state

when all of the enabled oscillators are synchronized (i.e.,

simultaneously active) and it in the segregated state when

all of the enabled isofrequency oscillators are synchronized

while oscillators at different rows of the network are de-

synchronized. As described in Section ‘‘Network

connectivity,’’ lateral connection strengths along the time

axis are independent of the TRT and relatively strong. This

ensures that, for the range of TRT considered in this study,

enabled isofrequency oscillators will synchronize. Because

of this, our measure of streaming is simpler than the one

introduced by Norris (2003), which considers cases where

oscillator blocks corresponding to different tones of the

same frequency are not synchronous.

For a particular TRT and frequency separation of an

alternating tone sequence, we run a simulation for a finite

number of iterations through the algorithmic loop. We then

calculate the number of cycles the system is in the coherent

state and the number of cycles the system is the segregated

state. Such numbers are compared with the total number of

simulated cycles. If the system is in the coherent state for at

least 95% of the cycles, we consider the system in the

coherent state for this specific TRT and frequency sepa-

ration. Likewise, if the system is in the segregated state for

at least 95% of the cycles, we consider the system in the

segregated state for the TRT and frequency separation.

Otherwise, the system is considered in the ambiguous state.

In order to let the system stabilize first, we run the algo-

rithm for 10 cycles before collecting the simulation results.

We simulate the system defined in Section ‘‘Model

description’’ using the parameter values given there. In

terms of frequency separation between the high and the low

tones in an alternating tone sequence, we vary the fre-

quency ratio from 1.1 to 4.0 in steps of 0.02. In terms of

TRT, we vary it from 50 to 200 ms in steps of 50 ms. Each

combination of frequency difference and TRT results in a

different simulation. Hence, a total of 584 simulations are

run. In the simulations, the tone duration is fixed at 40 ms

as shown in Fig. 5, which means that each tone stimulates

4 oscillators.

Each simulation is run for 110 loops, corresponding to

2.2 s in real time, and data collection commences after the

first 10 loops. The analysis of the collected data results in a

decision of coherence, segregation, or ambiguity. Then,

simulated fission and temporal coherence boundaries are

calculated by identifying, for each TRT, one boundary

below which all frequency ratios lead to coherence and

another boundary above which all frequency ratios lead to

segregation. Linearly interpolating these boundary points

yields the simulated TCB and FB. The simulation results

are shown in Fig. 6.

A comparison the simulation results in Fig. 6 and the

corresponding data in Fig. 1 shows a close match between

the model outputs and the human data. The simulated

temporal coherence boundary shows the same exponential

increase with TRT, and the simulated fission boundary is

similarly constant with respect to TRT. Although the FB in

Fig. 1 shows a slight increase with decreasing TRT when

TRT is less than 100 ms, this effect is insignificant as van

Noorden observes a slight reverse trend in a different

experiment (see Fig. 2.7, van Noorden 1975). Note that the

data in Fig. 1 represent the average of two listeners, and

individual results can vary considerably (van Noorden

1975).

Comparisons

As mentioned in Section ‘‘Introduction,’’ Wang’s original

model only simulates the streaming phenomenon qualita-

tively. With a measure of synchrony, Norris (2003) has

systematically quantified the output of Wang’s model with

respect of frequency separation and TRT. He finds that the

model with the original set of parameter values produces

the TCB and the FB that qualitatively match those of

human listeners. Furthermore, by choosing different

parameter values that define Gaussian lateral connectivity,

Norris is able to significantly improve the fit to the data, but
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Fig. 6 Simulation results. Simulations are conducted at the tone

repetition times of 50, 100, 150, and 200 ms and frequency ratios

from 1.1 to 4.0. The top curve represents the TCB of the model and

the bottom one represents the FB of the model
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there is still a gap between the simulated TCB and FB and

those shown in Fig. 1. With a new form of dynamic con-

nections and a random element in global inhibition, our

model has essentially closed this gap.

Brown and Cooke (1998) present a different model of

auditory streaming, also based on synchronous oscillations.

They use a more realistic model of auditory periphery and

include an onset map. There is no explicit representation of

external time, and each frequency channel is represented

by a single oscillator described by a sine circle map which

shows a chaotic response. The oscillators representing

different frequencies are fully connected. Different TRTs

and frequency distances trigger different levels of onset

responses, which are used in a weight update rule to pro-

duce different model outputs. They have compared the

model results with the listener results in the study by

Beauvois and Meddis (1991), and obtained a reasonable,

but not close, match. It is unclear how well their model can

reproduce the TCB and the FB in Fig. 1.

Inspired by the rhythmic effects of auditory streaming,

Baird (1997) develops a model using a network of oscil-

lators that keeps track of different rhythms. These

oscillators are synchronized to the salient rhythms of

external stimuli, hence naturally sensitive to TRT (see also

Large and Jones 1999). Oscillations generate rhythmic

expectation, which directs attention to subsequent tones.

Rhythmic attention groups those tones that conform to the

expectation, and deviations from the expectation cause the

formation of a new stream. The evaluation of the model is

qualitative, and it is questionable whether it can simulate

the TCB and the FB. A recent model by Almonte et al.

(2005) approaches the streaming phenomenon differently.

Their model is composed of two dynamical systems. The

first system transforms an input into a neural field, and its

spatiotemporal activity is integrated into an input signal to

the second system that performs dynamical classification.

The output of the classification system is in the form of a

one-stream percept (the coherent state), a two-stream per-

cept (the segregated state), and an ambiguous percept

identified with a bistable state (with two stable fixed

points). Their system has been systematically evaluated

and its results match well to van Noorden’s data. On the

other hand, the complexity of the dynamical systems and

the specificity of the model to alternating tone sequences

make its scalability to general ASA doubtful.

Several other models have been proposed to account for

the auditory streaming phenomenon. Beauvois and Meddis

(1991, 1996) describe a model that achieves streaming

primarily on the basis of peripheral analysis. After pro-

cessing by a bank of auditory filters, an alternating tone

sequence activates two corresponding frequency channels.

Different channels compete and all except the winning

channel reduce their activities. A random bias is built into

each channel to cause the winning channel to switch

between the two channels corresponding to low and high

tones. The model considers the output in the segregated

state if the two corresponding channels show different

levels of activity; otherwise the output is considered to be

in the coherent state. Using this model, Beauvois and

Meddis (1996) are able to obtain a close match with the

TCB and the FB shown in Fig. 1, with the exception that

the model does not yield a TCB when TRT is greater than

190 ms. McCabe and Denham (1997) propose a competi-

tive neural network that includes a foreground layer and a

background layer. These two layers have inhibitory inter-

actions between their frequency channels. In addition, each

layer also includes self-inhibition. Inhibition is graded,

depending on frequency proximity. They have shown that

their model is able to produce streaming effects sensitive to

frequency difference and TRT. In particular, their model

closely fits a set of streaming data from Beauvois and

Meddis (1991), although no direct comparison with the

data in Fig. 1 is made.

In addition to interpreting streaming as oscillatory cor-

relation, our model differs from the above models in an

important way: The representation of time. We use an

explicit time dimension in the form of delay lines, which

keeps a recent history of an acoustic input. Time is

implicitly represented in the above models, either in terms

of the time course of a neuronal response or the period of

rhythmic attention. From an information processing point

of view, we would argue that lacking an explicit repre-

sentation of time limits the generality of such models in

dealing with naturalistic acoustic input such as speech

(Brown and Wang 2006). We will discuss the plausibility

of such a representation in the next section.

Discussion

This study extends the previous oscillation models by Wang

(1996) and Norris (2003). In order to accurately simulate

the temporal coherence boundary and the fission boundary,

we have introduced two mechanisms into oscillator net-

works for auditory streaming. The first is dynamical change

to lateral excitatory connections. Specifically, the strengths

of lateral connections along the frequency axis are depen-

dent on the rhythm of the external input so that faster

rhythms lead to weaker connections in frequency, hence

encouraging segregation. The second mechanism adds a

random element to the weight of global inhibition. This

element produces a stochastic switch between the state of

coherence and the state of segregation within a range of

frequency separation and tone repetition time. With these

mechanisms, our oscillatory correlation model yields a

close fit to the quantitative data of auditory streaming.
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These extensions mainly influence the spread of the

Gaussian connectivity depending on the rhythm of the

input. As a result, our model is expected to exhibit the

other phenomena of auditory streaming simulated in

Wang (1996), i.e., alternating sequences of frequency

modulation tones, sequential capturing and competition

among different organizations, because these phenomena

involve frequency relationships, not temporal relation-

ships, between tones. Grouping by onset synchrony

simulated by Norris (2003) is also expected to hold in our

network with the addition of an onset map assumed in our

network. In addition, our dynamic connections provide a

potential mechanism to account for the well-known effect

of stream bias adaptation, or the gradual build up and

decay of auditory streaming over several seconds. The

current model does not consider the dynamical process of

the weight change in Eq. 3, which must take a certain

amount of time to realize in any physical system. A bias

adaptation effect might then be explained by assuming

strong initial connections that are gradually reduced to the

steady frequency spread of Eq. 3 triggered by the detec-

tion of some external rhythm. Using lateral dynamic

connections as a mechanism to account for stream bias

adaptation is an alternative to Norris’s method which uses

another set of connections between oscillators (Norris

2003).

It is worth noting that the basic oscillatory correlation

architecture of Fig. 2 for auditory segregation has been

extended to deal with segregation of real acoustic sources.

Wang and Brown (1999) introduce a two-layer network of

relaxation oscillators to separate speech from interference,

employing a realistic model of the auditory periphery. The

first oscillator layer separates an auditory scene into a

collection of auditory segments, each corresponding to a

contiguous region on a time-frequency network akin to that

of Fig. 2. The second layer groups the segments from the

first layer into a foreground stream corresponding to target

speech and a background stream corresponding to inter-

ference on the basis of a periodicity analysis. Pichevar and

Rouat (2007) recently propose a related two-layer network

for speech segregation. The input to their network is

auditory features derived from a cochleagram and an

amplitude modulation spectrum. Their first layer is similar

to that in Wang and Brown, but with connections that

reflect harmonic relations. The second layer is one-

dimensional, with each oscillator representing a frequency

channel, with a global inhibitor. The oscillators in the

second layer are fully connected, but the connection

weights are dynamically adjusted according to the temporal

correlation between the activities of different frequency

channels. The output from the second layer gives the

results of separation in terms of synchrony and

desynchrony.

In what follows, we discuss the biological plausibility of

the oscillatory correlation theory as well as the important

issues of how to represent time and auditory attention.

Biological plausibility

The biological foundation of the oscillatory correlation

theory is the assumption of synchronous oscillations. In the

auditory system, early experiments reveal oscillations of

evoked potentials in the gamma frequency range (Galam-

bos et al. 1981; Madler and Pöppel 1987; Mäkelä and Hari

1987). Ribary et al. (1991) and Llinas and Ribary (1993)

observed gamma oscillations in localized brain regions at

the cortical and thalamic levels of the auditory system. In

addition, such oscillations elicited by appropriate stimuli

are synchronized over a considerable range of the auditory

system. Joliot et al. (1994) further reported that coherent

oscillations are correlated with perceptual grouping of

clicks.

Synchronous oscillations are also found from the

recordings of cortical neurons (deCharms and Merzenich

1996; Maldonado and Gerstein 1996; Brosch et al. 2002).

Barth and MacDonald (1996) find evidence suggesting that

coherent oscillations in the auditory cortex are caused by

intracortical connections. Brosch et al. (2002) find that, in

the monkey auditory cortex, stimulus-dependent gamma

oscillations correlate with the match between stimulus

frequency and the preferred frequency of a cortical unit. In

addition, synchronization occurs between different cortical

sites depending on their distance and their preferred fre-

quencies. Edwards et al. (2005) recently recorded human

responses from the frontal and temporal cortices of awake

neurosurgical patients. They find gamma activity in

response to salient auditory stimuli.

Coherent oscillations are found to correlate with atten-

tional control. Fries et al. (2001) find that neurons activated

by an attended visual stimulus produce increased syn-

chronization in the gamma frequency range. A similar

finding is made by Taylor et al. (2005) who observe that

attention enhances gamma oscillations in the visual area

V4 of monkeys, indicating stronger synchronization of V4

neurons associated with the attended object. In a visual

change detection task, Womenlsdorf et al. (2006) recently

report that the level of gamma band synchronization of V4

neurons activated by an attended stimulus predicts mon-

keys’ reaction times for performing the task.

Representation of time

A major characteristic of our oscillatory correlation model

lies in the representation of time as a separate dimension,
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on a par with the representation of frequency. A separate

dimension of time is implicitly assumed in Bregman’s

ASA account of auditory organization (Bregman 1990),

and commonly used in speech and other acoustic pro-

cessing literature. On the other hand, time also plays a

fundamental role of binding in our model: Different

streams are segregated in time. Furthermore, temporal

properties of stimulus onset and offset are perceptual cues

for ASA (see Section ‘‘Introduction’’). The multiple roles

of time need to be clarified as they raise potential diffi-

culties for the oscillation correlation theory (Shadlen and

Movshon 1999; Brown 2003).

Wang (2005) distinguishes between external time and

internal time; the former refers to physical time and the

latter the dynamical process of oscillatory correlation. He

argues that these two kinds of time can coexist by adopting

a place coding of external time like that depicted in Fig. 2.

As shown in the present study as well as in Wang (1996)

and Norris (2003), once external time is converted into a

spatial dimension, oscillatory correlation can take place in

auditory organization much like in visual organization

where an object is naturally represented in spatial dimen-

sions. As for grouping by common onset and offset, onset/

offset detectors exist in the auditory system (Popper and

Fay 1992) and have been assumed in previous auditory

models. As demonstrated by Norris (2003), with such

detectors auditory organization based on common onset

and offset is not unlike organization using other ASA cues.

The linear axis of external time created by systematic

delays shown in Fig. 2 is meant to be a model of STM.

Other STM models include decay traces that encode time

implicitly through the time course (via time constants) of

neural responses, and exponential kernels that convert time

into a logarithmic axis (Wang 2003). A logarithmic axis of

time, where more recent history is coded with higher

temporal resolution, allows past events to fade away

gradually, hence more elegant than the linear axis. Figure 7

illustrates a logarithmic axis of time, where an oscillator

represents a progressively longer interval for a deeper past.

It is worth noting that a model of STM is indispensable for

general temporal pattern processing, and exponential ker-

nels including gamma kernels have been proposed to

sample external time (Wang 2003). Such a time represen-

tation has rather interesting resemblance to how frequency

is represented by auditory filters such as gammatone filters

(Wang and Brown 2006).

The supposed place coding for auditory streaming in our

model requires time delays on the order of hundreds of

milliseconds to even seconds. There is strong physiological

evidence for systematic delays in the computation of in-

teraural time difference for sound localization (Popper and

Fay 1992). However, such delays are in the microseconds

range. Systematic delays are also assumed in the autocor-

relation model of pitch detection (de Cheveigne 2006), and

these delays are on the order of milliseconds, perhaps as

long as 20 ms. While the physiological notion of spectro-

temporal receptive fields (Rutkowski et al. 2002; Linden

et al. 2003) is consistent with the use of long delays (or

latencies) to code time, direct physiological support is yet

to be established for a place code of external time (see

Brown and Wang 2006).

Whether or not place coding of external time, or a

temporotopic map, exists in the auditory system, STM in

the range of milliseconds to seconds (Crooks and Stein

1991) has to be coded in the brain somehow. Baird’s model

suggests an alternative representation of time where

intrinsic oscillators are entrained to rhythms of external

input (Baird 1997; see also Large and Jones 1999). In this

representation, external time at multiple scales is coded by

oscillators of various intrinsic frequencies. Although

intriguing, how to represent acoustic stimuli lacking reg-

ular periodicities (e.g., unvoiced speech) is unclear in this

representation. Also, physiological support for this repre-

sentation of time is no stronger than that for a temporotopic

map.

Shifting synchronization theory

In addition to modeling several aspects of auditory

streaming, Wang (1996) proposed a neurocomputational

theory, called shifting synchronization theory, for explain-

ing primitive stream segregation effects. The basic assertion

of the theory is that the neural basis of stream segregation is

oscillatory correlation. More specifically, a set of tones

forms the same stream if their underlying oscillators syn-

chronize, and the tones form different streams if the

underlying oscillators organize into multiple oscillator

assemblies that desynchronize from one another. The theory

is used to explain the loss of order between successive tones

when alternating tones are segregated into two streams.

An aspect of the shifting synchronization theory

involves auditory attention. In Wang (1996), it is claimed

that attention is directed to a stream when the stream’s

corresponding oscillators are in the active phase. Wrigley

and Brown (2004) point out that such an attentional process

leads to a rapid switch of attention between the two streams

and all streams are equally attended to, which seems

incompatible with the observation that, when segregation

Time delays

Input

Fig. 7 Logarithmic axis of time. The time dimension is sampled

logarithmically so that more units are devoted to representing a recent

past
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occurs, listeners tend to perceive one stream as dominant at

a time. Instead, they proposed a model of auditory attention

that selects one stream using an interactive loop between an

oscillator network for stream segregation, and an atten-

tional unit called attentional leaky integrator. The

interactive loop is subject to modulation from an intrinsic,

‘‘endogenous’’ attentional interest that decides which

stream to select. A stream is considered to be attended to if

its oscillatory activity resonates with that of the attentional

unit. Their model can simulate several streaming phe-

nomena such as two-tone streaming in the presence of a

competing task.

In light of Wrigley and Brown’s study and other

developments since Wang (1996), the shifting synchroni-

zation theory requires a revision when it comes to auditory

attention. The revision involves a division between selec-

tive attention and divided attention (Pashler 1998).

Primitive auditory segregation really involves divided

attention rather than selective attention. Divided attention

can hold multiple items within the attentional span, or

attention is divided among attended items. Given this, we

now claim that there is no rapid shifting of attention among

different oscillator assemblies corresponding to multiple

segregated streams, which coexist in the attentional span.

Instead, different oscillation phases serve to distinguish

between the items, or objects, within the attentional span.

Given that the shifting synchronization theory is concerned

with primitive ASA, auditory selective attention requires a

separate process like the Wrigley and Brown model. In the

context of visual object selection, Wang (1999) proposed a

model that selects one or a small number of objects from

the output of a LEGION network using slow global com-

petition. Such selection among multiple oscillator

assemblies corresponds to a process of selective attention,

whereas LEGION segregation corresponds to a process of

divided attention.
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