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Timing and Chunking in Processing Temporal Order

DeLiang Wang and Michael A. Arbib

Abstract—A computational framework of learning, recognition
and reproduction of temporal sequences are provided, based
on an interference theory of forgetting in short-term memory
(STM), modeled as a network of neural unmits with mutual
inhibition. The STM model provides information for recognition
and reproduction of arbitrary temporal sequences. Sequences
are acquired by a new learning rule, the attentional learning
rule, which combines Hebbian learning and a normalization rule
with sequential system activation. Acquired sequences can be
recognized without being affected by speed of presentation or
certain distortions in symbel form. Different layers of the STM
model can be naturally constructed in a feedforward manner
to recognize hierarchical sequences, significantly expanding the
model’s capability in a way similar to human information chunk-
ing. A model of sequence reproduction is presented that consists
of two reciprocally connected networks, one of which behaves as
a sequence recognizer. Reproduction of complex sequences can
maintain interval lengths of sequence components, and vary the
overall speed. A mechanism of degree self-organization based on
a global inhibitor is proposed for the model to learn required
context lengths in order to disambiguate associations in complex
sequence repreduction. Certain implications of the model are
discussed at the end of the paper.

I. INTRODUCTION

EMPORAL ARRANGEMENT is at the heart of thought,
language and action, and contributes greatly to human
intelligence. Recognizing temporal patterns is crucial in hear-
ing and vision, and generating the temporal patterns underlies
processes like motor pattern generation, speech and singing.
The basic function of sequence generation is to reproduce
learned sequences. This article presents a computational theory
of temporal order, based on interaction and integration of local
neuron populations (the basic functional units). The proposed
neural circuitry recognizes and reproduces any complex tem-
poral sequence, and can compensate for a range of distortions
in time (time-warp problem) and in form (erroneous symbols).
Following the terminology introduced by Wang and Arbib
[63], a temporal sequence S is defined as

pP1—DPpP2 " — PN

and each p; is called a component of S (sometimes a spatial
pattern, or just a symbol). The length of a sequence is the
number of components in the sequence. Any p; — Pi+1 —
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<o —pj, where 1 <1< j < N, is called a subsequence
of S. If S contains repetitions of the same subsequence, like
A-BinC—-A-B-D—-A-B-E,itis called a
complex sequence, otherwise a simple sequence. The context
of the current symbol p; in a complex sequence S is the prior
subsequence required to cue p; unambiguously. The degree of
p; is the length of this context. The degree of a sequence is
the maximum degree of its components. Therefore, a simple
sequence is equivalent to a 1-degree sequence.

Early models of neural networks to store, recognize and
reproduce a temporal sequence of input stimuli include the
outstar avalanche [20] and the wave model [57] that can
reproduce a sequence of patterns based on learned associations
between consecutive patterns. More recently, using a synaptic
triad made up of three neurons as building blocks (high-
order synapses), Dehaene et al. [11] proposed a layered neural
network, called the selection model, which can recognize
temporal sequences. Kosko’s [36] bidirectional associative
memory built from two neural fields can reproduce a sequence
of patterns that alternates between the two fields.

Storage of temporal sequences in the spin-like Hopfield
network has been proposed by several authors (301, [55], [59],
(5], [22], [23], [37], [25]. In this paradigm, each pattern is
stable over some time period, at the end of which a sharp
transition leading to the next pattern occurs due to stored
transitions between consecutive patterns. Storage and retrieval
of complex sequences is difficult since, in most of these
models, a given pattern can occur only once among all the
stored sequences. Recognition and reproduction of temporal
sequences have also been explored using the backpropagation
network ([28], [14], [18], [62], [39], [2], [48], among others).
There are two basic architectures behind most of the models:
In the Jordan network [28] the output layer associated with a
pattern is fed back and blended with the input representing
the next pattern, whereas in the Elman network [18] the
hidden layer is fed back to influence the next pattern. Complex
sequence recognition and reproduction again cause severe
problems to this type of model. Some remedies have been
proposed for dealing with complex sequences for such models,
and will be discussed later in this paper. One popular scheme
to recognition has been to construct a buffer to hold a fixed
number of the most recent elements of the input sequence.
Implemented by fixed delay lines, the buffer turns a temporal
recognition problem into a spatial recognition problem, and
backpropagation is employed for training [62], [39]. Although
some success has been achieved in small sets of presegmented
temporal patterns, the approach has serious drawbacks in
terms of efficiency, which we will come back to in the
discussion.
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In a recent paper [63], we proposed a new mechanism for
learning temporal sequences. We modeled short-term memory
(STM) by units comprising recurrent excitatory connections
between two local neuron populations. Each population is
represented by a single quantity corresponding to local field
potential. The activity induced by an input signal to a unit
oscillates with damping, thus decaying over time. Using a
Hebbian learning rule at each synapse and a normalization
rule among all synapses to a unit, the neural networks with this
model of STM are able to learn complex temporal sequences,
recognize these sequences with tolerance to certain distortions
in form, and reproduce them. What distinguishes our model
from others are two basic hypotheses embodied in the model:
1) There is a common mechanism to process both complex
sequences and simple sequences; and 2) Reproduction of a
component in a sequence is based on recognition of the context
of the component.

STM was modeled by decay with a fixed temporal course
that makes the previous model unable to handle the time-
warp problem. For sequence recognition, we wish a network to
recognize a time-warped sequence, whereas for reproduction
we wish a network to reproduce a sequence with the same
temporal course as the training sequence. In addition, we
wish that recognition is not affected by changes in rates of
presentation, and at the same time, reproduction can vary its
overall speed. We attempt to solve the time-warp problem
in the present study. In the previous model, all context
detectors assume the same degree, which must not be less
than the degree of the entire sequence to be recalled. The
requirement is replaced in this paper by a dynamic tuning
mechanism whereby each detector learns during training its
necessary degree for unambiguously producing the next sym-
bol. We also propose a mechanism for hierarchical sequence
recognition, similar to human information chunking. This
mechanism seems both natural and necessary for processing
long sequences, like a paragraph of sentences, a piece of music,
and so forth.

II. A COMPUTATIONAL MODEL OF STM

It has been found in the study of memorizing nonsense
syllables that each syllable in the series has links not only
to adjacent words in the series, but also to remote words
[40]. In order to link two temporally discontiguous patterns,
the previous one has to be memorized until the latter one
occurs. This typical short-term memory phenomenon lays an
important basis for temporal order processing. In order to
provide for temporal processing, a model of STM must provide
the following four basic functions:

1) Maintaining a symbol for a short time period. How

long can an item be retained? Peterson and Peterson
[47] found that the probability of a correct recall de-
clined rapidly over an 18-second period, when subjects
were asked to perform some distracting task to pre-
vent rehearsal. What causes forgetting? Two dominant
views are decay versus interference [49]. An interference
theory proposes that memory for other material or the
performance of another task interferes with memory and
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Fig. 1. Diagram of the STM model. Unit ¢ receives external input E; as
well as inhibition from all other units in the model. The figure shows only
outgoing projections from unit 7. Minus signs indicate inhibition.

thus causes forgetting. A decay theory, on the other
hand, proposes that forgetting still occurs even if the
subject had to do nothing over the retention interval, as
long as the subject did not rehearse the material.

2) Maintaining a number of symbols. Miller [44] tells us
that the capacity of STM is only about seven symbols,
but suggests that recoding information to form chunks
can help overcome this limitation.

3) Coding the order of input symbols. Given that STM can
hold several items simultaneously, the order that these
items enter STM must also be coded some way. It has
been observed that subjects engage in linear scanning
when judging whether a test symbol is contained in a
short memorized sequence [58]. However, it remains
unknown how order is coded in STM.

4) Coding the length of presentation of each symbol. When
one learns a sequence, one can recognize it even though
each component of the sequence is presented at a dif-
ferent speed. Yet, a professional musician can recall
a multiple-page score, reproducing almost exactly the
memorized length of each note, although each note
may last differently. Since STM is an interface between
input symbols and long-term memory (LTM), STM must
be able to code the length of each held symbol. This
function of STM provides first level information for
solving the time-warp problem.

Our previous STM model conforms with the decay theory
of forgetting, since the activity of a unit when stimulated
oscillates and decays over time. The order of input symbols
is coded by the different amplitudes of unit activities elicited
by these symbols because of decay over different times since
presentation. However, the number of items the STM model
can hold varies with the length of the presentation intervals of
each symbol, and the longer each presentation takes the fewer
items can be held in STM. Furthermore, the model cannot
code the length of each symbol presentation, and therefore it
fails to solve the time-warp problem.

Waugh and Norman [65] report findings that clearly favor
the interference theory. The current majority view seems
to weight interference more heavily than decay. Although
some decay may occur [10], the amount of forgetting caused
by decay is substantially less than the amount caused by
interference [49], [45]. The following computational model
of STM we will describe is based on the interference theory.

Let unit ¢ represent the ¢th local neuronal population (i =
1,2,---,n), the building block of this STM model, and z;
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its excitation level. Each unit receives an external input E;,
which is 1 so long as the external input is on and 0 otherwise,
and is inhibited by all the other units, as shown in Fig. 1. Two
further quantities are associated with unit 4: the internal state,
35, which signals activation of the unit and provides inhibition
to the other units; and the excitation level z;, which provides
a decaying memory trace, and which is used in the learning
rules of the next section. The internal state s; is defined as

sift) = {[1): if Bi(t)=1,Ei(t—1)=0

otherwise

From the definition we can see that the internal state is
activated only by the beginning of an external input. Detection
of the beginning part of an external input can be neurally
implemented with a threshold and adaptation of the external
input.

The excitation level of unit ¢ lies in the range of {0,1,---,
T}, and is defined as

T if s;(¢) = 1,
it —1) -1 ifz;(t—1)>0,5:(t) =1
z;(t — 1), otherwise,

€

zi(t) = )

where y; represents overall inhibition that unit ¢ receives from
the other units and is formulated as!

vit) = FQ_sit-1) - 1) 3)
J#
with
1, ifz>0
flz) = {0, otherwise *

so that y;(¢) = 1 iff an external input is applied to any unit
other than unit . From the above definitions we see that
whenever s;(t) = 1, z;(¢) is brought to its highest value T and
unit ¢ is activated or triggered. If any of the units is activated,
the inhibition that it exerts on the rest of the network will
drive all other active units, i.e., those whose excitation levels
are larger than 0, down to the next lower level.

Now let us see how this model of STM satisfies the above
four requirements. First, this model preserves a symbol, or an
information item, on a unit whose excitation level codes the
item. Let us assume that external inputs arrive at STM serially
(it is easy to serialize simultaneous inputs by a competitive
network, see among others [12], [21], [1], [51]. Any new item
input to STM decrements the excitation levels of all active
units in STM. Therefore STM can at most code T items. T'
is a system constant that is equivalent to the capacity of the
STM model, suggesting that T’ be about 7 £ 2 in a model of
humans [44]. Variability in capacity may attribute to individual
differences and different types of materials to be memorized. If
we consider only the case where all items in STM are different
for the time being, then a symbol can be maintained in STM
from when it is input to when the T'th subsequent item is
entered, conforming with the interference theory. Secondly,

Since the weights of inhibitory connections are the same, the mutual
inhibitory connections can be replaced by a global inhibitor. A global inhibitor
can reduce the number of connections by one order of magnitude, but results
in a less reliable system due to information centralization on the inhibitor.

T symbols can be preserved simultaneously in the model.
Thirdly, the order of input symbols is coded by the excitation
levels of the units that represent the symbols. The larger the
excitation level of a unit is, the more recent is the symbol
represented by the unit. Since all inputs to the STM model are
serial, there is a strict temporal order among all symbols held
in the model. Finally, the length of a symbol’s presentation is
reflected by the time period while the corresponding external
input is on, and its coding mechanism will be given later.
In conclusion, the above simple formal model is capable of
coding the four necessary functions of STM. Possible neural
circuitries for implementing units, local neuronal populations,
will be discussed in the discussion section. We will see in the
following sections how information carried in the model is
used for processing temporal order.

III. GENERAL SEQUENCE RECOGNITION

The following model for general sequence recognition is
based on the above STM model, and the learning algorithm is
basically the same as used previously [63]. The major focus,
compared to previous work, is the time-warp problem. Here,
sequence recognition is not affected by varying presentation
intervals for individual components in a sequence, which
property is called interval invariance.

A. Simple Sequence Recognition

Before we propose a solution for general sequence learning,
it helps elucidate basic ideas by presenting a model for simple
sequence recognition. Suppose that an extra unit 0, called a
detector, is to be trained for recognizing a simple sequence
So. The detector unit receives projection from 7 units in the
STM model, and sy is formed by

so(t) = F(O_ Woizs(t = 1) + Io(t — 1)To) ®)
i=1
where Wy, is the connection weight from unit 2 to the detector;
Ty is the threshold of the detector, and I represents the exter-
nal input to the unit. Learning, or modification of connection
weights, follows a Hebbian rule [24] with normalization [43]
{ Woi(t) = Wo,‘(t -1+ C,ASQ'(t).'L‘,(t) )
Woi(t) = Woilt)/ 35—y Wei(2)

where C; is a gain factor of learning. The larger is C;, the
faster is learning and the more easily is the memory value
overwritten by a new stimulus. The effect of learning on the
detector is to change the distribution of all weights to that unit,

so it is reasonable to assume that initially Wo; = 1/n.

Let So = po, —po, —**- —Po, = *** — Pog,1 < 0; < m.
Without loss of generality, we suppose that pattern po, fires (is
represented by) unit 0;. Since Sy is a simple sequence, 0; #
0; if ¢ # j. Our purpose is to train the detector to recognize
So with interval invariance. Training is done by presenting
Sy to the model and activating unit 0, i.e., setting Io(t)
above the threshold T'y, immediately after the presentation
of So. The end of a sequence presentation is detected by
an end detector in the system, which uses indications like
pauses (implicit) or separators (explicit) between sequences.
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We call this specific type of training attentional learning. It
is different from unsupervised learning, and is also different
from typical supervised learning where a desired output or
an answer (as in reinforcement learning) has to be provided
externally. The activation of a sequence detector at the end
of presentation of the sequence may be driven by attention,
which is indispensable for learning a sequence [46], [8]. In
this learning paradigm, we say unit O is attended when I is
brought by the system above I'g.

During training of Sp, each presentation is allowed to vary
its speed. That is, any po, can have a different presentation
interval from that of any other component of Sy of the same
presentation trial, and even from that of the same po, of a
different trial. If the detector can be activated by presentation
of Sy but not by any other sequence, we say that it has learned
to recognize the sequence. Of course, for recognition to be
interval invariant, after learning the detector should also be
activated by the same Sy with a presentation speed different
from any used in training.

The input potential 1P of Sy to the detector is defined to
be the weighted sum to the unit at time ¢’ immediately after
the presentation of Sy, that is

n K
IPy =) Woo,zo,(t) =Y (T =K +i)Woo,. (7)

i=1 =1

According to (2), zo,(t) is set to T by input py,, and decre-
ments only when a new input is received. Thus, zo,(¢') equals
T — K + . Equation (7) is the same as (7) in Wang and Arbib
[63], except that the function g(!) there is instantiated to a
linearly decreasing function of (2) here. The formal analysis
in that paper applies as long as g is monotonically decreasing
and so all relevant theorems and corollaries are also established
in this model, and are summarized below without proof.

1° Repeated training with Sj leads all weights to unit 0 to
have the distribution: Wy, = 2(T — K +1)/[K (2T — K +1)],
with W()j =0 for j # 01, ---,0x

2° Repeated training with Sy leads to

9 K

o ) ;(T~K+i)2 8)

1Py

where 1P, depends only on the length, K, of the sequence.
3° Define AIP§" as the I P, after the mth presentation of
So minus the I P after the (m — 1)st presentation of Sg. Then

_AIP;
- Qm‘l
where Q = 1+ C;(2T — K + 1)/2. Furthermore, if repeated
training with Sy begins with the initial condition, i.e., Wy, =
1/n, then after the first training, AIP} > 0. Therefore, based
on (9), AIP; > 0 after each training. In other words, I P,
increases monotonically with sequence training.

The above conclusions imply that if we set I'g in (5) to the
input potential expressed in (8), i.e.,

AIP ©)

2 K

- = _ N2
To= K(2T—K+1);(T K+9)

(10)

then the result of training is to build up I P, so as to fire the
detector by presentation of Syp. Since I'g in (10) is the limit
value of 1Py, a small error £ should be subtracted from that
I'g when applied in practice. Because I'¢ is dependent only on
the length K of the sequence in question, it can be easily set
up during the first training of the sequence.

4° After the detector has learned sequence Sp, only pre-
sentation of Sy induces the maximum activity on the detector
unit.

The result embodies a maximization principle that repeated
training of a sequence polarizes the weights of the corre-
sponding detection unit so that it can only be activated by
this specific sequence. The maximization principle has two
parts. The first involves training with (6) that drags the weight
distribution of the detector along with the direction of the
training signals from units activated by the sequence. The
second simply uses the fact that the inner product of two
normalized parallel vectors reaches the maximum value. The
latter fact has been previously used for pattern classification
(the nearest neighbor method, see [16]) and even in pattern
recognition by neural networks [38]. Our contribution lies
in proposing a biologically plausible learning scheme ((6))
that naturally prepares weights for later application of the
maximization process.

A computer simulation of this simple sequence recognition
with interval invariance was conducted, and the result is shown
in Fig. 2. The sequence to be detected was A—B—-C—-D—-FE,
each component being presented for different intervals that are
created by a random number generator within a certain range.
Fig. 2(a) shows the monotonic increase of P, with number
of sequence presentation trials. The increase follows a typical
inverse exponential curve with increase rate exponentially
decreasing. Fig. 2(b) depicts the actual training and recognition
process, with training intervals {9,3,6,9,5} for A, B,C,D, F
respectively. After the sixth training trial, I Py went above the
system-set threshold, and so any following presentation of the
sequence was able to activate the detector. After that, the same
sequence with the different interval series {9,7,3,6,4} (also
generated by the random number generator) for its components
was tested, and the model succeeded in recognizing this time-
warped sequence. See the figure legend for the parameter
values used.

The gain parameter C; in (6) controls the overall speed
of learning, and it is imaginable that with a very large C;
the system exhibits so called one-shot learning: imprinting a
sequence on a detector after the first presentation. One-shot
learning has been previously demonstrated in neural systems
such as the ART pattern recognizer [6]. It seems more efficient
to have one-shot learning than gradual learning, since one
detector is dedicated to one sequence. We provide a general
learning rule of (6) to account for both gradual and one-shot
learning. One advantage of gradual learning is its reliability in
the sense that a sequence detector is less prone to damage due
to wrong “attention” (system activation) paid to the detector.

The idea behind interval invariance is that during pre-
sentation of a sequence component, only the beginning of
presentation of its input symbol triggers activity on a unit, and
only presentation of a new symbol to the network decrements
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Fig. 2. () Monotonic increase of input potential IPO with number of training
trials of sequence A-B-C-D-E. After the sixth trial, I P was within a small
error ¢ = 0.001 of the system-set threshold value of unit 0 (Tg = 5.4).
(b) Training for recognition of the sequence with time-warping. Let units
1-5 represent patterns A, B, C, D, E respectively; a symbol in the figure
indicates the corresponding unit. S corresponds to the detector unit 0. During
each training cycle, the sequence was presented, followed by an activation
of the detector unit (the attentional learning rule). The activation is indicated
in the figure by a peak value equal to T. Each training trial was followed
by a test cycle, during which the sequence was presented alone in order
to see if unit O could be activated by the sequence. Presentation intervals for
individual components were generated by a ranged random number generator,
and they were {9, 3, 6, 9, 5} for A4, B, C, D, E respectively. After six
irials, the detector unit was able to be activated by another presentation
of the sequence. After the detector learned the sequence, another test trial
was made by presenting the same sequence with a different interval series
{9, 7, 3, 6, 4} also randomly generated. As shown in the last column, the
detector recognized the time-warped sequence. The parameters are: n = 10,
C, =004 =1.---,100T =7

its current activity levels—i.e., the only decay is triggered
by interference. Therefore it does not matter how long that
presentation lasts. This same idea is used for recognition of
any complex sequence, as presented next.

B. Complex Sequence Recognition

The above mechanism for simple sequence recognition
cannot be directly applied for complex sequence recognition.
A unit corresponds to a symbol in a sequence, and the external

activity of the unit is represented by only one quantity: its
excitation level. Therefore according to (2) a later occurrence
of a symbol in a sequence may overwrite an earlier occurrence
stored in the STM model. For example, the different occur-
rence of A in sequence St : A-B-A-C—-A-B-E-B-D.
To overcome this problem, we proposed [63] that a unit was
represented by an expanded network, such that it has multiple
terminals to hold different occurrences of a symbol, with
multiple channels connecting to other units. Fig. 3(a) shows a
diagram for a single unit. The following model combines this
idea for solving the overwriting problem with the new STM
model for interval invariance.

Suppose unit i has m terminals, and the excitation level of
its rth terminal is represented by zir. A new input maximally
activates x;1, and “shifts” all other traces “downwards,” so
that z; holds the rth most recent occurrence of the symbol
represented by the unit. The STM model ((1)~(4)) and the
definitions of E;, s;, and y; thus remain the same except that
which is shown in (11) at the bottom of the page.

Again let unit 0 be trained to detect an arbitrary sequence
So. As before, during training each component of the sequence
is allowed to have a different presentation interval from that
of any other component of So of the same trial, and from that
of the same component on a different trial. After learning, the
model should be able to recognize Sp presented with a speed
different from that of any training trial. The detector receives
inputs from 7 units from the STM model, and s is defined as

n m
%U%=ﬂ}:E:W%xn@—1%+%@-l)—Fw (12)
i=1r=1
where W{, is the weight of the connection that the rth terminal
of unit i makes on unit O (the detector), and it is updated
according to

{ W, () = Wii(t = 1) + Ciso(t)zir (1)
W&'(t) = ng(t)/ Z;=1 27:1 WOTi’ (t)

It suffices to set m to the maximum number of occurrences
of symbols in a sequence. For example, to recognize Sy, m
can be set to any number larger than or equal to 3. The choice
of m, the number of terminals of each unit, limits the number
of occurrences of the same symbol in a complex sequence.
The learning rule is the same as in (7) except that all the m
synapses of a unit are modified. Due to normalization in (13),
the connection weight W (t) is set to 1/(mn) initially.

With this modification of the model, the above conclusions
(number 1° through 4°) with simple sequence recognition are
established similarly. In particular, the maximization principle
applies:

5° After the detector has learned a complex sequence So,
only presentation of Sp induces the maximum activity on the
detector unit.

13)

T, if s;(1)=1,r=1

Tiroa(t — 1) -1,
$ir(t i 1) - ].,
I"(t - ].)7

if Si(t) =1,r> 1,1‘1;’,._1(15 = 1) <0
if s;(t) =0, zir(t — 1) > 0,y:(t) =1,
otherwise

(11)
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Fig. 3. (a) An expanded unit model for complex sequence recognition. A

unit has multiple terminals that make contacts with other units. x;; holds
a trace of the most recent external input to unit j, x;2 the previous one,
and so on, to a maximum of m such occurrences. (b) Recognition of the
complex sequence S1: A-B-A-C-A-B-E-B-D with time-warping. See the
legend of Fig. 2(b) for understanding the plot. The generated presentation
interval series was {9, 3, 6, 9, 5, 9, 7, 3, 6} for the sequence. After
6 training trials, unit O learned the sequence, i.e., could be activated by
another presentation of the sequence. After that, the same sequence was again
presented with the different interval series {4, 9, 4, 5, 8, 5, 4, 5, 3}, and the
detector recognized the time-warped sequence. In the figure, only the last two
training-test cycles are shown with the time-warping test. The parameters are
n=10,m=5.C; =002 (:=1.---.5), T = 10.

The threshold I'g in (12) can also be set similarly during the
first training trial of the sequence. This conclusion guarantees
that the model is able to recognize any complex sequence with
time warp. As a demonstration, we simulated the above model
for recognizing the sequence S;. The attentional learning
rule is used for complex sequence learning as before. During
a training trial, each component had a presentation interval
generated by a ranged random number generator. For S, the
generated interval series was {9,3,6,9,5,9,7,3,6}. After the
detector had learned the sequence, it was tested with another
presentation of S; with interval series {4,9,4,5,8,5,4,5,3}
similarly generated. The detector correctly recognized the test
sequence. Fig. 3(b) shows the simulation process for learning
and recognizing sequence S;.

The above model in principle can also handle, with a
straightforward extension, temporal sequences that contain
certain distortions in symbol form. By distortions in the
symbol form of a sequence we refer to alterations of the
sequence due to omissions or substitutions of its symbols,
or additions of new symbols to it, not to distortions of
the shape of an individual symbol. The latter should be
handled during recognition of a specific symbol. We suggest to

accommodate symbol form distortion by lowering the previous
threshold value of the detector set by (10) a little so that
the detector can also be triggered by a sequence similar in
form to the learned sequence. According to (12), the detector
measures the similarity between the learned sequence So
and an arbitrary sequence S, by comparing the difference
between the system-set threshold value IP; in (8) and the
input potential (I P,) induced by presentation of .S,. It does not
appear straightforward to quantify the difference succinctly, a
topic of future study. But we believe that such a quantification
does exist in this model.

To shed some light on how the model measures the dif-
ference between S, and Sp, let us assume S, = pg, —
Day — *** — Pa, - Repeated training with the complex sequence
So : po, — Po, — -+ — Do, leads to a polarized weight
distribution of the detector unit: 2(T — K +1)/[K(2T — K +
N, 2(T-K+2)/[K2T-K+1)],---,2T/[K(2T - K +1)],
and all others zero (see 1° above). Those linearly increasing
weights correspond to pg, ,po,, -, Do, respectively, and the
connections with these nonzero weights are called nonzero
projections. Immediately after the presentation of S,, the
excitation levels of a set of units stimulated by S, are
T-L+1,T—- L+ 2,---,T. The similarity between S,
and Sy depends on how many of the stimulated units by
S, can pass through a nonzero projection to contribute to
IP,, and how much those ordered units triggered by S,
match those triggered by So. As a particular example, when
S, = So, the weight vector of the detector after training with
Sp parallels the activity vector induced by presentation of S,
and thus according to the Cauchy-Schwartz inequality 1P,
reaches its maximum value that is equal to the threshold of
the unit. In general, distortions towards the beginning of a
sequence are less effective than those towards the end, because
symbols towards the end have larger corresponding connection
weights (see 1° above), and thus more leverage in determining
sequence recognition.

There is always a tradeoff between tolerance and precision.
After lowering of the thresholds of detectors, a specific se-
quence may trigger more than one detector, and a detector
may be activated by more than one sequence, if we assume
there are many detector units in the system for recognizing
different sequences. Again a competitive network can help
single out a detector that is trained by a sequence most similar
to S,.

One question not yet addressed with the recognition model
concerns the length of a sequence that can be recognized.
We have a hidden hypothesis when we develop the model,
that is, the length of the sequence K should not be larger
than the capacity 7 of the STM model. When the length of
Sp in question is larger than 7', the above model only pays
attention to and learns and recognizes the end subsequence
POy 141 — POx_r4a — *°° — Pog Of So. As we know [44]
human STM has a very limited capacity (7 £ 2), even though
T can be set freely in engineering applications. But the above
model is not sufficient as a cognitive model, since humans
can memorize and recognize sequences much longer than
ones directly limited by 7. The next section addresses this
problem.



WANG AND ARBIB: TIMING AND CHUNKING IN PROCESSING TEMPORAL ORDER 999

SENTENCES

complex

abcdefghijklmnopgrstuvwxyz

Fig. 4. Architecture of hierarchical sequence recognition. Different layers
are connected in a feedforward manner from bottom to top. The bottom layer
is the input layer, and others are detector layers of different levels. The letters
and words symbolize different units in the layers.

IV. HIERARCHICAL SEQUENCE RECOGNITION

Given the severe capacity limitations of STM, one method
of reducing these limitations and so expanding our capacities
is by chunking [44]. Sequence learning and sequential organ-
ization are obvious applications of the chunking notion. An
example of chunking in sequence learning is the hierarchical
organization of language. There is a series of hierarchies of
sequential organization: the sequence of letters in a word, the
sequence of words in a sentence, the sequence of sentences in
a paragraph, the sequence of paragraphs in a discourse. Not
only language, but all skilled actions seem to involve the same
kind of hierarchical organization [40], [3].

Our hierarchical sequence recognition model, based on the
chunking notion, consists of a cascade of layers of units. Units
in layer i fully project to those in layer i + 1, and each layer
by itself is an STM model that is a fully connected network
as shown in Fig. 1. The whole network is feedforward, and
projections from a lower layer to a unit in the next higher layer
are exactly like full projections of the units in the STM model
to a sequence detector. This connection architecture is shown
in Fig. 4 with an example sentence, Sy: “complex temporal
sequence learning based on short term memory.” Three layers
shown in the figure are the letter layer, the word layer, and the
sentence layer.”> We use this example for demonstrating how
chunking is done in the model, without suggesting that people
process this specific sentence in the same way.

Let z¢, represent the excitation level of terminal 7 of unit
in layer [, and s} the internal state of the unit. The weight of the
connection from terminal 7 of unit j in layer ! to unit ¢ in layer
| + 1 is represented by Wll; The dynamics of z! and st are

2Hierarchical structure in language is, of course, more subtle than "crude
chunking" since the "chunk" is based on syntax and semantics, rather than
on a setting of some 7. Thus, for example, a sentence is not represented
directly as a string of words, but rather as a string of strings of strings ...
corresponding to a syntactic/semantic parse tree for the sentence. In particular,
the strict separation of levels adopted here must give way to a more fiexible
format that allows recursive specification of linguistic entities. It is beyond
the scope of the present article to address such aspects, let alone the crosslinks
for cross-reference that turn the tree into a more general graph structure. We
want simply to note that our theory of chunking may play a crucial role in
later studies of connectionist approaches to language. Language understanding
is a very complex issue, and involves many other processes like long-term
memory, communication and so on, but STM undoubtedly plays a critical role
in it [7].

the same as before ((11) and (12)), and modification of W,’;
is also the same ((13)). The first layer directly interacts with
the external environment. Therefore st is driven by external
inputs. All other layers organize information from the basic
input perceived by layer 1. All units in higher layers are
sequence detectors, thus different layers detect different levels
of information from an external input sequence. In Fig. 4,
for instance, layer 1 detects individual letters, layer 2 detects
individual words composed of sequences of letters, layer 3
detects individual sentences composed of sequences of words,
and so on. The higher a layer is in the architecture, the higher
is the level of input hierarchy that a unit in the layer can detect
and the longer is an input sequence that the unit can recognize.

During training, units in higher layers are activated by
the attentional learning rule. Previously, the attentional rule
was only applied to a single detector, but now there are
many detector units in a higher layer. Another attribute of the
definition of attentional learning is that the internal activation
of detectors must be sequential. This requirement is consistent
with a basic property of attention. A unit in any higher
layer has exactly the same model as a unit in the first layer.
Therefore when attention shifts from a unit to another in a
higher layer, activation thus triggered will drive the excitation
levels of all other active units of the same layer to the next
lower level due to mutual inhibitory connections. In other
words, a higher layer forms its own STM due to sequential
shifts of attentional activation. The STM model in a higher
layer operates in the same way as one in the first layer, but
with a larger time scale. So different time scales are formed
automatically in different layers. This also explains why units
in higher layers can recognize longer sequences.

How is attention allocated when there are different detectors
in different layers? The correct order of attentional shift should
be from lower to higher layers, because before layer 7 has been
trained for recognition there is nothing to attend to for layer
i+ 1. Taken Fig. 4 as an example, words in the sentence have
to be attended to and learned before a unit in the sentence layer
is attended to. As a result, a detector in a higher layer needs
a longer time to learn. This is reasonable because the detector
usually learns and recognizes a longer and more complicated
sequence. To learn the sequence S3, for example, the fastest
possible way would have two stages. The first stage would
present the sequence repeatedly until detectors in the word
layer have learned each individual word. Suppose this stage
takes X trials, depending on the value of C; in (13). After this
stage is finished, that is, presentation of the sequence alone
can activate each word detector in the word layer, the next
stage would be to learn the sentence as the ordered sequence
of words. This stage takes another X training trials. So all
together it would take at least 2X.

A next question is when attention should be paid, or when
a detector should be activated by the system. There is no
general rule except that attention is activated at the end of
presentation of a subsequence. In written English, for example,
attention to words can be prompted by word separators like
blank, comma etc., and attention to sentences can be prompted
by sentence separators like period, semicolon, and so on. In
speech, attention prompters could be sharp transitions between
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vocal movements, pauses between words, etc., though the
difficulty of segmenting normal “running” speech poses prob-
lems, beyond those for “well-defined” sequences in written
text or slow well-enunciated speech, that are not addressed
here. Existence of these separators is not limited to language.
Actually, it is because of the (sometimes implicit) existence
of these separators that one can speak of the hierarchical
organization of temporal sequences.

A computer simulation of the model is partly shown in Fig.
5 for recognizing sequence Sy. The first layer contains units
for representing the basic symbols the 26 English letters. The
second layer contains word detectors, among which the 10
words in S, are represented. The third layer contains sentence
detectors, among which the sentence S, is represented. During
training, the sequence was repeatedly presented, and attention
was allocated according to the strategy described above. That
is, words are attended to and learned first, and the sentence
is attended to after the words have been learned. The model
took 12 training trials to learn the sequence. Interval invariance
is automatically achieved, because it is an intrinsic property
of the recognition model defined previously. As in previous
simulations, the interval of each component presentation was
generated by a ranged random number generator, and a test
was conducted using a different sequence of intervals after
the model has learned S,. Different time scales are clearly
exhibited in the figure if letter units are compared with word
units.

The capacity parameter T has been set to 10, yet the length
of sequences that the model can recognize is not limited by
T. In the above simulation, for example, the length of S
is 53. The length of sequences that a hierarchical model can
learn and recognize increases exponentially with the number
of layers in the model. Say T equals 10, the maximum length
of a sequence learnable from units in the third layer is 100,
from units in the fourth layer 1000, and so on. As noted before,
from the engineering perspective, if we do not constrain the
value of T long sequences can also be learned and recognized
without resort to the hierarchical architecture. But it should
also be noted that after the model learns Ss, it is able not
only to recognize the whole sentence, but also to recognize
individual words in the sentence independently and seems to
involve a measure of parsing.

V. COMPLEX SEQUENCE REPRODUCTION

Sequence reproduction, or generation, is a different and
somewhat more difficult task of temporal information process-
ing than sequence recognition. As mentioned in the introduc-
tion, various solutions have been proposed for reproducing
simple sequences, the main idea being to store transitions
for each pair of consecutive patterns. Wang and Arbib [63]
proposed a further model for complex sequence reproduction
based on the learning mechanism for complex sequence recog-
nition and the separation of detector units from symbol units.
With this same scheme for dealing with complex sequences,
the present model attempts to propose a solution for the time-
warp problem with reproduction. Although interval invariance
is desired for sequence recognition, sequence reproduction
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Fig. 5. Computer simulation of the hierarchical sequence learning model for

recognizing So: “complex temporal sequence learning based on short term
memory.” Only one training cycle is shown in the figure for clarity. During
training, the presentation interval series for S is randomly generated. After
12 training trials, the model learns to recognize So. We only show the external
levels of the units, without displaying their multiple terminals. For each letter
unit, we see that it is activated to its maximum when its letter appears, then
decrements as each subsequent letter is introduced, resetting to zero when the
word separator is encountered. During training, a unit for a given word is
activated at the end of presentation of that word (the attentional learning rule)
and thus learns the sequential letter structure of that word on the basis of the
letter units active at that time. Once the constituent words have been learned,
the same mechanism can be applied one level further up the hierarchy to train
the sentence unit to recognize the given sequential order of the words in Sg.
In the simulation, all units have three terminals, C; = 0.3 for all units in
different layers, and T = 10.

requires an opposite solution: interval maintenance. A dy-
namic tuning mechanism is also presented for degree self-
organization of detector units.

The structure of the model for sequence reproduction has
two layers, as shown in Fig. 6. Layer ( is called the input
layer, which basically serves as an STM model shown in Fig.
1. Multiple occurrences of a particular symbol in a sequence is
represented by one single unit in this layer, so different units
represent different spatial patterns in layer ¢. Units in layer
£ function as sequence detectors as described previously, and
there is a global inhibitor within this layer (see Footnote 1).
These units recognize the contexts of individual components in
a sequence, and anticipate the occurrence of these components.
Layer £ connects with layer ¢ bidirectionally, and before
training connections between them are full. The projections
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+ Layer §

(detector layer)

Layer {
(input layer)

D

A

Fig. 6. Architecture for complex sequence reproduction. Within layer ¢ (the
input layer), every unit inhibits every other one to form an STM model as
shown in Fig. 1. Within layer £ (the detector layer), all units project to a global
inhibitor that further projects back to them. At the beginning, the connections
between layer ¢ and layer £ are all-to-all correspondence. The appropriate
connection pattern between them for reproduction will emerge after repetitive
training with temporal sequences. Plus signs indicate excitation, and minus
signs indicate inhibition.

shown in Fig. 6 depict what results from training, so that
unit ¢ in layer £ receives projections only from those units
in ¢ that represent symbols in the context detected by unit
i, and unit j in layer ¢ only receives input from units in
that anticipate the occurrence of the symbol represented by
unit j. During the training process, a sequence with various
component intervals is presented to layer £. At the end of
each component presentation, a unit in layer £ is randomly
selected (but fixed in successive trainings®) to fire. That is,
training of units in layer ¢ follows the attentional learning
rule. The recurrent connections from layer £ to layer ¢ are
formed according to a Hebbian rule as follows. If unit z in
layer ¢ (recorded as < 4,¢ >) and unit j in layer (< j,€ >)
are firing simultaneously then a connection link from < j,§ >
to < i,{ > is established, and its weight is denoted as WC"E
which will be defined later. All connection weights from umts
in £ to those in ( are initially zero.

A. Degree Self-Organization

The global inhibitor in layer £ receives input from all units
in the layer and projects back to them. A degree parameter d;
is introduced for < 4,£ >, and it affects the dynamics of the
internal state of < 7,& > in the following way (cf. (12))

s§(t) = f(ZZ (et — 1), di) + 5t — 1) = T%)
j=1r=1
(14)
ifx>T—1
h(z,y):{g otherwise / 3)

where label £ in (14) indicates layer £, z;, is the excitation
level of the rth terminal of unit < j,{ >, and W]} represents
the connection weight from the rth terminal of < j,{ > to
< 4,& >. Symbols n and m stand for the number of units and
the number of terminals for each unit in layer {. The domain
of d; is {1,2,---,T}. Through function h(z,y) the role of d;
is to gate in certain excitation levels of units in layer §. For

3 This could be implemented by self-organization as demonstrated by

Malsburg [43] and Kohonen [32]). For simplicity, the current system simply
"remembers" the initial choice.
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instance, if d; = 1, then only when z;, equals T can unit
< j,¢ > affect < i,€ >. That is, if < 4,{ > has degree 1,
it can only sense the most recent item occurring in layer .
Obviously, the larger is d;, the more items can < i, > sense
from layer £. The formulations of W/, and I‘g are modified
accordingly

(150 = W5le= 1+ GO )
Wiz(t) - n(t)/ E] =1 Er’:l ij’(‘)
- ____ %2 3 T - d; +1)? 17

Let the activity of the global inhibitor of layer £ be repre-
sented by z, and g represent the number of units in layer &.
Variable z is defined as

§t—1)-2) (18)

and therefore the inhibitor will be activated if there is more
than one unit firing simultaneously in layer £. According to
(14), the internal state sf(t) can be triggered either by system
attention through If(t) or by input signals from layer ¢. The
latter is called anticipation. What the inhibitor actually does
is to detect conflicts among those detectors in layer &. Since
system attention is always sequential, the inhibitor can only
be activated by conflicting attention and anticipation or just
by conflicting anticipation from the detector layer.

Degree d;(i = 1, -, q) is initially set to 1. Self organization
of d; is done according to

di(t) = di(t—1)+1if s5(t - 1) =1,2(t) = L, di(t —1) < T

(19)

that is, the degree of < ,£ > increments if this unit together
with other units causes activation of the global inhibitor. If
the degree of < i,£ > increments, there will be one more
unit from the input layer that can be sensed by < 4,& >.
Thus the previously learned weight distribution to the unit
(see (16)) will have to change its direction of distribution. In
the situation, the model re-initiates the weight distribution of
< 4,€ > and threshold l“f is also modified according to (17)
based on the new value of d;. From (14), (15) and (16), it is
clear that if d;(t) grew larger than T, the STM capacity of
layer &, it would be equivalent to d;(t) = T in the dynamics
of the internal state and weight distribution of < 4,{ >. That
is why d;(¢) has an upper limit of T'. Value T' consequently
limits the degree of a sequence to be reproduced.

A computer simulation of the model was conducted for
reproducing a complex sequence S3: J - B-A-C—-D -
A-B-A-E-F-A-B-A-G-H-A-B—-A-H-1.
Learning a complex sequence is slower than learning a simple
sequence, because the complex sequence needs to dynamically
increase the degrees of certain detectors, and each time such
self organization is done earlier training of those detectors
is discarded. Roughly speaking, time required for training
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increases linearly with the degree of a sequence. It took
18 training trials before the model learned to reproduce Ss,
whereas 6 trials sufficed to reproduce a simple sequence. Due
to the training scheme, the number ¢ must not be less than
the length of the sequence minus 1. For S3 of length 20,
19 units were selected in layer ¢ and trained to anticipate
the second to the last component of S3 respectively. The
degree vector acquired by the self-organization mechanism is
{1,2,3,1,1,2,3,4,1,1,2,3,4,1,2,2, 3,4, 2} for those detec-
tors. The ninth component E, for example, must memorize
the 4 prior components D — A — B — A in order to be
generated; the second component B, however, only needs
to memorize the previous component J. In the sequence
A-B-C-A-B-D-A- B- E, it might be
argued that symbol B does not need to memorize 2 prior
components, as produced by the above algorithm, but one
prior component since symbol B is always preceded by A.
However the result produced by the algorithm is justified if we
generally allow each component being presented for a different
interval. In this situation different A’s preceding symbol B
may have different time intervals in presentation, and therefore
are, strictly speaking, different.

The above neural algorithm optimally identifies the amou-
nt of context required to reproduce any complex temporal
sequence unambiguously. The context degree vector reveals
many properties of the sequence being reproduced. For ex-
ample, the degree vector produced with S; reflects, among
other things, whether a component is preceded by a sin-
gle component or by a recurring subsequence, and where a
recurring subsequence starts and ends in the sequence. We
believe that this kind of information is important in self-
detection of recurring subsequences and generalization of a
temporal structure from many sequences (like a grammar
from sentences). These open issues are critically important
for further studies of temporal order.

The same problem of finding the minimum amount of
context has been studied by Kohonen [33] for producing
unambiguous inference rules in sequence generation. The
proposed solution, termed “dynamic expanding context,” relies
on explicit rules for resolving inference conflicts. The right
hand side of an inference rule is a symbol in a sequence
and the left hand side of the rule consists of the context
of the symbol. All left hand sides are initially set to the
predecessors of the right hand side symbols, and later repetitive
scanning will expand left hand sides as necessary for resolving
conflicts. All rules are stored in a table, and a significant
amount of table searching is required by the system. The
method has been applied to speech recognition and music
generation [33], [34]. A basic difference of our proposal is
that we do not resort to any external rules. Units represent-
ing symbols and detectors in our model are connected in
a neuron-like manner, and communication among units is
typically neural. Thus information is distributed over units
and connections, and sequence processing is parallel. High-
level operations, like table lookup or memory search, are
avoided in the system. With little modification, our model
should be able to apply to those application domains explored
by Kohonen.
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B. Interval Maintenance

In our model, the interval length of a component presenta-
tion is the time period during which the external input E of
the unit corresponding to that component is equal to 1. This is
equivalent to the period when the excitation level of the unit
equals 7'. In the above model of sequence reproduction, a unit
in layer { detects the onset of the context of a component in
order to trigger that component in the reproduction process.
For sequence S3 above, for example, there is a detector in
layer £ that is trained to detect the context D — A— B — A
and to anticipate the onset of symbol E. According to the
model, after training this detector is activated just one time
step after the second A starts to occur (see (14)). But E should
not be triggered until the whole interval of A occurrence
has elapsed. The idea for interval maintenance is to code
intervals by connection weights from the detector layer to
the input layer. Since the backward projections from layer
¢ to ¢ provide many-to-one correspondence, an interval can
be simply coded by a backward connection weight such that
temporal integration of the entire interval is required to trigger
the next component. Due to the introduction of backward
projections from layer £ to layer ¢, the previous internal state
of unit 7 in layer ¢ is now defined as (cf. (1))

(=41t if Ei(t)=1,E(t-1)=0
sl = {f( 1 WEFES(t))  otherwise
(20)

where Ef-(t) is a cumulative activity of unit < j, £ >. Suppose
that during training, each presentation of a sequence has the
same interval series, then Ef is defined as

FE(1) = {gii% sE(r), it s5(0) = 1

R otherwise

1)

where ¢ is the start of the period during which unit < j,¢& >
is consecutively activated till time ¢. Note that the temporal
integration Ef is easy to compute locally and recursively.
At the end of this consecutively active period tz,Ef(t) =
t2 — 1. Training of the backward projections is defined by the
following Hebbian rule

=5, WMESN(H) > 0,s8(t-1) = 1,

to—117
sit—1)=0,s,(¢) =1
if B,(t) = 0.

1
ES(1-1)

WEE(t) =

WSS (- 1),

(22)

The condition that E5(t) > 0,s5(t — 1) = 1,s;(t — 1) = 0,

and s;(t) = 1 holds iff the detector of unit < j, £ > precedes

the onset of the next symbol represented by < i, > in the

sequence. This time instant is the same as to. In conclusion,

the time interval of a symbol presentation is coded as the
reciprocal of the corresponding connection weight.

In general, one interval series of presentation may be
different from another one. In order to cope with this situation,
instead of storing one interval directly in a weight, two
parameters are stored in the connection, one is an average
w of different training intervals and another is a deviation
o2 of training intervals. During reproduction of a sequence,
a Gaussian number is generated based on p and o2, which
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has the same function as ¢z — ¢; in (22). Each generated
interval will also modify x and o2 like a presentation interval
Therefore, learning is a process of forming p and o?. Let
e; represent the interval of the ¢th presentation of a symbol.
Two factors are taken into consideration in forming p and
o?. First, each interval should contribute a certain amount.
This is called the averaging factor. Secondly, a recent interval
should have more impact than a remote one. This is called
the recency factor. These two factors are embodied in the
following learning rules.

M1 = €1
23
{ k1 = (L = Bk + Bextr @3
where 3 is the recency parameter ranging between 0 and
1, which ensures that, except the first interval, the most
recent interval has a constant contribution regardless of the
presentation history. Expanding the above formula, we have

e = Bex + B(L = Ber—r + B — B)ex—2+ -
+B(1- B 2er + (1 - B)F ey (24)

where 3+ B(1 — B) + B(1 — B)2 + - + B(1 = B)* % +
(1 — B)*=1 = 1, so that the definition of 1y, is still a type of
averaging. From (24) it is clear how each interval contributes
to the overall average, and the more recent an interval is, the
greater its effect. If we view the above weighted formulation
of p as the average from samples eg, ez, -+, ex taken with
frequencies fi = (1 ﬂ)k_17f2 =B -k 2 =0,

respectively, we can define o7 by the formula

k
ok = Z — pie)?
=k
Z #kal e
= le{(] - ﬁ)k—leg + ﬁ(l — Ig)k—zeg 44 ﬂei
—m[(1 = B)*ler + (1 = B)F Pea+ - + Bexl}
(25)
and

oty = B (= e 4 B - 90

+5&4—uhﬂa—ﬁv*m+ﬂu—ﬂﬁ*m
-+ Ber-1l} (26)

which yields the following recurrence learning rule for the
deviation

0
{a,%: k(kl 1[3) 2071 + Blex — px—1)?] @7

so that 02 = 0, if e; = ---
With the learning rule of (23) and (27), interval maintenance
defined above is thus achieved. This model ability should again
be attributed to separation of context detection in layer £ and
symbol presentation in layer {. Because of this separation, a
unique link can be established from the detection layer to the
input layer, and this link is able to carry interval information
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Fig. 7. Reproduction of the complex sequence S3: .J-B-A-C-D-A-B-A-E-
F-A-B-A-G-H-A-B-A-H-I. The interval series {9, 3, 6,9, 5,9, 7, 3, 6,
4,9, 4,5,8,5,4,5,3,7, 8} was first randomly generated, and fixed in
subsequent training trials. The model took 18 training trials before it was able
to reproduce the entire sequence with presentation of S3’s initial context: J.
Only the last training cycle and the reproduction cycle are plotted. Note that
not only the order but also the time intervals of the sequence were reproduced.
All units in layer ¢ have three terminals, and C; = 0.3. The other parameters
are 3 =03, and T = 7

without confusion even when allowing complex sequences. A
computer simulation of the model was conducted to reproduce
the complex sequence Ss. During training, the interval of each
symbol was initially generated by a ranged random number
generator, but fixed in subsequent training trials for simplicity.
As previously stated, the model took 18 training trials to learn
the sequence. The number of trials is basically decided by
the requirement of degree self-organization. Let us define the
initial context of a sequence as the beginning subsequence
required to uniquely determine the rest of the sequence. After
learning, the entire sequence with various interval lengths was
able to be reproduced by presentation of its initial context,
subsequence J in this case. Fig. 7 presents the simulation
result, which contains a temporal course of the last training
trial together with the reproduction process. For parameters see
the legend of the figure. Since in this simulation the speed of
presentation is the same from one trial to another, the acquired
deviation for every link interval is zero. Therefore the time
course of the sequence is faithfully preserved in reproduction.
Reproduction of a learned sequence does not have to start
with the initial context. Presentation of any subsequence can
reproduce the subsequent part of the sequence, as long as the
subsequence can uniquely determine the following part of the
sequence.

While the time course of a sequence can be reproduced by
the model, the overall speed of reproduction can be easily
controlled with a global rate tuning agent that projects to all
synapses from layer £ to layer ¢ in the form of shunting
inhibition. The agent can scale all p's (averages) through
shunting inhibition, thus implementing the “scaling effect” of
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sequence generation. The scaling effect is often seen when
musicians are learning a new piece: they practice it at a
slow pace to get relative timing, and then play it faster and
faster. It also occurs frequently in speech production [42]. A
similar function has been recently demonstrated by Heskes
and Gielen [25] based on a Hopfield-type associative memory
model. The main idea was to use an adaptation scheme of
neuronal thresholds, thus scaling delays between transitions
of consecutive patterns in a sequence. Their method works
well with a constant interval for all patterns, but it appears
problematic to deal with variable intervals as handled in this

paper.
VI. DISCUSSION

A. On Complex Temporal Sequences

A basic feature of this model is to cope directly with
complex temporal sequences, considering simple sequences as
a specific case, whereas many other models do it the other
way around. Complex sequences, in fact, are indispensable for
almost every kind of natural temporal behavior, in reading,
writing, speech production, music generation, skilled motor
behaviors, and so on. Processing of complex sequences must
be achieved before any neural network model can be applied
to solving those problems of temporal order.

In the back propagation approach, when a state is fed
back either from the output layer (the Jordan model [28])
or the hidden layer (the Elman model [18]), certain his-
tory information is preserved, and it was suggested that
this feedback information can be used for disambiguation
required in the complex sequence situation. In the Jordan
model, the state that is used as input to generate the next
component is coded as a temporal summation of a number of
previous components in the sequence. Since the entire previous
subsequence is coded by a single state, it is unwarranted that
different subsequences can be uniquely recorded. Also, in
order to let the same recurring symbol appear in the output
layer, it is possible that dissimilar inputs* would have to yield
the same output, while similar inputs would have to yield
different outputs. This would make training very difficult, and
result in poor generalization (see also [4]). In our model,
however, a previous history is distributed among different
units, each of which maintains its own activation over a
variable amount of time, depending on further inputs to the
STM model. Disambiguation thus can be ensured. The use
of hierarchies has been suggested for helping reproduce a
complex sequence in a backpropagation architecture, and this
will be commented on later.

The Elman model has been mainly applied to recognize
sequences with some formal description, like a subset of
regular languages [18], [52]. Pollack also demonstrated a
similar function using a different extension of the backprop-
agation network [48]. The difference between their work on
temporal order learning and the kind of work presented here
is that they are concerned with a set of sequences as a

4 Similarity here is measured by the Hamming distance, i.e., the number of
different bits in two matrices.
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whole while we are concerned with learning (recognizing and
reproducing) single sequences. These two types of study on
temporal order are complementary, and both are necessary in
a complete system of temporal order processing, say speech
understanding, where recognizing single words is a necessary
early step and recognizing grammatical structure is a later step.

In the approach based on spin-like neurons, recognition
and reproduction of complex sequences have been studied
by a number of authors. Tank and Hopfield [59] rely on a
set of patterned delays to program the recognition circuit.
However, no mechanisms have been proposed for how to
acquire and maintain these delays. The selection model [11]
uses high-order synapses, synaptic triads, for coding basic
temporal order. To learn a sequence, high-order connections
are randomly made and a desired architecture can be selected
by an input sequence-simple or complex-according to the
authors. Besides immense connections required to learn and
reproduce a reasonably long sequence, it does not appear
from the model that reproduction of an arbitrary complex
sequence is guaranteed. The use of high-order synapses is
also the key to the model by Guyon et al. [23], where the
order of the synapse has to be made at least equal to the
degree of the sequence in question. The system overhead due
to the number of connections caused by introducing high-order
synapses becomes a serious concern. A different method has
been taken in the model by Kiihn er al [37] for complex
sequence reproduction. They focus on one type of complex
sequences, that is, sequences that contain only one recurring
subsequence that itself is a simple sequence. A number of
specific measures were taken to solve this kind of sequence
generation problem, such as using two time scales for local and
remote associations. This type of sequences belongs to the so
called first-order complex sequences, which can be reproduced
with a direct extension to the one layer network for sequence
recognition [63]. To link remote components in a sequence,
the present model does not resort to high-order synapses,
but instead introduces multiple terminals for each unit. The
number of connections used is thus a constant multiple (m)
of those needed in a conventional network. In the high-order
synapse scheme, on the other hand, the number of connections
needed is D orders of magnitude higher, where D is the degree
of the sequence.

In most of the neural network models for sequence process-
ing, the time-warp problem has not been addressed, nor has
generation of a sequence with different component intervals.
Notably, Tank and Hopfield have addressed the problem by
using broadly tuned time delays [59], an idea later extended
to speech perception [60]. This scheme can successfully com-
pensate limited variations of the presentation duration of each
symbol. Since a delay range is attached to each symbol,
rate invariance that requires a global constraint cannot be
achieved. Anderson et al. [2] proposed a model for auditory
pattern recognition based on a real-time recurrent learning rule
[66]. They demonstrated that recognition is not affected if
the presentation rate is reduced by half. The present theory
provides a solution to the time-warp problem, in conjunction
with the previous algorithm for complex sequence learning.
In reproduction, in addition to general ability of interval
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maintenance, our system allows a different presentation speed
of a sequence for each training and sequence reproduction does
not generate a rigid time course, but rather is random within
a certain range circumscribed by the recency and averaging
factors. The ability to handle the time-warp problem and
certain erroneous symbol problem in the domain of complex
sequences represents a significant step forward in processing
temporal order by the neural network approach.

B. Hierarchies

In continuation to the above discussion, hierarchies have
been proposed as a way to cope Wwith complex sequences
[15], [27], [29]. A simple subsequence at some level is coded
as a single symbol in the next higher level. During repro-
duction, components in higher levels are generated at slower
time scales, allowing time for generating lower subsequences
corresponding to these components. Within each level, only a
simple sequence needs to be reproduced by a back propagation
network. One obvious problem is that parsing of a sequence
into different levels has to be provided externally by the
designer in these networks, since back propagation networks
have not been shown to be able to self-organize an elementary
sequence into various hierarchies. As pointed out before,
complex sequences are ubiquitous. If the basic network can
only handle simple sequences, a great deal of parsing would
be required before the network models can be used.

The idea of employing hierarchies is used differently in
our model from their proposals. The motivation behind our
proposal is to overcome the limitation of capacity of STM.
Hierarchies are not required for processing complex sequences,
since this is a basic capability of the model. For instance, the
English word *‘efficiency’’would require several hierarchies
to be formed in the proposed back propagation models, and
several ways exist to organize it into different hierarchies that
contain only simple subsequences, and no solid reasons seem
to favor one parsing scheme while rejecting others. This word
would be naturally handled as a single entity in our model.
Since STM capacity limits human temporal order processing
and since chunking is the basic means for humans to organize
temporal information, we therefore can largely rely on natural
delimiters when we use the present model to hierarchically
process long and complicated sequences arising from natural
temporal behaviors.

Using performance measures, Nissen and Bullemer [46]
have demonstrated that attention is required for subjects (hu-
mans) to leamn to reproduce a temporal sequence of symbols.
Under distraction with dual-task conditions, acquisition of the
sequence was minimal. The sequence used in the investigation
was Sy : D—B-C—A—-C—B~D—-C—B~—A,acomplex
one. A more detailed study was done recently by Cohen et al.
[8] using the same experimental technique. They studied three
example sequences that can be symbolized as S5 : A — E —
B-D-C,S¢: A—D—-C—-A-C—B,and §7: A—-C-B~-
C — A— B, and are classified as unique, hybrid and ambiguous
sequences respectively. During training, each sequence repeats
itself, thus forming continuous cycles. From the experimental
results they conclude that the unique and hybrid sequences can
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be learned by subjects under attentional distraction, but the
ambiguous sequence is much more difficult to acquire under
the same attentional distraction. Interestingly, they suggest that
ambiguous sequences involve hierarchical representation and
thus require attention. From the present model, we would
like to offer a different explanation of their data. More
attention is required to learn and reproduce complex sequences
(S4,S¢ and Sy) than simple sequences (Ss) because degree
self-organization is required in layer £ when reproducing a
complex sequence. The model further predicts that higher
degree complex sequences are more difficult to acquire than
lower degree complex sequences. For example, Sy has degree
3 and would be more difficult to learn than Se which has
degree 2. This is because higher degree sequences need more
levels of self-organization according to the present model than
lower degree ones. As for Se and S, although they have the
same degree of 2, every symbol in S7 has degree 2, whereas
two symbols in Sg have degree 1. Thus, Sg is easier to learn
than S7. In sum, our explanation differs from theirs in that
we see S5 and Sg belonging to different classes while they do
not. In fact, their data to us favor a three-way classification
more than a dichotomy. In addition, our explanation clears a
confusion that seems to exist in their paper. That is, S¢ would
need a hierarchical representation as well and thus attention if
hierarchies are required for reproducing complex sequences,
contradicting their conclusion that it can be acquired under
attentional distraction.

It is interesting to notice linkage between the attentional
learning rule and attentional requirements in learning se-
quences by humans. Attention is perhaps also needed for
learning a simple sequence, like S5 above. The difference
revealed in acquiring simple sequences and complex sequences
may suggest different amounts of attention required. Even
under distraction with dual-task conditions, it is hard to say
that attention is fully excluded in performing sequential tasks.
In fact, from the revealed data curves [46], [8], there is a
tendency to acquire complex sequences even under the dual-
task distraction.

Although our demonstration of hierarchical representation
of temporal sequences uses natural separators to form different
levels, people also use other heuristics for chunking. For
example, in the U.S., the 10-digit phone number 2137406991
is often parsed into three chunks: area code (213), then 3
digits (740), then 4 digits (6991). It is thus clear that a
full theory of chunking will include a knowledge-dependent
theory of ‘‘high-level’’chunking to complement the purely
sequence based ‘‘low-level”” chunking studied here. Another
related issue is how attention is allocated in the situation of
hierarchical sequence recognition. We call this the scheduling
problem. In the simulation of the hierarchical sequence recog-
nition section, the scheduling simply followed the bottom-up
strategy. That is, a sentence is attended (learned) only after its
constituent words have been learned, and a word is attended
only after its constituent letters have been learned. Scheduling
will become more complicated if chunking of a sequence
without explicit separators is required. Scheduling is related to
selective attention, where a number of neural models have been
developed (see among others [13], [31]). An obvious extension
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to the present model is to have a competitive network model
for self-organization of attention scheduling that can avoid
having an external instructor teach the system.

C. Efficiency

Attentional training for sequence recognition or reproduc-
tion, depending on the value of the gain factor C; ( (6)),
usually takes from several to tens of trials before the model
learns the task. By tuning the value of the gain factor,
the speed of learning can be controlled externally. Even
in hierarchical sequence recognition and complex sequence
reproduction, the most time-consuming tasks, the speed only
deteriorates linearly with the number of layers or the degree
of a sequence. The number of training trials needed for the
model is comparable with that for humans in performing
similar tasks [46], [8]. Not only that, the present model exhibits
remarkable computational advantages over other models. In
back propagation models, training a network usually takes
thousands or more trials [50]. This amount of training cannot,
of course, be avoided for the models that use the back-
propagation algorithm for sequence reproduction. In spin-like
network models, since associations are preprogrammed in the
network, no training is involved in general. Even so, it usually
takes a significant amount of time for the system to settle down
to an equilibrium state of the dynamics.

As mentioned in Introduction, it has been proposed to
use a backpropagation network with a buffer for temporal
sequence recognition [62], [39]. Since a temporal sequence
is converted into a spatial pattern, the proposal works for both
simple and complex sequences. However, this leads to much
more connections in the network that need to be adjusted by
training, thus resulting in a formidable amount of training time.
According to Waibel [61], 18 days on a 4-processor Alliant
supermini was required to train the network to recognize 6
stop consonants (/b,d, g,p,t,k/). Even in terms of hardware
use (space), our model also compares favorably with the buffer
scheme. For complex sequence recognition, we introduce
multiple terminals for each unit to hold multiple occurrences
of a recurring symbol. In a sense, multiple terminals play the
same role as a buffer except an important difference. Terminals
in our scheme shift only when a symbol repeats in a sequence,
whereas in the buffer scheme a shift of all ‘‘units’’ (so to
speak) is required at every time step. Thus, our approach
saves hardware use significantly. For example, 3 terminals are
sufficient to learn sequence S; (see Fig. 3), but a buffer of
length 9 is required for the buffer scheme.

D. Units

The building blocks of the present theory are units, which
can be thought of as local neuron populations. Many functions
of a unit, like spatial summation of inputs (see (12)), temporal
summation of a single connection (used for interval mainte-
nance), connectional plasticity (see (13)), etc., resemble those
of a single biological neuron. Yet some more functions are
assumed. The most outstanding one is, perhaps, introduction
of multiple terminals for a single unit. These terminals could
anatomically correspond to multiple neural fibres or many
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synaptic terminals possibly efferent from a neuron assembly.
As discussed before, having different symbols represented by
different units (“grandmother cells”) is consistent with the
concept of local neuron populations, which has been utilized in
other situations [5], [64], [56]. Our results suggest an important
computational function that could emerge from interactions
among neuron assemblies. More distributed representations of
the individual functional units should be possible.

We have not gone into detailed neural circuits for im-
plementing units of local neuronal populations. A style of
this implementation of local populations can be found in
Buhmann and Schulten [5] and in Sporns et al. [56]. Neural
oscillations might be able to provide an implementation of
the excitation levels of units that only take discrete numbers
[19], [64], [63], [56]. In this representation scheme, a neural
oscillator that can be implement by a neuronal assembly (see
[56]) would correspond to a unit, and the amplitude of an
oscillation would correspond to the excitation level of a unit. In
Wang and Arbib [63], discrete amplitudes are demonstrated by
reciprocally connected units that damp autonomously in time,
corresponding to the decay theory. This new model, however,
would require replacement of the autonomous decay by the
one driven externally by other units.

E. Studies of Delay Intervals,

The recency factor of interval acquisition in the learning
rule of (23) and (27) is supported by biological data. Kojima
and Goldman-Rakic [35] found that in performing delay tasks,
a group of prefrontal neurons in monkeys displayed time-
dependent firing patterns. In their experiments, delays of 2,
4 and 8 s were employed for training the monkeys to depress
the hold keys until the delay period ended. By increasing the
length of the delay, latency of firing activity and the position
of firing peak were observed to readjust to the changes in the
anticipated time of the delayed response. Readjustment was
observed after about 10 trials with a new delay period. We
see this readjustment as manifestation of the recency factor in
forming a delay interval, although the qualitative nature of the
data precludes a more detailed analysis.

Less direct evidence comes from studies of the interstimulus
intervals (ISI) in classical conditioning. After repeated pairing
of a conditioned stimulus (CS) and an unconditioned stimulus
(US), the animal will develop the conditioned response (CR)
after presentation of the CS, and the distribution of CR
latencies centers near the ISI [54]. In the rabbit’s nictitating
membrane response, it has been observed that when ISI
shifts from one value to another, the CR latency originally
conditioned to the first value was found to shift rapidly to the
one corresponding to the second value [54], [41], [9], [26].
This evidence is typical of the recency factor. In human eyelid
conditioning, what Ebel and Prokasy [17] observed from the
CR latency distribution well conforms to our learning rule. As
training with a fixed ISI progresses, the standard deviation of
the CR decreased, and both mean and standard deviation of
latency varied directly with shifts in ISI.

More specifically, take one particular link in the above
model as example. If the link is trained with interval At;
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Fig. 8. Data and model outputs for shifts in mean CR peak latency in blocks
of 9 test trials (days) for the 200- and 700-ms. In the plots, ISI conditions
are indicated by the labels for all six groups, with F for fixed, A for abrupt,
and G for gradual. Each of the nine days of training consisted of 90 paired
CS-US trials and 10 CS-alone test trials, and beginning with the fifth trial of
each 100-trial session, every tenth trial was a test trial. Each point represents
the mean value of CR peak latency over 10 test trials within a day. Under
the gradual condition, ISI incremented or decremented in steps of 25 ms after
every 20th trial; and for the abrupt condition, ISI was immediately shifted
from one interval to the other throughout days 6-9. (a) Experimental data.
Each condition group contained 12 individuals, and the result was the average
over the group (redrawn from [9]). (b) Model results. The same group of ISI
conditions were used to yield the comparable results with the experimental
preparation. In the simulation, 8 = 0.02. (c) Simulation results from the pure
averaging method (see text).

first, and later it is trained with interval Aty, the above
learning rule predicts that the interval acquired by the link
will shift gradually from Aty to Atg, due to the recency and
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averaging factors. This model phenomenon is strikingly similar
to the data of Coleman and Gormezano [9] from classical
conditioning of the rabbit’s nictitating membrane response, as
summarized in Fig. 8(a). They studied the effect of ISI shifts
by employing ISIs of 200 and 700 ms and three subsequent ISI
shift conditions (fixed, gradual, and abrupt) with two directions
of ISI shift (short to long and long to short). In the gradual
shift condition, the intermediate ISIs between 200 and 700
ms were used during the shift training (the last four days of
a nine-day period), while in the abrupt case, the animal was
first trained in days 1-5 with one interval, and then trained
in days 6-9 with another interval. Our model response with
the learning rule (23) was shown in Fig. 8(b). Compared to
Fig. 8(a), the model yields not only comparable quantitative
results, but also similar time courses. In particular, both the
animal group and our model exhibit a linear shift for gradual
conditions, and exponential shift under the abrupt condition.
As a comparison, Fig. 8(c) shows the results produced with
a pure average model, where pp = %ZLI e; (cf. (23).
It is clear to see, without the recency factor, how poor the
results are. Furthermore, the learning rule (23) predicts that
the amount of prior preparatory training does not affect the
later shift in mean CR peak latency. More specifically, in
the Coleman and Gormezano experiment, we predict that the
same shift occurs even with just one day prior training (instead
of five days in the original experiment). The similar gradual
shift was observed in the CR topographies (instantaneous CR
amplitudes) in the direction of the ISI shift. A later observation
by Hoehler and Thompson [26] confirmed the systematic
changes in the CR topographies in the direction of the ISI
shift.

F. Cognitive Aspects

The present model is based on the interference theory
of forgetting, retroactive interference in particular [65]. Our
work demonstrates that a drastic difference in computational
power could be gained by adopting a different view from
basic studies of cognitive science. The computational model
of STM offered here represents a simplified view, and has not
incorporated other characteristics like proactive interference
and the similarity factor. Nonetheless, our theory presents first
attempts to solve complex problems using basic cognitive
models.

Another cognitive source of the STM model is from Miller’s
work [44]. The magic number seven plus or minus two is
explicitly incorporated into the excitation level of a basic unit
(parameter T'). The technique to overcome the capacity of the
STM model, i.e., using hierarchical representation of temporal
sequences, is directly inspired by the chunking idea that reveals
how humans process information [44], [53]. Different layers
in the model (see Fig. 4) correspond to different levels of
the hierarchical representation, and process different extents
of temporal sequences. The hierarchical model of sequence
recognition suggests that there should be a distinct STM within
each layer, and thus different levels of STM that function
rather independently. Different time scales are characteristic
of different levels of STM, but each STM obeys the same
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description, like the capacity limit, interference and so on.
This is a novel prediction of the theory for human behaviors
of STM at the cognitive level. This prediction could be tested,
for example, by allowing a subject to read or to listen to a
piece of hierarchically organized material, and later asking
what the subject can identify or recall from different levels
of hierarchies. Of course, our model represents just a much
simplified view on the richness of hierarchical knowledge
representation and the chunking theory. Different levels of
hierarchies may not correspond to different physical levels of
neural networks, and a mechanism of establishing multiple
levels of hierarchies within a single level of network may be
desired.

How to recognize a long sequence, like one composed of
hundreds, even thousands, of components? Two ways may
be possible from the present theory. One is to utilize the
hierarchical scheme described before. Because the number of
elementary components in a sequence that can be recognized
increases exponentially with the number of layers in the model,
the hierarchical scheme offers a very effective method for
recognizing long sequences. Yet another way is to make use of
the process of sequence reproduction. Long sequences could
be very simple (in terms of the degree of a sequence), and
to reproduce them only needs to detect subsequences whose
lengths are not larger than the degrees of the sequences, and
may not involve recognition of long subsequences at all. In
other words, the idea is to transform recognition of long
sequences into reproduction that requires only recognition of
possibly much shorter subsequences. The price of that would
be an extra comparison of the sequence reproduced by the
model (mentally) with the one being presented externally.

VII. CONCLUSION

The goal of this paper is to explore mechanisms for pro-
cessing temporal order. A unified theory is provided for
learning, recognition, and reproduction of complex temporal
sequences. The entire model is built upon units corresponding
to local neuron populations, and thus suggests a new level
of modeling. Time intervals of sequence components do not
affect recognition, but are preserved in reproduction. The
present computational theory is inspired by cognitive studies
not only in formation of the short-term memory model, but
also in modeling of hierarchical information chunking. We
hope that this computational theory can serve both as a theory
of temporal order learning in humans and higher animals, and
an effective algorithm for engineering applications of temporal
information processing.

We demonstrate throughout the paper that complicated
aspects of temporal order can be achieved by temporal linkage
(local and remote) among different levels of sequence compo-
nents, going much beyond what can be achieved by simple
associative chaining as rejected by Lashley [40]. Meanwhile,
we realize that many other problems with temporal order,
like goal-directed planning, syntax formation, and hierarchy
construction, remain largely untouched. However, we believe
that the theoretical framework lays a sound ground for further
study of temporal integration.
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