Complex Temporal Sequence Learning
Based on Short-term Memory

DELIANG WANG AND MICHAEL A. ARBIB

We design neural networks to learn, recognize, and reproduce
complex temporal sequence, with short-term memory (STM) mod-
eled by units comprising recurrent excitatory connections between
two neurons (a dual neuron model). The output of a neuron has
graded values instead of binary ones. By applying the Hebbian
learning rule at each synapse and a normalization rule among all
synaptic weights of a neuron, we show that a certain quantity,
called the input potential, increases monotonically with sequence
presentation, and that the neuron can only be fired when its input
signals are arranged in a specific sequence. These sequence-
detecting neurons form the basis for our model of complex
sequence recognition, which can tolerate distortions of the learned
sequences. A recurrent network of two layers is provided for repro-
ducing complex sequences.

I. INTRODUCTION

The ability to understand one’s environment, essential
for intelligence, is not static. The order in which events
occur can be even more important than the events them-
selves, and an intelligent system, whether it be a frog, a
robot, or ahuman, must be able to detect this ordering and
to reproduce this ordering on some cue. Yet many attempts
to model neural networks, such as associative memory [1]
and the Boltzmann machine [2], dealt only with static equi-
librium rather than with ordering of patterns.

Generally, a temporal sequence 8 is defined as: p; — p,
— +++ — Py Each p;(i =1, - -+, m)is called a component
of § (sometimes we call it a spatial pattern, or just a symbol).
The length of a sequence is the number of components in
the sequence. In general, a sequence may include repe-
titions of the same subsequence in different contexts. For
example, 8;: C-A-B-D-A-B-E contains repetitions of subse-
quence A-B, and such a subsequence is called a recurring
subsequence. The correct successor can be determined
only by knowing symbols prior to the current one. We refer
tothe prior subsequencerequired toreproducethecurrent
symbol p;in § as the context of p;and the length of this prior
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subsequence as the degree of p;. The symbol D in 8,, for
example, has a degree of 3. The degree of a sequence is
defined as the maximum degree of its components. A 1
degree sequence is called a simple sequence, and other-
wise a sequence is a complex sequence. If a recurring sub-
sequence of § contains in itself another recurring subse-
quence, e.g. A-B-Ain A-B-A-C-A-B-A-D, 8 is called a high-order
complex sequence, otherwise a first-order complex
sequence.

Neural networks to store and recognize a temporal
sequence of input stimuli have been previously studied.
Grossberg [3] demonstrated one neural network called the
outstar avalanche that can be used to generate temporal
patterns. The outstar avalanche is composed of n sequen-
tial outstars. Any outstar 9, can store a spatial pattern and
be activated by a signal in the vertex v;. These vertices are
connectedas v, = v, — - - - = v, and asignal fromv;arrives
with some delay at v, , ;. So an initial signal at v, can produce
sequentially the spatial patterns stored in 9;, My, - - -, M,
respectively. Based on the anatomy of the dentate gyrus
region of the mammalian hippocampus, Stanley and Kilmer
[4] designed a network called the wave model which can
learn sequences of inputs separated by certain time inter-
vals and reproduce these sequences when cued by their
initial subsequences. Recently, using a bidirectional asso-
ciative memory built from two fields of fully connected neu-
rons, Kosko [5] showed that by feeding the spatial pattern
output from one field back to the other field, the network
can generate a sequence of patterns over time that alter-
nates between the two fields.

Using a synaptic triad made up of three neurons A-B-C
as building blocks, Dehaene et al. [6] proposed a layered
neural network, called the selection model, which can rec-
ognize temporal sequences. The description of a synaptic
triad guarantees that neuron B is activated only when A and
C appear in the order C-A, that is, neuron B is made
sequence-sensitive. A network of synaptic triads can be
constructed for a sequence of any length, which may
include some repetitions of a part of the sequence. In order
to make the neural network able to learn an arbitrary
sequence, connections among these synaptic triads are
made randomly and the resulting network can be selected
by an input sequence. This selection model is based on the
ad hoc assumption on the architecture of the network, so
learning is severely limited by the immense connections
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that would be required to learn an arbitrary temporal
sequence which is not trivially short.

Storage of temporal sequences in the spin-like Hopfield
network has been proposed recently by several authors (see
[71-[12)). In this paradigm, each pattern is stable over some
time period, at the end of which a sharp transition leading
tothe next pattern occurs due to stored transitions between
consecutive patterns. One difficulty is the storage and
retrieval of complex sequences. In most of these models,
a given pattern can occur only once among all the stored
sequences, which is a severe restriction.

In this paper, we propose a differentapproach for storage
of temporal sequences. First of all, a dual neuron model is
used for storing a signal for a short time. The output of this
gradually decaying dual neuron is a graded signal, rather
than the binary signal used in many neural network models.
Following the Hebbian training [13] of ordered graded sig-
nals a neuronal quantity, the input potential, which is the
weighted sum of the ordered inputs, is shown to increase
monotonically until it saturates. After this training, if we set
the threshold of the neuron to the saturation point of its
input potential, then this neuron can only be activated by
this specific sequence of inputs. This property naturally
leads to the concept of a sequence-detecting neuron. An
important thing is that, after learning, this type of neuron
is fired by a previous sequence of patterns, not just a pre-
vious pattern, so it overcomes the limitation of networks
which can only generate simple sequences. The same idea
is used for recognizing any complex sequence. Further-
more, we show that by adding another sequence-detecting
layer, any complex sequence can be reproduced.

Il.  TEMPORAL SEQUENCE RECOGNITION
A. Dual Neuron Model of STM

In order to link two temporally discontiguous patterns,
the previous pattern has to be preserved for a certain period
of time. This temporal link can be provided by short-term
memory (STM). STM has been extensively studied, and is
suggested to be physiologically due to recurrent excitatory
connections. This physiological explanation is adopted in
many efforts of neural network modeling (for example, see
[14], [15]). To simplify the process while preserving the basic
idea, we use a dual neuron (Fig. 1(a)) to model STM. The two
neurons N; and N, have activities or membrane potentials
my(t) and m,(t) described using the leaky integrator model
(in discrete form)

my(t + At) = my(t) + At[—Km(t)
+ Tomy(t + At — 7/2) + I(t)]

my(t + At) = my(t) + At[—Kmy(t)
+ Tmu(t + At — 7/2)] W)

where K is a relaxation constant, T;, and T,; are synaptic
weights, Atisadiscretization interval, and 7is the cycletime
for a signal to travel between the two neurons. /(t) repre-
sents external input to this dual neuron. Equation (1) can
form a single damped oscillatory system with period 7 by
choosing appropriate parameters. Although similarin form
to other coupled oscillators (for example, see [16]), the oscil-
lation created here damps. Each time the signal appears on
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Fig. 1. a) A dual neuron. b) Response of a dual neuron
model, which maintains a signal for a certain memory span.
The model parameters are: K = 8.3, Ty, = 6.5, T,; = 100, 7
= 12At, At = 0.1.

Nj, the amplitude of the signal decreases. This decrease will
be designated by function g(/7), which is monotonically
decreasing ranging between 1 and 0 with g(0) equal to 1.
Analysis shows that g(/7) is an exponential decay function,
as manifested in Fig. 2(b) which shows the response of a
dual neuron model when N; is stimulated initially. This rep-
resents a basic model for STM.

B. Sequence-Detecting Neuron Model

A biological neuron updates its state (firing and silent) in
a few milliseconds, a typical presentation of a symbol in a
sequence lasts several hundred milliseconds, and the
length of STM is usually in seconds. For simplicity, we will
use a single neuron to represent a symbol in a sequence’,
so we use two time scales to model the fact that symbol
transition in a sequence is much slower than neuronal state
transition. One time scale is for the interaction among sym-
bols (called symbol scale), here represented by dual neu-
rons; another is for interaction among neurons within each
oscillator (called neuron scale). Again to simplify the situ-
ation, we choose one step on the symbol scale, denoted as
A, to equal r rhythmic periods of a dual neuron (namely A
= rr). From the previous section we see that STM can last
many As, hence rhany symbol presentations.

The idea for this sequence-detecting neuron model is that
sequence learning polarizes the synaptic weights of the
detecting neuron in such away thatthese polarized weights
can form the maximal membrane potential when the
learned sequence is presented (maximization principle).
Suppose that we have n dual neurons (Nq3, Nag), {Nqz, Np2),
<+, (Ny, Nopy, where each N,; connects to all the neurons
Ny(i # j) in the network. The activity of neurons Ny; and
Ny; are my(t) and my(t) respectively, and are defined as
(compare Eq. (1)):

'One single neuron here should be viewed biologically as a neuron
assembly.
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Fig. 2. a) Input potential increases monotonically with
number of training trials. b) Training for sequence recog-
nition. Ten dual neurons have been modeled, and temporal
activities of Nyy, Nyg, - - -, Ny5, and Ny 4 are displayed in the
figure from top to bottom. Note that in each case, a dual
neuron must fire to first achieve a nonzero membrane
potential, but thereafter activity decays according to the
curve g (as shown in Fig. 1(b) on an expanded time scale).
A symbol indicates which pattern the corresponding neu-
ron represents. The sequence to be detected is 8,: A-B-C-D-
E. During each training cycle, the sequence is presented,
followed by an activation of a sequence detecting neuron
S.Eachtraining cycleis followed by a test cycle, during which
the sequence is presented alone, i.e. without a following
activation of S, in order to see if neuron S can be activated
by the sequence. After 9 trainings the sequence detecting
neuron S can be activated by another presentation of the
sequence. The parameters are: M = 20,8 =2.0,C, = 0.4, T,,
= 6.5, Tpy = 10.0, T'yq = 1.3634, K,; = K, = 5.0, 7 = 6At, A =
7, At = 0.1,

Myt + At)

.
mat) + A{—Khm“(t) + Tmy(t + At — 7/2)

if tmod A =0

\ otherwise
my;(t + At) = Min (hy(t + At), B)

1, ifx=0
flx) = .
0, otherwise
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+ Mf (Z, Wimyt + At — A) + 1(0) — I"_>],
ji

myi(t) + At[—Kymy(t) + Tomy(t + At — 7/2)],

)
3)

(4

mz"(t + At) = mz,‘(t) + At[_Kz,'mz,'(t)
+ Tumult + At — 7/2)] ®)

In (2) T; is the threshold for N;; for input other than from
Ny;. Ii(t) represents external input to Ny;. The condition in
(2) that t mod A = 0 describes the time scale for the pre-
sentation of symbols. In real situations, symbols are pre-
sented continuously, and this is discretized by A in our
model. The corresponding my,(t) at these time instants (t
mod A = 0) can be interpreted as the average values over
time interval A, or as the value at the end of each presen-
tation of a symbol. W;; is the synaptic weight from neuron
Njjto Ny, and the summation in (2) represents interactions
among dual neurons. M is a gain factor. Equation (3) stip-
ulates amaximal activity B for N,;. From now on, we say neu-
ron Njy; is firing at time ¢t if m,(t) = B. The formulation for
Ny;is similar to that for N;; exceptthat N,;only receives input
from N,;. Ty, and Ty, are fixed weights between N,; to Ny;,
and they are the same for all n dual neurons. Activities my(t)
and my(t) have graded values with maximum B. Once Ny;
fires, this signal will oscillate between the dual neuron Nj;
and N,; with damping until the signal totally vanishes, if no
further input can activate the Ny;. Note that the formulas
are such that nonfiring neurons can still affect the state of
other neurons.

Synaptic learning follows the Hebbian learning rule [13]
for modification and a later normalization [17]. Again, learn-
ing takes place on the symbol scale (A) since only the weights
of connections among oscillators are changed.

Wit = Wit — &) + Gflmy(D) — BImy(t)
W, = W,,(t)/ = Wy ®)
JEi

where C; is a gain factor of learning. Note that f[m-;(t) — B]
is 0 unless Ny; fires. In general, the larger is C, the faster is
learning and the more easily is the memory value over-
written by a new stimulus, so the choice of C; reflects a bal-
ance between learning speed and stability. According to (6),
the effect of learning on any neuron is to change the dis-
tribution of all weights to that neuron, so it is reasonable
to assume that initially Wj; = 1/(n - 1).

In the remaining part, our discussion will be based on a
‘grandmother cell” representation in which each neuron
Ny; represents either one spatial pattern or a sequence
detector to simplify the understanding of sequence rec-
ognition, as in [6], [9]. Suppose that we train neuron N;; to
detectasequence 8;. This is done in our model by activating
Ny (setting /(1) at a high level) immediately after the pre-
sentation of 8,. Therefore this is a kind of supervised learn-
ing. As we will see later, this kind of training is very natural
for sequence reproduction. We define 8, = p;, —p;, = * * *
—piw1=<i<nandij#i(=1,---,k)), where pattern
p; fires (is represented by) neuron Ny;. In this section we
only consider §; as a simple sequence. Since we are now
only concerned about recognizing §;, we can simplify the
original fully connected network into the one where Ny; is
projected upon by Ny, (j = 1, - - -, k) and all other con-
nections among dual neurons are left out.

Let us define the input potential /P; of §;to Ny; (since dual
neuron i is only for §;) as the weighted sum to N;; imme-
diately after the presentation of §; (we use t’ to indicate these
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time instants)

k k
P, = ,231 W;my(t) = B 2? W, gk — j)a) 7)
< P

where g(/A)is as introduced earlier (A is amultiple of 7). This
formula follows because when pattern p; is presented,
Naj is activated and my; (t) reaches value B. Equations (2) and
(3)together guarantee that once Ny, is activated due to either
an external input or a summed input from other neurons,
its activity drops down monotonically on the symbol time
scale if further input to Ni; cannot fire it. In this situation,
indeed, further input to N,;; cannot fire it, because (i) since
8;is asimple sequence, N;;, can only be activated externally
once by pattern p; during the presentation of §; and (ii)
besides the presentation time of p;, the summed input from
other neurons Ny, (! # j) can never activate Ny, since this
summed input cannot overcome the threshold of Na;, which
can be chosen as a parameter. At the completion of the pre-
sentation of the entire sequence, my; (t) drops to B ® g((k —
f)4). The external input to a dual neuron can only affect it
through the binary gate f(x) in (2), and the dual neuron oscil-
lates at its own pace if nothing is further gated in. The pre-
cise form of g(/A) is not important, and the only thing that
matters for our later analysis is that g(/A) is monotonically
decreasing, which is satisfied in our model.

Theorem 1: Repeated training with only §, results in all
weights to Ny; following the distribution: W, = Cg((k —
pAG=1,---,k,andall Wy=0( # iy, - - -, i), where
Cis a constant.

Proof. According to (6), the synaptic weights to Ny; only
change when Ny; is firing, which is immediately after a pre-
sentation of 8; due to the supervised way of learning. Let
usdenote W?,-, as W;; before any training, and W as W, after
the mth presentation of 8,. It is easily verified, that after the
mth presentation of 8, following (6) we have:

0 21

Hj
o T CBslk - oy ,§1 o}
whereQ =1+ CB E,‘f:1g((k = j4). Since Q > 1, we get
lim,, ., Wi = Cg(k — j)A) where C = C;B/(Q — 1). For all
Wy | # iy, -+, iy, we have W7 = W3/Q™ and lim,,_..

T =0.Q.ED.

Here we clearly see that the larger C, is, the larger Q is,
and the more rapidly the weight distribution converges.

Corollary 1. Repeated training with §; results in

k
IP, = BC 21 gX(k — ) 9)
=

Wi = ®

Note that /P, depends only on the length of sequence §8,.
Theorem 2. During repeated training with §,, define

AIPT = (IP; after the mth presentation of §))

— (IP; after the (m — 1)th presentation of §;)

k
= BIE W7 — WP~ gtk — j)a)

Then we have

AlP]
AP = QT_'1

Given (8), the proof is straightforward. Theorem 2 tells us
that if the first training with 8; increases (or decreases) /P,,

(10

WANG AND ARBIB: TEMPORAL SEQUENCE LEARNING

then the input potential keeps increasing (or decreasing)
in subsequent training.

Corollary 2. If repeated training with §; begins from the
initial state, that is, W;; = 1/(n — 1), then after each training
AlP; > 0, which means IP; increases monotonically with
sequence training.

Corollary 1 plus Corollary 2 gives us the insight to build
a model for temporal sequence learning. If we choose T}
in (2) as the input potential expressed in (9), that is, T; =
BCEX_,g%((k — j)A) (within a certain small error ¢), then the
result of training with 8, is to build /P; in order to fire Ny; by
the presentation of §; alone. In other words, after a certain
number of training trials, a presentation of §; alone will fire
Ny;, and neuron Ny; will recognize sequence §;. We say that
neuron Ny; has learned the sequence §; if the presentation
of 8, can activate this neuron. ValueT; can be set up during
the first training, since from (7) and (9) we have T, =
BCI!_,g%((k — j)A) = CIB EX_4ym?, (1), namely we can avoid
using g(tk — j)A) by looking at the corresponding mem-
brane potentials at t’. Conversely, note the interesting fact
that T'; can be set purely on the basis of the length of the
sequence. Figure 2 shows a computer simulation of the
sequence-detecting neuron model. The curve in Fig. 2(a)
reflects the increase of /P; of a sequence-detecting neuron
with number of trainings of sequence 8,: A-B-C-D-E. Value
T';is set by the system to 1.3634 (where ¢ is chosen as 0.001)
and after the ninth training /P; goes above this threshold,
and so the following presentation of the sequence alone
activates Ny, without the training input /. Fig. 2(b) shows the
corresponding simulation.

The following theorem guarantees that after a sequence
islearned by Ny;, only the learned sequence can activate Ny;,
that is, N;; makes no mistake in recognizing the learned
sequence.

Theorem 3. After neuron Ny, has learned sequence §;, the
presentation of 8; induces the maximal postsynaptic poten-
tial.

Proof outline: Since only one symbol is presented at a
time, the nonzero inputs to Ny; from the other neurons will
attime t’ form at most a permutation of B, Bg(4), - - -, Bg((k
— 1DA). But by Theorem 1, W;, = Cg(tk — pa)Gj =1,---,
k) while W, = 0 for other /. Thus, by the Cauchy-Schwartz
inequality, the maximum input potential is achieved only
for the learned sequence.

This theorem realizes the maximization principle that
repeated training of a sequence polarizes the weights of the
corresponding detecting neuron so that it can only be trig-
gered by this specific sequence. Unlike many other models,
this model genuinely stores sequences rather than tran-
sition dyads.

C. Recognition of Complex Temporal Sequences

In the previous sections, we proposed the dual neuron
model to implement STM, and the property which is used
fromthe STM model is basically an exponential decay mem-
brane potential within the STM period. To concentrate on
solving the problem of complex sequence learning, in the
following we explicitly incorporate an exponential decay
into the model to simulate STM. We thus replace the dual
neuron { Ny, No;) by asingle neuron N;. The corresponding
neural implementation by dual neurons can be done in the
same way as in the previous section.
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There is a problem with the above sequence-detecting
neuron model if we apply it to arbitrary sequence detec-
tion. When a complex sequence, like 85: A-B-A-C-A-B-£-8-D,
is presented to the previous model described in (2)-(6), then
the later presentation of a recurring pattern will overwrite
the signal of the previous presentation maintained in STM.
Thatis, the sequence-detecting neuron can only detect the
last presence of a recurring pattern. To solve the over-
writing problem, we introduce multiple synapses between
two neurons, each of which corresponds to one occurrence
within the temporal summation period. The idea is that we
replace neuron N; by an expanded network, as shown in
Fig. 3(a), whose terminal P, remembers the trace for the rth

Fig. 3. An expanded neuron model for complex sequence
recognition. b) Recognition of the complex sequence 8
A-B-A-C-A-B-E-B-D. Ten neurons have been modeled, and
temporal activities of Ny, N,, « - -, N5, and Ny are displayed
in the figure from top to bottom. During each cycle of train-
ing a peak of activity indicates the activation of the corre-
sponding neuron. Thus, for example, the trace for A has 3
peaks, and the trace for C has 1 peak between the second
and third peaks of A. Each training cycle is followed by a test
cycle during which the sequence detecting neuron is not
activated externally. After 6 trainings, the sequence detect-
ing neuron S can be activated by the presentation of 8, alone.
The last column is to test if the detecting neuron can be acti-
vated by another sequence, A-C-A-C-D-B-£-D-B. The param-
etersare:c =5a=04,C;=20(=1,---,10),T,, = 0.629,
A=1.

most recent impulse generated by N;. Thus, the way the P,
operate is like a stack: A new impulse generated by N,
pushes the whole array P;, by one place and imprints itself
on the first terminal (see the definition below). Every Py is
decremented in each cycle A. In the following model, the
membrane potential and the output of neuron N; at time
tare mi(t) and S;(t), respectively.

(1 = a) Pyt — 4)
ty=41
(1 = )P, 4t — A)

if S;(t) =0

if () =1and r =1

if Sty =Tand r > 1
(11

P,
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mi(t + A) = 221 Wip, () + I(t) (12)
J#Ir=
Si(t) = fImi(t) — I} (13)

Wiiit) = Wit — A) + GS{t)P,(0)
Wit = Wf,(t)/_§_21 Wi (0 (14)
j#ir=

where « is the decay parameter of p,(t), playing a similar
role as the g(x) introduced earlier, and ¢ represents the
number of terminals of each neuron N;. Wj; is the weight
of the synapse that the rth terminal of N; makes on N;. Itis
sufficient to set ¢ to the number of maximal occurrences
of a symbol in a sequence, for example, ¢ = 3 is sufficient
to recognize 8. The choice of c—the number of terminals
each neuron has—limits the number of occurrences of the
same symbol within a temporal sequence. Synaptic mod-
ification is defined in the same way as before, except that
we have c synapses between two neurons instead of one.
Due to the normalization in (14), weights are set initially
Wilt) = 1[cn ~ 1.

The maximization principle applies to this model for
complex sequence recognition similarly. The conclusions
from the previous section (Theorems 1, 2, and 3, Corollaries
1and 2) are also established in this model. Particularly, we
have

Theorem 4. After neuron N; has learned any complex
sequence §;, the presentation of §; induces the maximal
postsynaptic potential in N,.

If we set T; in the same way as in the previous section,
this theorem guarantees that system (11)-(14) can learn and
recognize any complex temporal sequences without mis-
take. Figure 3 shows a simulation for learning and recog-
nizing sequence $;.

This neural model can be used directly for the recog-
nition of temporal sequences which contain distortions.
This can be achieved in the following two steps:

1) Lowering the threshold of each sequence-detecting
neuron. The previous threshold setting (compare Eq. (9)) is
only appropriate in the absence of distortions. In order to
tolerate distortions, we need to lower the threshold a little
bit such that if the current sequence induces a membrane
potential close to thatinduced by the learned sequence, the
corresponding neuron will fire. Thus a sequence-detecting
neuron can be fired by a set of sequences close to the
learned sequence.

2) In case 1, a currently presented sequence may activate
more than one detecting neuron, which is not desirable.
To avoid this situation, we can feed the signals of all the
firing neurons (if any) to a competitive neural network (win-
ner-take-all network, see [18], [19]). This competitive net-
work ensures that only the neuron which is activated and
has the biggest signal is activated.

With this extension, the model can serve as a general
sequence recognizer. Figure 4 shows the whole system
architecture. In the input layer each neuron represents a
spatial pattern. The connection from the input layer to the
recognizer layer is an all-to-one correspondence. For clarity
only one neuron is shown in the recognizer layer. The con-
nection from the recognizer layer to the competition layer
is a one-to-one correspondence.
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Input layer with STM Sequence recognizer layer Winner-take-all layer

Fig. 4. General architecture for temporal sequence rec-
ognition.

I, TEMPORAL SEQUENCE REPRODUCTION

Temporal sequence reproduction is a different, and
somehow more difficult, issue than temporal sequencerec-
ognition. If the sequence in question is a simple sequence,
reproduction becomes much easier because we only need
tostore transitions between each two consecutive patterns.
This, as mentioned in the introduction, has been achieved
by many authors. However, the real difficulty lies in repro-
duction of complex sequences, where a correct transition
toa pattern is determined by its context, not simply by one
previous pattern.

The model for sequence recognition can be borrowed for
sequence reproduction. In the previous models, each neu-
ronintheinput layer represents a single spatial pattern. But
a neuron can also be considered as a sequence detector.
It appears that if we make a neuron function as a detector
of the part of a sequence before the pattern that this neuron
represents, we can readily realize sequence reproduction.
This idea has the attractive feature that sequence training
for reproduction is nothing but a simple sequence pre-
sentation, not like sequence recognition where we need to
activate (teach) the sequence-detecting neuron deliber-
ately for each sequence detector. However, it has some
problems for general complex sequence reproduction.
First, a self-reference problem occurs when transition to a
pattern depends on a context which contains the pattern
itself, like pattern A in the four-degree sequence: A-B-A-C-
A-B-A-D. Second, since we usually choose a memory span
equal to or a little larger than the degree of the sequence
(we cannot expect a memory span of the same length as the
sequence itself), this requires that a neuron be able to be
activated by different subsequences. For example, in the
2-degree sequence A-B-C-A-D-E-A-F-G-A-H-I, pattern A can
be transitioned from B-C, D-E, and F-G. This violates the pre-
vious hypothesis that one neuron can only be activated by
one sequence. We call this the multiple reference problem.
These two problems can be solved with a direct extension
if sequences to be reproduced are not more complex than
first-order complex sequences.

The idea proposed here separates the neurons for detec-
tion from those standing for spatial patterns. An additional
layer of neurons, layer d, is used as sequence detectors
which follow the model for complex sequence recognition
presented previously. This layer is connected to the original
layer of spatial patterns (layer p) bidirectionally such that
asequence detector can activate the appropriate next spa-
tial pattern. This connection configuration is shown in Fig-
ure 5. The number of neurons in layer d must not be less
than the length of the sequence minus the degree of the
sequence. Let 7 be the degree of the sequence. During
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Fig. 5. Network architecture for temporal sequence repro-
duction. At the beginning, the connections between layer
p and layer d are all-to-all correspondence. The appropriate
connection pattern for reproduction will emerge after repet-
itive training with a temporal sequence.

o Layer p
(input layer with STM)

training a sequence is presented to layer p. After the first
n — 1patterns have been presented in layer p, a neuron in
layer d is randomly chosen (but fixed in successive train-
ings) to fire synchronously with each presentation of a spa-
tial pattern in layer p. The recurrent connections from layer
d to p are set up according to the Hebbian rule. That is,
whenever there is a neuron N? firing in d and NP firing in
p. there will be a synaptic link established from N,‘-’ to
N?.Thistraining process is repeated several times until each
neuron in layer d has learned to recognize a specific sub-
sequence. Later reproduction of the sequence is done by
presenting its initial context to layer p. Since our sequence
detection model can detect any complex sequence, this
model can reproduce any complex sequence.

As an example, we have trained this three-layer net-
work with the four-degree higher-order complex sequence
84 A-B-A-C-D-A-B-A-E-F-A-B-A-G-H-A-B-A-I-J. During train-
ing, sequence 8, is presented to layer p. After the first three
patterns have been presented in layer p, a neuron in layer
d is chosen to fire synchronously with each presentation
of aspatial patterninlayer p. After six trainings, the network
can reproduce the whole sequence by being presented
A-B-A-C, the initial context. Figure 6 shows this process,

A

5 N_—

.

A
N
N

N

seproduction

i ,
Fig. 6. Reproduction of a 4-degree higher-order complex
sequence 8; A-B-A-C-D-A-B-A-E-F-A-B-A-G-H-A-B-A-l-J. The
model is trained with this sequence for 6 times and the last
3 trainings are shown in the figure. The entire sequence is

reproduced by the model with the presentation of 8,'s initial
context: A-B-A-C.
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which includes the last three trainings with the reproduc-
tion.

IV. CONCLUSION

Two ideas are central to this neural model of temporal
sequence learning: short-term memory and sequence sen-
sitivity.

In order to link two temporally discontiguous patterns,
the earlier pattern has to be preserved for a certain period
of time, which is assumed to be achieved by STM in our
model. As discussed, STM is modeled here by recurrent
excitatory connections. Our results suggest an important
computational function of STM, thatis, STM could lay a basis
for temporal sequence learning. In addition, STM span is
correlated to the degree of a sequence in the model. One
of the predictions from this model is that the STM capacity
puts a direct restriction on the degree of a primitive
sequence to be learned. Hierarchical methods may be
required for learning sequences with greater degrees than
STM capacity, as suggested in the chunking theory [20]. A
recurring subsequence may be viewed as a single unit,
which could lessen STM load significantly.

The second key idea is sequence-sensitive training. We
find that during training that follows the Hebbian learning
rule and the normalization of all synaptic weights, theinput
potential to a neuron increases monotonically (compare
Corollary 2). This idea underlies the recognition as well as
the reproduction of complex temporal sequences. In the
model, the transition from a previous su bsequencetoacur-
rent pattern is not stored explicitly anywhere in the net-
work, as in many other modeling efforts. Instead it is
reflected by the distribution of weights to a sequence-
detector neuron, and this distribution will maximize the
input potential of the detector neuron upon the presen-
tation of the previous subsequence. One important feature
of this model is that the length of the previous subsequence
(or the degree of a complex sequence in general) does not
affect the performance of the sequence learning, whereas
it could cause severe problems for many other models pre-
viously proposed. The training turns a neuron from
sequence insensitive to sequence sensitive, like order
emerging from chaos. A graded input to a synapse can be
viewed as a firing rate of impulses or a graded potential, and
the Hebbian rule and the normalization rule are both bio-
logically plausible. So this sequence-sensitive training is
consistent with the known neurobiology.

The model aims at dealing with complex temporal
sequences directly, not only because they are indispens-
able for real applications such as speech recognition, music
generation, and so on, but also they pose critical problems
for previous models for temporal sequence learning. This
model provides a general solution to this problem both for
sequence recognition and sequence reproduction without
causing significant extra computational expense. At the
same time, the problem of ad hoc wiring for temporal cou-
pling, existing for example in the outstar avalanche model
and the selection model, has been avoided here.
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