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ABSTRACT 
 

This paper presents a system that integrates biologically and geometrically inspired approaches to detecting objects 
from hyperspectral and/or multispectral (HS/MS), multiscale, multiplatform imagery. First, dimensionality reduction 
methods are studied and used for hyperspectral dimensionality reduction. Then, a biologically inspired method, S-
LEGION (Spatial - Locally Excitatory Globally Inhibitory Oscillator Network), is developed to perform object 
detection on the multispectral and dimension-reduced hyperspectral data, which provides rough object shapes. 
Thereafter, a geometrically inspired method, GAC (geometric active contour), is employed for refining object 
boundary detection on the high-resolution imagery based upon the initial object shapes provided by S-LEGION. A 
geospatial database is compiled and used for experimental analysis that includes data from a selected test site at 
Silver Lake in the Mojave Desert, California. Multispectral (Landsat TM 4-5) and hyperspectral (EO-1) satellite 
imagery, high-resolution satellite imagery (IKONOS), and descent images and ground stereo images are included in 
this database. This paper presents the first year results of a two-year research project. 

 
 

INTRODUCTION 
 

Over the last decades, there has been a remarkable increase in the number of remote-sensing sensors onboard 
various satellite-, aircraft-, and land vehicle-based platforms. Large volumes of panchromatic, multispectral, and 
hyperspectral data have been collected periodically. Fusion of these multi-platform remote-sensing data along with 
in situ observations from multiple sensors can help us to derive more information than is possible from a single 
sensor alone. Examples include detection of roads and buildings, determination of the composition of ground 
vegetation, and localization of mineral resources, as well as other application areas. However, the most detailed 
information, such as shape and spectral attributes, often cannot be derived precisely. Recent advances in biologically 
inspired methods involve segmenting patterns, materials, and objects, among other capabilities. Terman and Wang 
(1995) proposed locally excitatory globally inhibitory oscillator networks (LEGION) as a computational framework 
for image segmentation and object recognition. It has been shown analytically that LEGION networks can rapidly 
achieve both synchronization in a locally coupled oscillator group and desynchronization among different oscillator 
groups. LEGION has been successfully applied to segmenting grayscale images, medical images, and aerial images 
(Wang and Terman, 1997; Wang, 2005). On the other hand, geometrically inspired methods, such as level set theory 
and GAC (geometric active contour) models, have also been widely used in image segmentation and object 
detection (Osher and Sethian, 1988; Caselles et al., 1997; Niu, 2006). If the biologically inspired object detection 
methods can be combined with advanced geometry-based object detection techniques, a variety of object detection 
and recognition tasks in civilian, military, and intelligent applications can be significantly improved and speeded up. 

This paper presents a system that integrates biologically and geometrically inspired approaches to detect objects 
from hyperspectral and/or multispectral (HS/MS), multiscale, multiplatform imagery. Dimensionality reduction 
methods are studied and used for hyperspectral dimensionality reduction. A biologically inspired method, S-
LEGION (Spatial - LEGION), is developed to perform object detection on the multispectral and dimension-reduced 
hyperspectral data, which provides rough object shapes. Then, a geometrically inspired method, GAC (geometric 
active contour), is employed for refining object boundary detection on the high-resolution imagery based on the 
initial object shapes provided by S-LEGION. This research is funded by a NGA University Research Initiatives 
project. This paper presents the results of the first year of the project, mainly summarizing the architecture of the 
integrated system for object detection and hyperspectral dimensionality reduction. 
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AN INTEGRATED SYSTEM FOR OBJECT DETECTION 
 
The architecture and concept of the system integrating biologically and geometrically inspired object detection 

methods are illustrated in Figure 1. First, satellite and airborne HS/MS data will be processed using an S-LEGION 
algorithm for image segmentation in order to study regional and contextual information about the entire site. 
Dimensionality reduction methods will be employed for hyperspectral dimensionality reduction. Spectral 
compositions of HS/MS images will help to quickly identify candidate regions for detecting objects of interest. 
Supported by high-resolution satellite images, multiscale descent images, and ground images, a GAC model will 
then be applied to each small region of interest detected by S-LEGION for improved boundary extraction and shape 
reconstruction. The extracted information will serve as input to a final object recognition method using shape-based 
and spectral-based techniques. During the entire process, a multiplatform sensor modeler will be applied to support 
precision mulitsensor and multiplatform image analysis. 

 

 
Figure 1. Integrated system for biologically/geometrically-inspired object detection. 

 

 
Figure 2. Conceptualization of the integrated system for object detection using the multi-platform data 

collected at Silver Lake in the Mojave Desert, CA. 
 

In this investigation, we will apply the proposed approach to data compiled into a geospatial database using the 
data collected from field tests at Silver Lake in the Mojave Desert. The geospatial database includes multi-scale 
images collected from satellite, airborne, descent (helicopter), and in situ (land vehicle and field robot) images as 
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well as GPS control points. It has been collected and maintained since 1998. The descent images represent a 
sequence of multiscale images that can be used to test the capability of scale invariant object recognition. The Silver 
Lake test site consists of desert terrain with scattered bushes, a dry lake, highways, paved and unpaved roads, utility 
lines, a helicopter port, and small housing complexes. Figure 2 illustrates the concept of the integrated system for 
road detection using the Silver Lake data. This geospatial database will contribute significantly to system 
development and validation. 

 
 

HYPERSPECTRAL DIMENSIONALITY REDUCTION 
 

Object detection methods (such as LEGION and GAC mentioned above) have been successfully applied to 
process images including medical images, close-range images, and airborne/satellite images. However, problems 
will arise from transplanting these algorithms to HS/MS remote-sensing imagery. Compared with the single-band 
image, the new data form (especially the hyperspectral image) has a much higher number of dimensions in spectral 
space. This increase in dimensions results in a rapid increase in computational costs and a reduction in classifier 
performance. This is called the “Hughes Phenomenon” (Hughes, 1968). Moreover, there is information redundancy 
in the high-dimensional space, such as the high correlation between those spectral bands close to each other and the 
noise from atmospheric absorption. This information redundancy wastes computation time and depresses accuracy 
in the image processing. Therefore, dimensionality reduction for hyperspectral imagery is necessary before it can be 
used for the subsequent object detection. 

 
Dimensionality Reduction Methods 

Dimensionality reduction maps a high-dimensional space onto a space with fewer dimensions, while the data in 
the original space can still be fully represented. It reduces the impact of the “Hughes Phenomenon” and also reduces 
redundant information, thus raising the efficiency of the data processing. 

Many dimensionality reduction methods have been presented in the past; Principal Component Analysis 
(Hotelling, 1933), Linear Discriminant Analysis (Fisher, 1936), and Maximum Noise Fraction (Green et al., 1988) 
have been efficiently applied in compressing the HS/MS images. These methods share the common employment of 
eigenvalue-based linear approximation to retrieve the original spectral space. However, from a spectral point of view, 
spectra characteristics are treated as linear features in these approaches, while their nonlinear features are ignored. 
However, in certain circumstances, the nonlinearities of hyperspectral data can be the major properties in spectral 
space (Bachmann et al., 2004). Li et al. (2005) proved that the nonlinear spectral inverse model is more accurate 
than the linear method. 

In recent years, Manifold Learning techniques have been introduced to model the nonlinear features (manifold) 
of high-dimensional data and to project the manifold onto low-dimensional space whereby the nonlinear properties 
of the data could be well preserved during the data compression. Basically, these techniques could be divided into 
two groups: the first one preserving the global properties of the data and the second one focusing on the local 
properties of the data (van der Maaten et al., 2007). The representative methods for the first group include ISOmaps 
(Tenenbaum et al., 2000), Kernel PCA (Scholkopf et al., 1998), and Diffusion Maps (Lafon and Lee, 2006). The 
second group includes Local Linear Embedding (Roweis, 2000; Han and Goodenough, 2005), Laplacian Eigenmap 
(Belkin, 2003), and Local Tangent Space Alignment (Zhang et al., 2002). Compared with the global properties 
preserved in Manifold Learning methods, local nonlinear techniques for dimensionality reduction are based on 
solely preserving the properties of small neighborhoods around the data points of interest. This satisfies the 
principles of object detection within a local neighborhood. This research mainly examines the following three local 
nonlinear techniques. 

Local Linear Embedding (LLE) is the first local Manifold Learning technique introduced for dimensionality 
reduction (Roweis, 2000; Han and Goodenough, 2005). In LLE, the points neighboring the data points of interest are 
found and saved in a neighborhood graph. The local geometry of the data points is estimated by the reconstruction 
weights using a cost function. In this function, the reconstruction weights are subject to the constraint that the 
difference between the linear combination of the weighted neighbor points and the center point should be minimized. 
The data points will be projected into a new low-dimensional space based on minimizing the linear combination of 
the point and its neighbor points in the new space, weighted by the reconstruction weights. 

Laplacian Eigenmap (LE) calculates the weight between data points and their neighborhood using the nearest 
neighborhood methods (Belkin, 2003). The nearest neighbor of the data point will contribute the most. The weights 
are used as edges connecting each point with its neighbors in a graph. By using spectral graph theory, the projection 
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from a high-dimensional space to a low-dimensional space is defined as an Eigen problem. A Laplacian matrix is 
derived from the connected weight edges of the graph. The data points in the low-dimensional space are generated 
by the linear combination of the largest eigenvectors of the Laplacian matrix. The number of eigenvector is the same 
as the number of the dimensions in the low-dimensional space. 

Local Tangent Space Alignment (LTSA) uses the local tangent space of each data point to describe the local 
properties of the high-dimensional space (Zhang et al., 2002). In LTSA, it is assumed that if there is local linearity in 
the manifold surface, the data points in the high-dimensional space and the corresponding low-dimensional space 
could be mapped to the same local tangent space. In other words, LTSA simultaneously searches for the local 
tangent space of the high-dimensional data and the low-dimensional data representations, and the mapping 
relationships between the low-dimensional data points and the local tangent space of the high-dimensional data. 

 
Experimental Results 

This paper compared the above-mentioned three Manifold Learning methods (LLE, LE, and LTSA) using 
hyperspectral data (Figure 3) collected at Silver Lake. This hyperspectral data was selected from a 30-m resolution 
EO1 Hyperion Hyperspectral Level 1GST product that was acquired in October 2003. The image size for the 
selected experimental area is 200 x 200 pixels (Figure 3a). It has 242 bands (from 447.17 nm to 2577.08 nm) in 
spectral space. Pre-processing of spectral and geometric correction was performed using the methods proposed by 
Beck (2003) and Datt et al. (2003). After removal of atmospheric absorption effects, 156 bands were left for later 
dimensionality reduction experiments. Using the Maximum Likelihood Estimation method (Levina and Bickel, 
2004), the intrinsic dimensions of the input data were estimated as 15. In our experiments, 40,000 data points (200 x 
200) with 156 dimensions are used as input data for the dimensionality reduction process using the LLE, LE, and 
LTSA methods; the output is the reduced data with 15 dimensions. The time-consumption ratio for these three 
methods is 15(LLE):2(LE):10(LTSA), showing that the LE method is the most efficient. 
 

 
 a) b) 

Figure 3. Experimental data for dimensionality reduction: a) a pseudocolor EO1 hyperspectral 
image of 200 X 200 pixels, and b) manually digitized objects as ground truth (brown denotes hills, 

white lakebed, black asphalt roads, blue buildings, and green vegetation). 
 
To evaluate the results of these three dimensionality reduction methods, five categories of objects were 

manually digitized and labeled on the pseudocolor image. These objects include hills, lakebed, asphalt road, 
buildings and vegetation as illustrated in Figure 3b. The coverages for these objects are 4781 pixels for the hills 
(brown in Figure 3b), 2353 pixels for the lakebed (white), 950 pixels for asphalt roads (black), 964 pixels for 
buildings (blue), and 39 pixels for vegetation (green). These objects were used as ground truth in our experiment. 

After dimensionality reduction using the LLE, LE, and LTSA methods, 15 dimensions data were obtained for 
each of these methods. Then an unsupervised classifier, the K-nearest neighborhood (KNN) method, was used to 
perform classification for the dimension-reduced data. Each dataset was separated into eight clusters. Those clusters 
corresponding to the manually digitized ground-truth objects were assigned their same color; the remaining clusters 
were all colored black and treated as background. These classification results are illustrated in Figure 4. 
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 a) b) c) 

Figure 4. Classification results of the dimension-reduced data from the a) LLE, b) LE, and c) LTSA methods. 
 
As shown in Figure 4, we found that the lakebed could be separated in the classification results from all three 

dimensionality reduction methods. However, the asphalt roads and hills are mixed up in all three cases. In a field 
spectral survey performed at Silver Lake in October 2008, we found that these two types of objects are inseparable 
from the spectral point of view due to their high correlation of spectrum features (this could be the consequence of 
using the materials collected from the hills to construct the roads). Therefore, we merged the hills and asphalt roads 
in the following analysis of the classification results. 

To analyze the classification results, we compared the numbers of pixels classified in each of the clusters based 
on the three different dimensionality reduction methods with the numbers of pixels from the corresponding manually 
digitized ground truth. The results are listed in Table 1. It can be seen that the LTSA provides the best average 
classification rate (80.02%), while the LE has the lowest average classification rate (73.47%). Buildings can be 
isolated from other objects in the results based on LE, while vegetation can be isolated by the classifier based on 
LTSA. In general, it is believed that LTSA performs better than the other two dimensionality reduction methods, LE 
and LLE. 

 
Table 1. Classification results based on the LLE, LE, and LTSA methods. 

 
LLE  LE LTSA             Methods 

Objects Pixels from 
ground truth 

Classified  
pixels Rate Pixels from 

ground truth 
Classified 

pixels Rate Pixels from 
ground truth 

Classified 
pixels Rate 

Hills and Road 5465 7188 76.03% 4946 5907 83.73% 5127 5467 93.78% 
Lakebed 1296 1479 87.63% 2053 3528 58.19% 2152 3633 59.23% 
Buildings N/A N/A N/A 349 567 61.55% N/A N/A N/A 
Vegetation N/A N/A N/A N/A N/A N/A 30 34 88.24% 

Average Rate 78.01% 73.47% 80.02% 

 
Neighborhood Distortion Index for Performance Evaluation of Dimensionality Reduction 

The above experimental analysis mainly uses statistics to evaluate the performance of the different 
dimensionality reduction methods. However, these statistics are largely dependent on the performance of the 
classifier adopted in the processing. Consequently, this statistic analysis may not be capable of fully studying the 
capabilities of these various methods. This paper proposes a criterion, the Neighborhood Distortion Index (NDI), for 
evaluating the performance of the dimensionality reduction methods. 

We assume that the ideal dimensionality reduction method should fully preserve the topological relationships 
between the data points during the reduction in spectral space. This means that the same clustering results could be 
obtained from either the original high-dimensional dataset or the dimension-reduced dataset. If there are some 
inconsistencies, then we consider them to be distortions due to the dimensionality reduction. The NDI has been 
developed to evaluate the type of distortion caused by the dimensionality reduction methods. 

For any pixel a in a hyperspectral image data set, there will be a vector Va in the spectral space. The n 
neighboring pixels around a will also have vectors Vbi (i = 1,2,...,n) in the spectral space (Figure 5). The NDI Da for 
a can be calculated using the following equation: 
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where αi is the intersection angle between vector Va and Vbi in the original spectral space and αi’ is the 
corresponding angle in the reduced low-dimension space. We use the intersection angles of the vectors to describe 
their topological relationship. After the NDIs for all the pixels in the hyperspectral image have been calculated, an 
NDI map can be generated to illustrate the overall distortion of the results from the dimensionality reduction. 

 

 
Figure 5. The topological relationships between the high-dimensional data and the dimension-reduced data. 

 
Figure 6 shows the NDI maps of the dimensionality reduction results from LLE, LE and LTSA, respectively. In 

these maps, the pixels with larger NDIs have darker gray values. The average NDI for the LLE, LE, and LTSA NDI 
maps are 0.91, 1.43 and 0.32, respectively. This means that LTSA performs best for preserving topological 
relationships for dimensionality reduction. These results are consistent with those results obtained from the previous 
analysis by comparing with the ground truth. 
 

 
Figure 6. NDI maps of the results of dimensionality reduction from: a) LLE, b) LE, and c) LTSA. 

 
 

DISCUSSION AND CONCLUSIONS 
 
This paper investigates a system that integrates biologically and geometrically inspired approaches to detect 

objects from HS/MS, multiscale and multiplatform images. The architecture and concept of the integrated system 
have been studied and illustrated. 

As the first step of the proposed system, this paper studies the dimensionality reduction methods for 
hyperspectral dimensionality reduction. Using the hyperspectral data collected at Silver Lake, three dimensionality 
reduction methods including LLE, LE, and LTSA, were used for dimensionality reduction. To compare the 
performance of these methods, a Neighborhood Distortion Index is developed. By experimental statistic comparison 
and analysis using NDI maps, LTSA has the best capability to preserve the features in high-dimensional dataset 
reduction. 

This paper summarizes the preliminary results of our research. Our future works will focus on the further 
development of the S-LEGION and GAC to fully implement the proposed integrated system for 
biologically/geometrically-inspired object detection. 

a) b) c)
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