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Abstract—Speech enhancement aims to improve the listening
quality and intelligibility of noisy speech in adverse environments.
It proves to be challenging to perform speech enhancement in very
low signal-to-noise ratio (SNR) conditions. Conventional speech
enhancement utilizes air-conduction (AC) microphones, which are
sensitive to background noise but capable of capturing full-band
signals. On the other hand, bone-conduction (BC) sensors are
unaffected by acoustic noise, but recorded speech has limited band-
width. This study proposes an attention-based fusion method to
combine the strengths of AC and BC signals and perform complex
spectral mapping for speech enhancement. Experiments on the
EMSB dataset demonstrate that the proposed approach effectively
leverages the advantages of AC and BC sensors, and outperforms
a recent time-domain baseline in all conditions. We also show that
the sensor fusion method is superior to single-sensor counterparts,
especially in low SNR conditions. As the amount of BC data is very
limited, we additionally propose a semi-supervised technique to
utilize both parallelly and unparallely recorded AC and BC speech
signals. With additional AC speech from the AISHELL-1 dataset,
we achieve similar performance to supervised learning with only
50% parallel data.

Index Terms—Speech enhancement, air-conduction, bone-
conduction, attention-based fusion, complex spectral mapping.

I. INTRODUCTION

NOISE interference degrades the quality and intelligibility
of speech signals in real-world environments. Speech en-

hancement aims to remove or reduce the background noise of a
given speech signal. The recent introduction of deep learning has
led to dramatic advances in this field, and deep neural networks
(DNNs) effectively suppress background noise for untrained
speakers and noise types [11], [24], [42]. However, speech
enhancement in non-stationary noises at very low SNRs remains
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challenging, as noise dominates the acoustic signal making it
difficult to recover clean speech.

Conventional speech enhancement operates on speech
recorded by air-conduction (AC) sensors or microphones. AC
microphones can capture full-band speech, but are susceptible
to background noise. Bone-conduction (BC) sensors directly
convert articulation-induced vibrations on the human skull to
electric signals [33]. As a result, BC signals are not subject
to background interference transmitted in air. On the other
hand, BC speech has a limited bandwidth as high-frequency
components are attenuated or lost due to the nature of bone
conduction, resulting in muffled sound.

In the speech telecommunication scenario where AC and BC
signals are both available at the speaker end, how to leverage
AC and BC recordings for speech processing before transmit-
ting the processed result to the remote listener end becomes
a significant research issue. In early efforts, BC signals are
used to extract auxiliary speech information in noisy conditions,
e.g., voice activity detection [54], SNR estimation [32] and
pitch extraction [27]. Later, researchers attempt to extend the
bandwidth of BC signals to improve speech quality. These
methods can be categorized into three groups: equalization,
analysis and synthesis, and DNN-based. Simulating BC signals
by passing AC signals through a low-pass filter, Shimamura and
Tamiya [31] proposed an equalization method that estimates
the inverse of such transformation. Specifically, they derive a
linear-phase filter by first calculating the ratio of long-term dis-
crete Fourier transform of AC and BC speech spectra, and then
taking the inverse and applying it to BC speech to recover the AC
counterpart. Kondo et al. [17] improve the equalization method
by estimating the filter in a frame-by-frame fashion. Although
the proposed equalization method improves speech quality, the
performance is sensitive to filter length and order and expected
to degrade for unknown speakers. In addition, this approach
mainly considers the magnitude ratio, and the phase is kept the
same as that of the input signal, so perfect speech reconstruction
is impossible in the ideal case. Analysis and synthesis models
assume the excitation signals are the same for both AC and BC
signals. The task is then to obtain the envelope feature for AC
signals. Past work uses features like linear predictive coding
(LPC) [38], mel-frequency cepstral coefficient (MFCC) [34],
and linear spectral frequency (LSF) [12] to predict the spectral
envelope of AC signals, and then perform speech synthesis. This
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approach has several limitations. First, the assumption about the
excitation does not always hold in real applications, causing dis-
torted speech reconstruction. Second, excitation signals are hard
to model as they are highly non-stationary. Recently DNN based
methods are introduced to perform bandwidth extension on BC
signals. Shan et al. [30] proposed a speaker-dependent approach
to extend the bandwidth of BC speech. An encoder-decoder
based network is employed to reconstruct the magnitude of AC
speech, and magnitude-based features of spectral magnitude,
MFCC and LPC are concatenated as the training input. Given the
spectra of BC speech, Zheng et al. [51] introduce attention-based
bidirectional long short-term memory (LSTM) to reconstruct
the magnitude spectrogram of the corresponding AC speech. A
structural similarity metric and a spectral distance metric are
employed to guide optimization. Nguyen and Unoki [22] also
employ bidirectional LSTM to recover AC speech. It predicts
the LSFs of the corresponding full-band speech given the LSFs
of BC speech, and then performs inverse filtering with the filter
derived from the predicted LSFs to restore AC speech. Zheng
et al. [52] use the vocoder WaveNet [23] to perform bandwidth
extension for BC spectrograms, and attempt to reconstruct the
full-band waveform from the bandwidth-limited BC magnitude
spectrogram. Hussain et al. [14] proposed a hierarchical extreme
learning machine to extend the bandwidth of BC spectrogram,
which improves the automatic speech recognition accuracy with
a limited amount of training data. Despite DNN-based methods
showing improved performance, it remains challenging to re-
cover high-resolution speech from BC speech alone. One reason
is that the bandwidth of BC speech is usually limited to 1-2 kHz
depending on sensor position [4], [15], [21], which makes it very
difficult to perform bandwidth extension to 8 kHz or 16 kHz with
high quality. As the majority of a spectrogram is missing, the ex-
tended spectrogram suffers from the over-smoothing issue [29].
The other reason is that low-intensity, wide-band sounds such
as /f/ and /s/ are poorly captured by BC sensors as they induce
weak, narrowband vibrations [26], making them especially hard
to reconstruct via bandwidth extension.

Earbud devices like Apple Airpods have become popular
consumer electronics, and they include both AC and BC sensors.
For a typical bone-conduction earbud, the BC sensor is placed on
the pinna and the AC sensor serves as a close-talk microphone,
making it easier to obtain parallelly recorded AC and BC speech.
A recent study by Yu et al. [47] proposed a DNN-based method
that regards BC sensors as another modality. They investigate
ensemble learning methods to integrate the two types of signal
and employ a fully convolutional network (FCN) to perform
time-domain speech enhancement, demonstrating the efficacy
of combining AC and BC signals in speech enhancement.

In a preliminary study [44], we proposed to leverage AC-BC
signals by performing attention based fusion and employing a
convolutional recurrent network (CRN) [36] and to perform
speech enhancement in the complex domain. The attention
mechanism is first introduced in [41] and has produced superior
performance for sequence-to-sequence modeling. Since then,
it has been widely employed in tasks like automatic speech
recognition [25], natural language processing [5] and computer
vision [9]. The core idea of attention is to generate a context vec-
tor that “attends to” subsets of a sequence through weights that

highlight salient features and suppress irrelevant information.
This also allows the network to model the long-term dependen-
cies. Recent speech enhancement studies [8], [24] also report
significant performance gain by incorporating attention mod-
ules. Experiments show that the proposed attention based AC-
BC fusion offers an advantage over conventional speech en-
hancement. In this study, we extend the preliminary work in two
main aspects. First, we improve the design of attention-based
fusion by concatenating the original feature maps and attention-
mapped features. Second, considering the limited availability
of parallel AC and BC speech data, we propose a novel semi-
supervised framework that trains with both parallel and unparal-
lel AC and BC speech. Our semi-supervised method outperforms
its full-supervised counterpart.

The rest of the paper is organized as follows. In Section II,
we formulate AC-BC fused speech enhancement. Section III
describes our proposed network and pipeline. We describe the
semi-supervised AC-BC enhancement framework in Section IV.
Section V presents datasets and experimental results. Finally,
Section V-B concludes the paper.

II. PROBLEM FORMULATION

We propose to utilize both AC and BC sensors to perform
speech enhancement. It is assumed that we simultaneously col-
lect a noise-insensitive signal yBC from the BC sensor and a
noisy speech signal y from the AC sensor, which is composed
of background noise n and clean speech s,

y[k] = s[k] + n[k], (1)

where k denotes the sample index of a waveform signal. Ap-
plying short-time Fourier transform (STFT) to the signals we
have,

Y [t, f ] = S[t, f ] +N [t, f ], (2)

where Y , S and N are the corresponding STFTs of y, s and n.
Symbols t, f index time frame and frequency bin, respectively.
The STFTs can be written in terms of real and imaginary parts,

Yr[t, f ] + iYi[t, f ] = (Sr[t, f ] +Nr[t, f ])

+ i(Si[t, f ] +Ni[t, f ]). (3)

The subscripts r and i denote real and imaginary numbers,
respectively, and i the imaginary unit. Using the proposed
complex-domain enhancement model g, whose parameters are
denoted as θ, our goal is to recover the clean speech S using the
signals collected from both Y and YBC . The task is defined as,

Ŝ[t, f ] = g (θ, Y [t, f ], YBC [t, f ]) , (4)

where Ŝ[t, f ] is the enhanced speech in the complex domain.

III. ATTENTION-BASED SENSOR FUSION FOR COMPLEX

SPEECH ENHANCEMENT

We propose an attention-based method to fuse AC and BC
signals and perform complex spectral mapping for speech en-
hancement. The proposed strategy is illustrated in Fig. 1(c). Two
other fusion strategies, namely early-fusion and late-fusion as
depicted in Figs. 1(a) and 1(b), are also investigated for compar-
ison. In the following subsections, we describe the components
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Fig. 1. Diagrams showing different fusion strategies, where both BC and noisy AC spectra are utilized to produce an enhanced AC complex spectrogram.

Fig. 2. Diagram of a DC block. The first four layers are standard 2D convo-
lutions, and the last one utilizes gated convolutions.

of the proposed system and present fusion strategies and the
training objective.

A. Densely Connected Block

Motivated by the success of the densely connected (DC)
network [13], [37], [50], we incorporate densely connected
blocks into our network to replace standard convolution layers,
as illustrated in Fig. 2. These studies suggest a DC network
outperforms the same architecture without dense connections.
In a DC block, one convolutional operation is split into multiple
convolution layers, each with fewer channels, and all layers have
direct connections to subsequent layers. This design encourages
the reusage of feature maps while also addressing the gradient
vanishing issue. We use DC blocks to replace standard con-
volutions in our network. Specifically, a DC block consists of
five convolutional layers, and the first four are 2-D convolutions
with the number of output channels set to 8. Each convolution is
followed by a batch normalization and a parametric rectified
linear unit (PReLU) activation [10]. The final layer accepts
outputs from all preceding layers and performs a gated con-
volution [36]. The gated convolution is employed to facilitate
the feature fusion across convolution channels. The kernel size
for each convolution layer is (1, 4) along the time and frequency
axis, respectively. The dense block with gated convolutions can
be formulated as,

xcat = Concat(x1, x2, x3, x4) (5)

x = conv1(xcat)� (σ conv2(xcat)), (6)

wherexl denotes the output at convolution layer l (l = 1, 2, 3, 4),
and x is the dense block output. Symbol � represents element-
wise multiplication, and σ denotes the sigmoidal activation
function.Concate() is the concatenation operation of the feature

Fig. 3. Diagram of the DC-CRN that performs complex spectral mapping for
speech enhancement.

vectors, and we use two distinct convolutions conv1 and conv2
to perform gated convolutions on the concatenated feature xcat.

B. Dc-Crn

We use the densely connected CRN (DC-CRN) as the primary
component to perform complex spectral mapping based speech
enhancement, and illustrate its details in Fig. 3. The network
architecture is based on CRN [36], [37], which builds on the con-
volutional encoder-decoder structure and a recurrent neural net-
work (RNN) bottleneck to model temporal dependencies. Such
an architecture effectively captures the local and global contexts
of a given input. We concatenate the real and imaginary parts of
the complex spectrogram and feed the DC-CRN with 3-D feature
maps. The CRN encoder is a convolutional neural network
(CNN) downsampler that uses standard convolutions to reduce
the feature dimension along the frequency axis, and the decoder
mirrors the encoder architecture to restore the feature dimension
with transposed convolutions. In DC-CRN, each convolutional
layer within the CRN encoder and decoder is replaced by a DC
block as described in Section III-A. The encoder comprises 7 DC
blocks, and the number of output convolutional channels is set to
be 16, 32, 64, 128, 256, respectively. These blocks and channels
are mirrored for the decoder. The major difference with [37]
is that we employ pointwise convolutions as skip connections
to connect the encoder to the decoder in order to make our
DC-CRN model lightweight and memory efficient. Table I lists
the efficiency gain by adopting these modifications. For memory
consumption, we measure the GPU memory usage by passing a
batch of 8 utterances.For the bottleneck RNN, we employ a two-
layer grouped bidirectional long short-term memory (BLSTM)
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TABLE I
EFFICIENCY GAIN OF THE MODIFIED DC-CRN. M DENOTES MILLIONS AND G

REPRESENTS GIGABYTES

Fig. 4. Illustration of attention-based feature fusion. (a) process of calculating
the attention score M , and (b) process of using M to perform soft selection and
feature concatenation. Symbol

⊗
represents element-wise multiplication, and⊕

summation.

module [6], [36], which reduces the computational complexity
while maintaining enhancement performance. Specifically, to
reduce inter-layer calculations, we divide the feature maps into
four disjoint groups. To model the intra-group relationship,
we perform a representation rearrangement and a layer nor-
malization after each LSTM layer. Finally, the output of the
CNN decoder is halved and then reshaped into one-dimensional
features. Each half passes through a linear layer to produce real
and imaginary spectrogram estimates (see Fig. 3). One thing
worth noting is that we can easily convert our model to the
causal version by switching BLSTM to uni-directional LSTM.

C. Attention-Based Fusion

Different from the attention based methods that focus on a
single modality, we regard AC and BC complex spectrograms
as different modalities, and employ attention-based modality
fusion techniques similar to [3], [49] to fully exploit cross-modal
and single-modal features. The attention-based fusion of AC and
BC feature maps is illustrated in Fig. 4. First, we implement a
channel attention module in multiple scales. To make attention
calculations efficient, we only consider local and global contexts.
The local context is calculated by applying a two-layer pointwise
convolution followed by a batch normalization and a PReLU
activation. The global context is acquired similarly, except that
we employ a global average pooling before the convolution
operation. We aggregate context information and then calculate
the attention score M using a sigmoidal activation. Note during
the attention calculation, the global context vector has a smaller
shape compared with the local context vector, so we expand
the vector such that they have the compatible shape before
summation. Then, we perform element-wise addition on two
input features and assign weights M and 1−M to each feature
map to produce an attention-fused feature (AFF). Finally, as
shown in Fig. 1(c), we concatenate the AC and BC complex
spectrograms with the attention-fused feature as the input to the

DC-CRN model. That is,

YAFF [t, f ] = MY [t, f ] + (1−M)YBC [t, f ] (7)

Yfeat[t, f ] = Concat(Y [t, f ], YBC [t, f ], YAFF [t, f ]). (8)

We investigate two other fusion strategies, early-fusion (EF)
and late-fusion (LF) [18], which are depicted in Fig. 1(a) and
1(b). Early-fusion concatenates AC and BC signals before feed-
ing them to the DC-CRN. For the late-fusion strategy, AC and
BC signals are fed to separate DC-CRN models, and we merge
the outputs of the two models using a linear layer.

D. Training Objective

We define the training objective in the complex domain.
Recent studies [45], [46], [48] have demonstrated that including
a magnitude loss in complex spectral mapping is beneficial, re-
flecting the relative importance of magnitude over phase. Based
on this observation, we construct the loss function by calculating
the mean absolute error (MAE) for the real and imaginary parts,
plus the MAE of magnitudes. With the total number of time
frames and frequency bins denoted as T and F respectively, the
loss is defined as,

LRI−Mag(S, Ŝ) = LRI + LMag (9)

LRI =
1

TF

T∑

t=1

F∑

f=1

(|Ŝr[t, f ]− Sr[t, f ]|

+ |Ŝi[t, f ]− Si[t, f ]|) (10)

LMag =
1

TF

T∑

t=1

F∑

f=1

||Ŝ[t, f ]| − |S[t, f ]||. (11)

IV. SEMI-SUPERVISED LEARNING FOR AC-BC FUSION

The vast majority of existing speech corpora are recorded
with AC microphones. The availability of BC speech is limited,
and parallelly recorded AC and BC data is even scarcer. This
brings difficulties to the application of our sensor fusion method
for speech enhancement. To address this issue, we propose a
semi-supervised method for AC-BC fusion. Semi-supervised
learning is a kind of weakly-supervised learning where both
paired and unpaired data are utilized to facilitate training [1],
[39]. In this study, we regard parallel AC and BC speech as
paired data, and AC speech provides the ‘label’ of its corre-
sponding BC signal. For unpaired data, the ‘label’ of a given
BC speech signal is unavailable. Our proposed framework is
based on the Cycle-consistent Generative Adversarial Network
(CycleGAN) [53], which is shown to be effective for tasks
with unpaired data, like image-to-image translation [53], image
segmentation [20], and voice conversion [7]. This framework
enables us to train with unpaired speech data, and improves the
enhancement performance when paired data is limited.

A. Cyclegan

CycleGAN [53] is a GAN architecture extension and it is
typically applied when there is a lack of paired training data.
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Fig. 5. Schematic of the CycleGAN-based semi-supervised framework. The proposed model contains two generators and two discriminators, which are trained
in a competitive manner. The solid arrow denotes the training process, and the dashed arrow represents the pipeline of inference. Pred stands for predicted, and the
subscript sup denotes supervised.

There are four modules in CycleGAN, two conditional gener-
ators and two discriminators. The generators are employed to
learn a bidirectional mapping between two domains. The first
generator takes input from the first domain, and produces output
to the second domain. Meanwhile, the second generator learns
the reverse mapping. By applying two generators sequentially,
we map the input to its original domain, i.e., recover the original
input. The discriminators are designed to determine whether
the generated output is real or fake. Adversarial training is
performed such that generators and discriminators compete
with each other, and generators aim to produce outputs real-
istic enough to trick discriminators. This model is capable of
generating plausible predictions even if there is limited paired
data.

B. Model Description

Our semi-supervised AC-BC fusion speech enhancement
model is illustrated in Fig. 5, and it contains two CNN-based
discriminators and two generators that build on the proposed
DC-CRN model. During training, we adopt the attention based
fusion DC-CRN model as Generator A, which takes as input
both noisy speech and BC speech and predicts clean speech.
Generator B is the DC-CRN that converts clean speech to its BC
counterpart. Discriminator A determines whether a given input
is an authentic clean signal, and Discriminator B is trained to
discriminate whether a given signal belongs to BC speech or
not. Unlike image data, speech signals are of variable lengths,
so we construct a 7-layer CNN with adaptive pooling as our
discriminator, which converts variable-sized features into vec-
tors of fixed dimension. Each CNN layer in the discriminator
is followed by a batch normalization and a PReLU activation.

The number of convolution channels in each layer is set to 32,
64, 128, 256, 512, 256, 1, sequentially. During interference, we
feed Generator A with BC speech and noisy speech to produce
a clean speech estimate.

C. Training Objective

The training objective for the semi-supervised framework is
composed of two parts, supervised loss and semi-supervised
loss. Both paired and unpaired data are involved in the loss
calculation. We denote the paired data with the superscript P
and the unpaired data with the superscript U . For instance, the
clean speech that has no parallel BC counterpart is denoted as
SU , and the corresponding noisy speech as Y U .

For supervised speech enhancement loss Lsup, we employ
the complex-domain loss function defined in Section III-D to
measure the complex spectrogram difference of the generated
speech and its corresponding ground truth. It consists of LA

sup

and LB
sup, which optimizes Generator A and B respectively. The

supervised enhancement loss is defined as,

Lsup = LA
sup + LB

sup (12)

LA
sup = LRI−Mag(GA(Y

P , Y P
BC), S

P ) (13)

LB
sup = LRI−Mag(GB(S

P ), Y P
BC). (14)

The semi-supervised loss consists of three components, an
adversarial loss, a cycle consistency loss and an identity loss.
Instead of the cross-entropy loss in regular GANs, we employ
the least square loss [19] as the adversarial loss to stabilize
adversarial training. It has been shown that this loss minimizes
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the Pearson χ2 divergence. We define the adversarial loss as,

LD = LA
D + LB

D (15)

LA
D =

1

2
ES∼pS

[
(DA(S)− 1)2

]

+
1

2
EY,YBC∼pY,YBC

[
(DA(GA(Y, YBC))

2
]

(16)

LB
D =

1

2
EYBC∼pYBC

[
(DB(YBC)− 1)2

]

+
1

2
ES∼pS

[
DB(GB(S))

2
]

(17)

LG =
1

2
EY,YBC∼pY,YBC

[
(DA(GA(Y, YBC))− 1)2

]

+
1

2
ES∼pS

[
(DB(GB(S))− 1)2

]
, (18)

where X ∼ pX represents a random variable X drawn from the
probability distribution pS , and X,Y∼ pX,Y random variables
X andY from the joint probability distribution pX,Y .E is the ex-
pectation operator. Superscripts A and B indicate discriminator
A and B, respectively. The discriminators seek to classify real
speech as 1 and generated speech as 0, whereas the generators
intend to deceive the discriminators and identify the label of
generated speech to be 1. Note that superscripts U and P are
absent in the above equation, as this loss term applies to both
paired and unpaired data.

To exploit unparallel speech data, we use a cycle consistency
loss. Applying two generators sequentially, we obtain a recon-
structed complex spectrogram that corresponds to the original
input. Again, we measure the complex spectrogram difference
using LRI−Mag ,

Lcycle = LRI−Mag

(
GB(GA(Y

P , Y P
BC)), Y

P
BC

)

+ LRI−Mag

(
GA(Y

U , GB(S
U )), SU

)
. (19)

An identity loss is added to regularize adversarial training
for which, if given a target speech signal, the generator should
output the same speech [53], i.e.,

Lidentity = ES,Y ∼pS,Y
[GA(S, Y )− S)]

+ EYBC∼pYBC
[GB(YBC)− YBC)]. (20)

The purpose of this loss term is to preserve the feature corre-
lations between the input and output [53]. Without the identity
loss, the generators produce complex spectrograms reasonable
enough to deceive the discriminators, but might deviate from
the ground truth, as both mappings are equally valid under the
adversarial loss and the cycle consistency loss.

Finally, the total loss of our training objective combines all
loss terms,

Ltotal = LD + LG + αLcycle + βLidentity + γLsup, (21)

where α, β, γ control the relative importance of their respective
loss terms, and we set α = 5.0, β = 2.0, γ = 5.0 based on the
performance on a validation set.

V. EXPERIMENTS

A. Datasets and Evaluation Metrics

We perform supervised experiments on the Elevoc
Simultaneously-recorded Microphone/Bone-sensor (ESMB)
speech corpus,1 which is a Chinese corpus consisting of 128
hours of speech uttered by 131 male and 156 female speakers.
Speech is recorded using a pair of Elevoc Clear earbuds, and
each earbud contains a ST25ba BC sensor near the entry of the
ear canal to gather skull vibrations during articulation and an
AC sensor outside the ear that acts as a close-talk microphone.
During the recording, every speaker reads Chinese prompts for
around 20 minutes, producing 16 kHz stereo speech data, for
which each channel corresponds to one earbud. We use the
same noise set for training and validation, which is generated by
randomly selecting 20000 files from the DNS challenge dataset.2

For each utterance, we generate a noisy speech signal by mixing
an AC signal with a noise segment cut to the same length from
the noise set at an SNR level uniformly sampled from the range
{−5, −4, −3, −2, −1, 0} dB. We set aside two male and two
female speakers for validation and evaluate on two male and two
female speakers that are not included in training and validation
sets. The remainder of the corpus constitutes the training set.
For evaluation, we select four challenging noises: babble and
cafeteria from an Auditec CD,3 and factory and engine from the
NOISEX92 dataset [40]. Each test utterance is mixed with these
four noises at three SNR levels -5, 0 and 5 dB.

For semi-supervised experiments, paired AC and BC speech
are extracted from the ESMB corpus, and we employ the
AISHELL-1 dataset [2] as the source for unpaired data.
AISHELL-1 is a Chinese Mandarin speech corpus that consists
of around 120000 utterances with a total duration of about
178 hours. Four hundred speakers participated in the recording,
which was conducted in a quiet indoor environment using a
high-fidelity microphone and then downsampled to 16 kHz.
The validation and test settings are the same as in supervised
experiments. A similar procedure to supervised experiments is
used to generate noisy mixtures for both AISHELL and ESMB.

We use two standard metrics to assess enhancement per-
formance, short-time objective intelligibility (STOI) [35] and
perceptual evaluation of speech quality (PESQ) [28]. STOI
has a typical value range from 0 to 1, which can be typically
interpreted as percent correct. PESQ ranges from -0.5 to 4.5.
Higher values indicate better performance for both metrics.

B. Experimental Setup

For all experiments, we resample recordings to the sampling
rate of 8 kHz. During training and validation, we discard for
each recording silent portions whose energy is 60 dB below the
peak power reference. A window length of 32 ms with 50%
overlap between adjacent frames is used in calculating STFTs,
which correspond to 129-dimensional spectra. We apply mean-
variance normalization (MVN) to each noisy utterance, and the

1[Online]. Available: https://github.com/elevoctech/ESMB-corpus
2[Online]. Available: https://github.com/microsoft/DNS-Challenge
3[Online]. Available: http://www.auditec.com
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Fig. 6. Enhancement performance of the FCN baseline and the proposed method using different fusion strategies in terms of STOI and PESQ on the ESMB
corpus at different SNRs.

corresponding clean utterance is scaled accordingly. Each BC
utterance passes through an eighth-order Butterworth low-pass
filter, and is then normalized using MVN. This low-pass fil-
tering serves two purposes. First, there is still residual energy
in the upperband of BC spectrograms, which is not helpful
for speech enhancement. We find that removing the upperband
energy slightly improves enhancement performance. Second, it
enforces the same cutoff frequency of all BC utterances, which
improves the generalization of the trained model to devices with
different cutoff frequencies.

For the fully-supervised model, we use the Adam opti-
mizer [16] and train with the batch size of 16 utterances for 30
epochs. The initial learning rate is set to 0.0006, and is halved
if the validation loss has not improved for three consecutive
epochs. We also employ a gradient clipping with a maximum
value of 5.0 to avoid gradient explosion.

For the semi-supervised model, both generators and discrimi-
nators are optimized using the Adam optimizer. The learning rate
for the generators is set to 4e-4, and for the discriminators to 2e-4.
We train the CycleGAN in an alternating fashion, i.e., when the
generators are optimized, the parameters of the discriminators
are fixed, and vice versa. To balance the adversarial training,
we optimize the discriminators less frequently, and update their
parameters every 5 iterations. Furthermore, we set the batch size
to 8 utterances and train for 120000 iterations. For the first 10%
of the iterations, we only train with paired data using Lsup to
initialize, and the learning rate is fixed to 0.0004. For the rest
of the training, we use Ltotal and the learning rate is linearly
decayed from 0.0004 to 0.0001.

VI. RESULTS AND ANALYSES

A. Supervised Experiments

Fig. 6 plots the enhancement performance of AC-BC sensor
fusion approaches on the ESMB dataset. We present the results

of our proposed method and the baseline FCN [47], and compare
different fusion strategies. Subscripts AF, EF and LF denote
the proposed attention-based fusion, early-fusion and late-fusion
strategies, respectively. We also provide a causal version of the
proposed DC-CRN for a fairer comparison with FCN. For the
causal implementation, we use unidirectional LSTM instead of
BLSTM, and only keep the local context computation in the
attention module to avoid global average pooling. As shown
in the figure, our complex-domain DC-CRN outperforms the
time-domain baseline FCN [47] in all conditions. Especially
at -5 dB SNR, our attention-based fusion achieves 21.1%
higher STOI, and PESQ is improved by 0.83 compared with
the best FCN fusion. In terms of fusion strategies, the pro-
posed attention-based fusion shows a consistent improvement
over early fusion and late fusion. For instance, at the SNR of
−5 dB, on average the attention-based fusion has 1.0% STOI
and 0.08 PESQ advantage over the late fusion. Furthermore,
for both FCN and DC-CRN, late-fusion performs slightly better
than early fusion (see also [47]). However, requiring separate
DNNs for two types of sensor signal, late-fusion tends to be
computationally heavier and may not be preferable in real
applications.

Additionally, we compare sensor fusion with single-sensor
counterparts in Fig. 7. Specifically, we feed DNNs with only AC
or BC signals, and compare them with the AC-BC fusion. From
the figure, we observe that the networks that employ AC-BC
fusion always outperform conventional speech enhancement
that only utilizes AC signals. Especially at -5 dB SNR, sensor
fusion substantially boosts the enhancement performance. For
example, STOI is improved by 11.6% and PESQ by 0.65 for the
proposed DC-CRN. Incorporating BC signals becomes less ben-
eficial as SNR rises. This is to be expected, as noise interference
is not that severe in these conditions, and the noise insensitivity
of BC signals is less useful. At 5 dB SNR, STOI is merely 1.7%
higher, and PESQ is improved by 0.10 for DC-CRN.
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Fig. 7. Enhancement performance of single-sensor versus sensor-fusion methods.

TABLE II
ENHANCEMENT PERFORMANCE OF FULLY-SUPERVISED AND SEMI-SUPERVISED

LEARNING MODELS USING DIFFERENT PROPORTIONS OF PAIRED DATA AT -5
DB SNR

We also provide the results of employing BC signals only,
which essentially amounts to bandwidth extension. An advanced
bandwidth extension baseline (AECNN_BC) [43] for compari-
son. Due to the nature of BC signals, it performs the same in all
noisy conditions. Compared to sensor fusion, the enhancement
performance is worse, but the gap is relatively small in lower
SNR conditions. It is worth noting that, at -5 dB SNR, speech
enhancement with only BC signals yields on average better
results than with only AC signals.

B. Semi-Supervised Experiments

Table II reports the results of training with different por-
tions of paired data of the ESMB corpus for supervised and
semi-supervised learning, where we present average evaluation
results of four test noises at -5 dB SNR. We train both the
fully-supervised model and the CycleGAN model using 1%,

TABLE III
ABLATION STUDY OF THE PROPOSED NETWORK AT -5 DB SNR

2%, 5%, 10%, 20%, 50% and 100% paired data, and the semi-
supervised model additionally exploits unpaired AC data from
the AISHELL corpus.

Compared to fully-supervised baselines, semi-supervised
learning has a clear advantage on different paired portions,
suggesting we have effectively benefited from unpaired data.
Especially when training with only 1% of paired data, the
semi-supervised approach considerably boosts the enhancement
performance, improving STOI by 8.6% and PESQ by 0.38. As
the paired portions rise, the improvement becomes smaller as
expected. Using 50% paired data, we are able to match the
performance of the full-supervised baseline using the complete
ESMB corpus. This shows that the proposed semi-supervised
technique can improve the enhancement performance when
paired data is limited.

C. Ablation Study

An ablation study is conducted to investigate the effects of
different components within the proposed model, and the results
are given in Table III. We use the attention-based fusion of our
DC-CRN as the baseline and compare several variants at -5 dB
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SNR: (i) replacing DC blocks with standard convolutions; (ii)
replacing the gated convolutions within DC blocks with standard
convolutions; (iii) replacing pointwise convolution-based skip
connections with concatenation-based skip connections. (iv)
employing addition instead of concatenation when performing
attention-based fusion. As shown in the table, these variants
all underperform the proposed design. Among these factors,
dense connectivity plays a significant role in enhancement per-
formance, as removing DC blocks degrades STOI by 5.3% and
PESQ by 0.29. Gated convolutions are beneficial for merging
cross-channel features, and removing them from DC blocks
results in 2.2% and 0.19 drop in STOI and PESQ, respectively.
Furthermore, pointwise skip connections are an efficient way
to boost feature fusion compared to simple concatenations, as
it improves the performance without introducing many extra
parameters. Lastly, performing attention-based fusion using ad-
dition leads to a significant performance drop. This is expected as
using concatenation can leverage both cross-modal and single-
modal features, whereas addition only utilizes cross-modal
features.

VII. CONCLUSION

In this study, we have proposed a novel attention-based ap-
proach for fusing AC and BC sensor signals for complex-domain
speech enhancement. To restore clean speech in adverse envi-
ronments, we take advantage of the full bandwidth of AC mi-
crophones and the noise insensitivity of BC sensors. Systematic
evaluations show that our approach substantially boosts the en-
hancement performance compared with conventional monaural
speech enhancement that only utilizes AC microphones, espe-
cially in very low SNR conditions. Furthermore, our DC-CRN
model significantly outperforms a recent time-domain baseline
in all conditions. Additionally, as the availability of parallelly
recorded AC and BC speech is limited, we have proposed a
semi-supervised CycleGAN-based framework to utilize AC and
BC speech data in unrelated recordings. We have demonstrated
that this framework achieves similar performance with only 50%
paired data compared to the fully supervised counterpart. For
future work, we plan to reduce the DC-CRN model complexity
and improve inference efficiency so that the proposed algorithm
can be deployed on mobile devices.
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