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Robust Speaker Localization Guided by Deep
Learning-Based Time-Frequency Masking

Zhong-Qiu Wang , Xueliang Zhang , and DeLiang Wang , Fellow, IEEE

Abstract—Deep learning-based time-frequency (T-F) masking
has dramatically advanced monaural (single-channel) speech sep-
aration and enhancement. This study investigates its potential for
direction of arrival (DOA) estimation in noisy and reverberant en-
vironments. We explore ways of combining T-F masking and con-
ventional localization algorithms, such as generalized cross corre-
lation with phase transform, as well as newly proposed algorithms
based on steered-response SNR and steering vectors. The key idea
is to utilize deep neural networks (DNNs) to identify speech dom-
inant T-F units containing relatively clean phase for DOA estima-
tion. Our DNN is trained using only monaural spectral information,
and this makes the trained model directly applicable to arrays with
various numbers of microphones arranged in diverse geometries.
Although only monaural information is used for training, experi-
mental results show strong robustness of the proposed approach in
new environments with intense noise and room reverberation, out-
performing traditional DOA estimation methods by large margins.
Our study also suggests that the ideal ratio mask and its variants
remain effective training targets for robust speaker localization.

Index Terms—GCC-PHAT, steered-response power, time-
frequency masking, robust speaker localization, deep neural net-
works.

I. INTRODUCTION

ROBUST speaker localization has many applications in
real-world tasks, such as teleconferencing, robotics and

voice-activated human-computer interaction. For example, the
ability to localize a speaker in daily environments is important
for a voice-based interface such as Amazon Echo. Localization
is also widely used in beamforming for speech separation or en-
hancement [1]. Conventionally, generalized cross correlation
with phase transform (GCC-PHAT) [2] (or steered-response
power with phase transform (SRP-PHAT) [3]) and multiple
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signal classification (MUSIC) [4] are the two most popular
algorithms for sound source localization, both originating from
narrowband antenna signal processing. However, their speaker
localization performance is unsatisfactory in noisy and rever-
berant environments; in such environments, the summation of
GCC coefficients exhibits spurious peaks and the noise subspace
constructed in the MUSIC algorithm does not correspond to the
true noise subspace.

To improve the robustness to noise and reverberation,
frequency-dependent SNR (signal-to-noise ratio) weighting is
designed to emphasize frequencies with higher SNR for the
GCC-PHAT algorithm. SNR can be computed in various ways,
such as rule-based methods [5], voice activity detection based
algorithms [6], or minimum mean square error based approaches
[7]. T-F unit level SNR based on minima controlled recur-
sive averaging or inter-channel coherence has also been ap-
plied to emphasize T-F units with higher SNR or coherence
[8]–[10]. However, these algorithms typically assume stationary
noise, which is an unrealistic assumption in real-world acoustic
environments.

While it is difficult to perform multi-channel localization in
noisy and reverberant environments, with two ears the human
auditory system shows a remarkable capacity at localizing sound
sources. Psychoacoustic evidence suggests that sound localiza-
tion largely depends on sound separation [11]–[13], which op-
erates according to auditory scene analysis principles [11]. Mo-
tivated by perceptual organization, we approach robust speaker
localization from the angle of monaural speech separation.

It is well-known that, even for a severely corrupted utterance,
there are still many T-F units dominated by target speech [13]. As
analyzed in [9], [14]–[18], these T-F units carry relatively clean
phase and may be sufficient for speaker localization. Motivated
by this observation, our approach aims at identifying speech
dominant T-F units at each microphone channel and only using
such T-F units for multi-channel localization. A profound conse-
quence of this new approach is that deep learning can be brought
to bear on T-F unit level classification or regression for robust lo-
calization. Recently, deep learning based time-frequency mask-
ing has dramatically elevated monaural speech separation and
enhancement performance (see [19] for an overview). Thanks
to the strong learning capacity of deep neural networks, they
can accurately determine the speech or noise dominance at each
T-F unit [20].

In this context, we perform robust DOA estimation by
utilizing deep learning based T-F masking. This study
makes three contributions. First, DNN estimated masks
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are utilized to improve the robustness of conventional
cross-correlation-based, beamforming-based and subspace-
based algorithms [3] for DOA estimation in environments with
strong noise and reverberation, following previous research
along similar directions [21], [22]. A key ingredient, we believe,
is balancing the contributions of individual frequency bands for
the DOA estimation of broadband speech signals. Second, we
find that using the IRM and its variants, which consider direct
sound as the target signal, leads to high localization accuracy,
suggesting that such training targets are very effective for robust
speaker localization (see also [21]). Third, we show that the
trained model is versatile in application to sensor arrays with
diverse geometries and with various numbers of microphones.

The rest of this paper is organized as follows. The proposed
algorithms are presented in Section II. Experimental setup and
evaluation results are reported in Sections III and IV. Section V
concludes this paper. Note that a preliminary version of this work
has been recently accepted by Interspeech [23]. The present
study extends the preliminary work on time delay estimation in
the two-sensor case to multi-sensor arrays with arbitrary array
geometry.

II. SYSTEM DESCRIPTION

We start with a review of the classic GCC-PHAT algorithm,
which motivated the design of our algorithms. The three sub-
sequent sections present three proposed localization algorithms
based on mask-weighted GCC-PHAT, mask-weighted steered-
response SNR, and steering vectors. These proposed algorithms
respectively represent the cross-correlation-, beamforming- and
subspace-based approaches for localization. Deep learning
based time-frequency masking is described in the last section.

Suppose that there is only one target speaker, the physical
model for a pair of signals in noisy and reverberant environ-
ments under the narrowband approximation assumption can be
formulated as

y (t, f) = c (f) s (t, f) + h (t, f) + n (t, f) (1)

where s(t, f) is the STFT (short-time Fourier transform) value
of the direct-path signal of the target speaker captured by a
reference microphone at time t and frequency f , and c(f) is
the relative transfer function. c(f)s(t, f), h(t, f), n(t, f), and
y(t, f) represent the STFT vectors of the direct signal, its rever-
beration, reverberated noise, and received mixture, respectively.
By designating the first microphone as the reference, the relative
transfer function, c(f), can be described as

c (f) =
[
1, A (f) e−j2π f

N fs τ ∗
]T

(2)

where τ ∗ denotes the time difference of arrival (TDOA) between
the two signals in seconds, A(f) is a real-valued relative gain,
j is the imaginary unit, fs is the sampling rate in Hz, N is the
number of discrete Fourier transform (DFT) frequencies, and
[·]T stands for transpose. Note that the range of f is from 0 to
N/2.

The classical GCC-PHAT algorithm [2], [3] estimates the
time delay of a pair of microphones p and q by computing
their generalized cross-correlation coefficients with a weighting

mechanism based on phase transform

GCCp,q (t, f, k) = Re

{
yp(t, f)yq (t, f)H

|yp(t, f)||yq (t, f)H |e
−j2π f

N fs τp , q (k)

}

= cos
(

∠yp (t, f) − ∠yq (t, f) − 2π
f

N
fsτp,q (k)

)
(3)

where (·)H represents conjugate transpose, Re{·} extracts the
real part, | · | computes the magnitude, and ∠(·) extracts the
phase. τp,q (k) = (dkq − dkp)/cs denotes the time delay of
a candidate direction or location k, where cs is the speed of
sound in the air, and dkq and dkp represent the distance be-
tween the hypothesized sound source to microphone p and q,
respectively. Assuming that the target speaker is fixed within a
single utterance, the GCC coefficients are then summated and
the time delay producing the largest summation represents the
delay estimate.

Intuitively, this algorithm first aligns two microphone sig-
nals using a candidate time delay τ and then computes their
cosine distance at each T-F unit pair. If the cosine distance is
close to one, it means that the candidate time delay is close to
the true time delay at that T-F unit. The summation functions
as a voting mechanism to combine the observations at all the
unit pairs. Since each GCC coefficient is naturally bounded be-
tween −1 and 1, each T-F unit pair has an equal contribution to
the summation. Note that PHAT weighting [24], [25], i.e., the
magnitude normalization term in Eq. (3), is critical here, as the
energy of human speech is mostly concentrated in lower fre-
quency bands. If the magnitude normalization is not performed,
lower frequency components would have much larger GCC co-
efficients and dominate the summation, making it less sharp. In
addition, the scales of the two signals are usually different in
near-field or binaural cases. It is hence beneficial to remove the
influence of different energy levels.

We emphasize that summation over frequencies in the GCC-
PHAT algorithm is very important for broadband speech signals.
Because of spatial aliasing [1], the cross-correlation function
at high frequencies is typically periodic, containing multiple
peaks. It is hence important to summate over all the frequencies
to sharpen the peak corresponding to the true timed delay [13].

Although GCC-PHAT performs well in environments with
low to moderate reverberation, it is susceptible to strong rever-
beration and noise. To see this, suppose that there is a strong
directional noise source. There would be many T-F units dom-
inated by the noise source. In this case, the noise source would
exhibit the highest peak in the summated GCC coefficients.
Similarly, diffuse noise and reverberation would broaden GCC
peaks and corrupt TDOA estimation.

A. Mask-Weighted GCC-PHAT

The time delay information is contained in the direct sound
signal, c(f)s(t, f). Including the GCC coefficients of any T-F
unit pairs dominated by noise or reverberation in the summation
would weaken localization performance. To improve robustness,
we multiply the GCC coefficients for a pair of microphones and
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a masking-based weighting term following [9], [17]:

MGCCp,q (t, f, k) = M (s)
p,q (t, f) GCCp,q (t, f, τp,q (k))

(4)

where M
(s)
p,q (t, f) represents the importance of the T-F unit pair

for TDOA estimation (superscript (s) indicates target signal –
see Eq. (1)). It is computed using

M (s)
p,q (t, f) = Mp (t, f) Mq (t, f) (5)

where Mp and Mq denote the T-F masks representing the esti-
mated speech portion at each T-F unit of microphone p and q,
respectively. The estimated masks should be close to one for T-F
units dominated by direct sound signals and zero for T-F units
dominated by noise or reverberation. Mask estimation based on
deep learning will be discussed later in Section II-E. The time
delay or direction is then computed as

k̂ = arg max
k

∑
(p,q)εΩ

∑
t

N/2∑
f =1

MGCCp,q (t, f, k) (6)

where Ω represents the set of microphones pairs in an array
used for the summation. Note that the above delay estimation is
formulated for a general array with at least two sensors.

Through the product of the masks of individual micro-
phone channels, the weighting mechanism in Eq. (5) places
more weights on the T-F units dominated by target speech
across all the microphone channels. This makes sense as target-
dominant T-F units carry cleaner phase information for local-
ization than other ones. Therefore, adding this weighting term
should sharpen the peak corresponding to the target source in
the summation and suppress the peaks corresponding to noise
sources and reverberation.

At a conceptual level, T-F masking guides localization in the
following sense. First, T-F masking serves to specify what the
target source is through supervised training. Although we are
interested in speaker localization in this study, the framework
does not change if one is interested in localizing, for example,
musical instruments instead. Second, masking suppresses the
impact of interfering sounds and reverberation in localization.
Without masking’s guidance, traditional DOA estimation could
be considered “blind” as it is indiscriminately based on sound
energy in one form or another.

One property of the proposed algorithm is that, for relatively
clean utterances, estimated mask values would all be close to
one. In such a case, the proposed algorithm simply reduces to
the classic GCC-PHAT algorithm, which is known to perform
very well in clean environments [3].

We point out that our approach is different from applying the
GCC-PHAT algorithm to enhanced speech signals obtained via
T-F masking. To explain this, let us substitute Mp(t, f)yp(t, f)
and Mq (t, f)yq (t, f) for yp(t, f) and yq (t, f) in Eq. (3). Do-
ing it this way produces the same GCC coefficients as using
the unprocessed yp(t, f) and yq (t, f), because the real-valued
masks are cancelled out due to the PHAT weighting (unless
time-domain re-synthesis is performed). The proposed algo-
rithm utilizes estimated masks as a weighting mechanism to
identify for localization speech dominant T-F units where the

phase information is less contaminated. Note that localization
cues are mostly contained in inter-channel phase differences.

Our study first estimates a T-F mask for each single-channel
signal and then combines the estimated masks using their prod-
uct. In this way, the resulting DNN for mask estimation can
be readily applied to microphone arrays with various numbers
of microphones arranged in arbitrary geometry, although geo-
metrical information is still necessary for DOA estimation. This
flexibility distinguishes our algorithms from classification based
approaches [26]–[30] for DOA estimation, which typically re-
quire fixed microphone geometry, fixed number of microphones
and fixed spatial resolution for DNN training and testing. In ad-
dition, the trained neural network for mask estimation can be
directly employed for related tasks such as voice activity de-
tection, spatial covariance matrix estimation, beamforming, and
single-channel post-filtering [31], [32]. Also, classification ap-
proaches usually rely heavily on spatial information for DNN
training and therefore may not work well when strong direc-
tional noise sources are present. In contrast, our approach sup-
presses the peaks corresponding to interfering sources via T-F
masking, which is trained to separate a target source.

Following [9], [17], a recent study [21] proposed to use DNN
based T-F masking to improve the SRP-PHAT algorithm. This
method first averages the log-magnitudes from all the chan-
nels and then uses a convolutional neural network to estimate
an average mask from the averaged magnitudes. The estimated
average mask is then used as weights for the SRP-PHAT al-
gorithm. Averaging log-magnitudes would not be a good idea
when the signals at different channels vary significantly, for ex-
ample in the binaural case where interaural level differences
can be large. In addition, averaging would incorporate contam-
inated T-F units for DOA estimation. In contrast, our approach
estimates a mask from each microphone signal separately, using
features extracted from that microphone. We then combine es-
timated masks using the product rule in Eq. (5). As a result, our
approach places more weights on the T-F units dominated by
target speech in all the microphone channels. It should, however,
be noted that performing channel-wise mask estimation comes
at the cost of increased computation compared to estimating an
average mask. Furthermore, as described in Section II-E, our
study uses powerful recurrent neural networks (RNNs) to esti-
mate the IRM [33] and phase-sensitive mask [34], [35], yielding
better mask estimation for localization.

B. Mask-Weighted Steered-Response SNR

The GCC-PHAT, SRP-PHAT or BeamScan [36], [37] algo-
rithms steer a beam towards a hypothesized direction and com-
pute the steered-response power of noisy speech to determine
whether the hypothesized direction is the target direction, i.e.,
with the strongest response. The proposed mask-weighted GCC-
PHAT algorithm utilizes a time-frequency mask to emphasize
speech dominant T-F units so that the steered-response power
of estimated target speech, rather than noisy speech, is used as
the location indicator. This section uses steered-response SNR
as the indicator, as the SNR considers both speech power and
noise power, and more importantly, the SNR at each frequency
can be bounded between zero and one so that DOA estimation
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would not be biased towards high-energy lower frequency com-
ponents. Specifically, for each direction of interest, we design
a beamformer to point towards that direction, and the direction
producing the highest SNR is considered as the predicted target
direction [10]. Speech and noise covariance matrices for beam-
forming and SNR computation can be robustly estimated with
the guidance of T-F masking.

Let yp,q (t, f) = [yp(t, f), yq (t, f)]T. The speech and noise
covariance matrices between microphone p and q at each fre-
quency are computed in the following way,

Φ̂(s)
p,q (f) =

∑
t M

(s)
p,q (t, f) yp,q (t, f) yp,q (t, f)H

∑
t M

(s)
p,q (t, f)

(7)

Φ̂(n)
p,q (f) =

∑
t M

(n)
p,q (t, f) yp,q (t, f) yp,q (t, f)H

∑
t M

(n)
p,q (t, f)

(8)

where M
(s)
p,q (t, f) is given in Eq. (5) and M

(n)
p,q (t, f) is computed

as (superscript (n) indicates noise or interference)

M (n)
p,q (t, f) = (1 − Mp (t, f)) (1 − Mq (t, f)) (9)

Motivated by the work in masking-based beamforming for
automatic speech recognition (ASR) [38], [31] (see also [32]),
the weights in Eq. (7) are empirically designed so that only the
T-F units dominated by speech in both microphone channels
are utilized to compute the speech covariance matrix, and the
more speech-dominant a T-F unit is, the more weight is placed
on it. The noise covariance matrix is computed in a similar
fashion, where the noise mask is simply obtained in (9) as the
complement of the speech mask.

Next, under the plane-wave and far-field assumption [1], the
steering vector for a candidate direction k is modeled as

cp,q (f, k) =
[
e−j2π f

N fs
d k p
c s , e−j2π f

N fs
d k q
c s

]T

(10)

Then, cp,q (f, k) is normalized to unit length,

c̄p,q (f, k) =
cp,q (f, k)
‖cp,q (f, k)‖ (11)

and a minimum variance distortion-less response (MVDR)
beamformer is constructed:

wp,q (f, k) =
Φ̂(n)

p,q (f)−1 c̄p,q

c̄p,q
H Φ̂(n)

p,q (f)−1 c̄p,q

(12)

Afterwards, the SNR of the beamformed signal is estimated
as the ratio between the beamformed speech energy and beam-
formed noise energy.

SNRp,q (f, k) =
wp,q (f, k)H Φ̂(s)

p,q (f) wp,q (f, k)

wp,q (f, k)H Φ̂(n)
p,q (f) wp,q (f, k)

(13)

Finally, the speaker location is estimated as

k̂ = arg max
k

∑
(p,q)εΩ

N/2∑
f =1

SNRp,q (f, k) (14)

One issue with Eq. (13) is that the computed energy and
SNR are unbounded at each frequency band. In such cases,

several frequency bands may dominate the SNR calculation. To
avoid this problem, we restrict it to between zero and one in the
following way.

SNRp,q (f, k)

= wp , q (f ,k)H Φ̂( s )
p , q (f )wp , q (f ,k)

wp , q (f ,k)H Φ̂( s )
p , q (f )wp , q (f ,k)+wp , q (f ,k)H Φ̂(n )

p , q (f )wp , q (f ,k)

(15)

Eq. (15) shares the same spirit as PHAT weighting, where the
GCC coefficient at each unit pair is bounded between −1 and
1, making each frequency contribute equally to the summation.

One can also explore alternative ways of weighting different
frequency bands. One of them is to place more weights on
higher-SNR frequency bands, i.e.,

SNRp,q (f, k) =
M̄p , q (f ) wp , q (f ,k)H Φ̂( s )

p , q (f )wp , q (f ,k)

wp , q (f ,k)H Φ̂( s )
p , q (f )wp , q (f ,k) + wp , q (f ,k)H Φ̂(n )

p , q (f )wp , q (f ,k)

(16)

M̄p,q (f) =
∑

t

M (s)
p,q (t, f) /

∑
t,f

M (s)
p,q (t, f) (17)

where the sum of the speech mask M
(s)
p,q (t, f) within each fre-

quency band is used to indicate the importance of that band
for localization. This frequency weighting, which counters the
energy normalization, is motivated by the mask-weighted GCC-
PHAT algorithm, which implicitly places more weights on fre-
quencies with larger M̄p,q (f). In our experiments, consistently
better performance is observed using Eq. (16) than using Eq.
(13) and (15) (see Section IV).

C. DOA Estimation Based on Steering Vectors

In the recent CHiME-3 and 4 challenges [39], [40], deep
learning based time-frequency masking has been prominently
employed for acoustic beamforming and robust ASR [31], [38],
[32]. The main idea is to utilize estimated masks to compute
the spatial covariance matrices and steering vectors that are crit-
ical for accurate beamforming. Remarkable improvements in
terms of ASR performance have been reported over conven-
tional beamforming techniques that employ traditional DOA
estimation algorithms such as GCC-PHAT [41] and SRP-PHAT
[39] for steering vector computation. This success is largely at-
tributed to the power of deep learning based mask estimation
[19]. In this context, we propose to perform DOA estimation
from estimated steering vectors, as they contain sufficient infor-
mation about the underlying target direction.

Following [38], [32], the steering vector for microphone p
and q, ĉp,q (f), is estimated as the principal eigenvector of the
estimated speech covariance matrix computed using Eq. (7). If
Φ̂(s)

p,q (f) is accurately estimated, it would be close to a rank-
one matrix, as the target speaker is a directional source and its
principal eigenvector is a reasonable estimate of the steering
vector [1].

To derive the underlying time delay or direction, we enu-
merate all the candidate directions and find the direction that
maximizes the following similarity:
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Fig. 1. Illustration of DOA estimation based on estimated steering vectors for
a 2.4 s two-microphone (spacing: 24 cm) signal with babble noise. The SNR
level is−6 dB and reverberation time is 0.16 s. Dots indicate the estimated phase
differences ∠(ĉp ,q (f ))1 − ∠(ĉp ,q (f ))2 obtained using the IRM, and crosses

the fitted phase differences 2π f
N fs τp ,q (k) for a candidate direction k at each

frequency.

Sp,q (f, k) =

cos

(
∠(ĉp,q (f))1 − ∠(ĉp,q (f))2 − 2π

f

N
fsτp,q (k)

)
(18)

k̂ = arg max
k

∑
(p,q)εΩ

N/2∑
f =1

Sp,q (f, k) (19)

The rationale is that ĉp,q (f) is independently estimated at
each frequency, and therefore the estimated phase difference,
∠(ĉp,q (f))1 − ∠(ĉp,q (f))2 , between the two complex values in
ĉp,q (f) does not strictly follow the linear phase assumption.
We enumerate all the candidate directions and find as the fi-
nal estimate a direction k with its hypothesized phase delay
2π f

N fsτp,q (k) that best matches the estimated phase difference
at every frequency band. As illustrated in Fig. 1, this approach
can be understood as performing circular linear regression be-
tween the estimated phase difference and frequency index f ,
where the slope is determined by τp,q (k) and the periodic co-
sine operation is employed to deal with phase wrapping. The
cosine operation is naturally bounded between −1 and 1, thus
explicit energy normalization as in Eq. (3) and (15) is not nec-
essary. When there are more than two microphones, we simply
combine all the microphone pairs by the summation. We opti-
mize the similarity function through explicit enumeration. Eq.
(18) in form is similar to Eq. (3). The key difference is that
the phase difference per frequency is obtained from robustly
estimated steering vectors rather than from the observed phase
difference at each unit pair.

Similar to Eq. (16), we emphasize the frequency bands with
higher SNR using M̄p,q (f) given in Eq. (17).

Sp,q (f, k) = M̄p,q (f) cos

(
∠(ĉp,q (f))1 − ∠(̂cp,q (f))2

− 2π
f

N
fsτp,q (k)

)
(20)

Note that this algorithm requires less computation compared
with the other two algorithms, as only a summation over an
N/2-dimensional vector is needed for each enumerated time
delay, while mask-weighted GCC-PHAT requires a summation
over all the unit pairs and mask-weighed steered-response SNR
needs a series of matrix multiplications.

Previous studies [8], [42], [43] have computed time delays
from estimated steering vectors at each frequency band or each
T-F unit pair. They divide the estimated phase difference by
the angular frequency to get the time delay, assuming that the
microphones are placed sufficiently close and no phase wrap-
ping occurs. However, using closely spaced microphones would
make the time delay too small to be accurately estimated and
also make location triangulation harder. When phase wrapping
is present, multiple time delays could give exactly the same
phase difference at a specific frequency band. Our method ad-
dresses this ambiguity via enumerating all the time delays and
checking the similarity measure in Eq. (18) of each time delay.
This method is sensible because a time delay deterministically
corresponds to a phase difference. Another difference is that we
use DNN based T-F masking for steering vector computation. In
contrast, previous studies use spatial clustering [42] or empirical
rules [43].

Our proposed algorithm differs from the classic MUSIC algo-
rithm [4] and its recent extension in [22] where a recurrent neural
network with uni-directional long short-term memory (LSTM)
is used to estimate the ideal binary mask and the estimated mask
is then utilized to weight spatial covariance matrix estimation for
MUSIC. Whereas these studies find the target direction with its
hypothesized steering vector orthogonal to the noise subspace,
the proposed algorithm directly searches for a direction that is
closely matched to target steering vectors between each pair of
microphones at all frequencies. The steering vector in our study
is robustly estimated using supervised T-F masking. Similar to
GCC-PHAT, our algorithm implicitly equalizes the contribution
of each frequency as all frequencies contain information for the
DOA estimation of broadband speech signals. In contrast, the
pseudospectram at each frequency in the broadband MUSIC al-
gorithm used in [22] is unbounded, and some frequencies could
dominate the summation of the pseudospectrams.

D. Deep Learning Based Mask Estimation

Clearly, the estimated mask of each microphone signal, Mp ,
plays an essential role in the proposed algorithms. Deep learning
based T-F masking has advanced monaural speech separation
and enhancement performance by large margins [19]. Many
DNNs have been applied to time-frequency masking. Among
them, RNNs with bi-directional LSTM (BLSTM) have shown
consistently better performance over feed-forward neural net-
works, convolutional neural networks, simple RNNs [44], and
RNNs with uni-directional LSTM [45], [46], due to their better
modeling of contextual information. In this study, we train an
RNN with BLSTM to estimate the IRM (see Section III for
more details of BLSTM training). When computing the IRM of
a noisy and reverberant utterance, we consider the direct sound
as the target signal and the remaining components as interfer-
ence, as the direct sound contains phase information for DOA
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Fig. 2. Illustration of the (a) two-microphone setup, (b) eight-microphone setup, and (c) binaural setup.

estimation.

IRMp (t, f) =

√
|cp (f) s (t, f)|2

|cp (f) s (t, f)|2 + |hp (t, f) + np (t, f)|2
(21)

See Eq. (1) for relevant notations in the above equation. In
single-channel speech enhancement, the estimated real-valued
mask is element-wise multiplied with the STFT coefficients of
unprocessed noisy speech to obtain enhanced speech [33]. In this
study, we use an estimated IRM to weight T-F units for DOA
estimation. Our study uses log power spectrogram features for
mask estimation.

The IRM is ideal for speech enhancement only when the mix-
ture phase is the same as the clean phase at each T-F unit. The
phase-sensitive mask (PSM) [34], [35] takes the phase differ-
ence into consideration by scaling down the ideal mask when the
mixture phase is different from the clean phase using a cosine
operation. In a way, it represents the best mask if a real-valued
mask is multiplied with the STFT coefficients of unprocessed
noisy speech for enhancement [34], [47]. We define a form of
the phase-sensitive mask in the following way:

PSMp (t, f) = max {0, IRMp (t, f) cos (∠yp (t, f)

−∠ (cp (f) s (t, f)))} (22)

The inclusion of phase in an ideal mask seems particularly
suited for our task as phase is key for localization and we need
to identify T-F units with cleaner phase for this task. The cosine
term serves to reduce the contributions of contaminated T-F units
for localization. Note the difference between the PSM defined
in Eq. (22) and the definition in [34].

III. EXPERIMENTAL SETUP

The proposed localization algorithms are evaluated in re-
verberant environments with strong diffuse babble noise. Our
neural network is trained only on simulated room impulse re-
sponses (RIR) using just single-channel information for mask
estimation, and directly tested on three unseen sets of RIRs for
DOA estimation using microphone arrays with various numbers
of microphones arranged in diverse ways. An illustration of the
test setup is shown in Fig. 2. The first test set includes a relatively
matched set of simulated two-microphone RIRs, the second set
consists of real RIRs measured on an eight-microphone array,
and the third set contains real binaural RIRs (BRIR) measured
on a dummy head.

The RIRs used in the training and validation data are sim-
ulated using an RIR generator1, which is based on the classic
image method. An illustration of this setup is shown in Fig. 2(a).
For the training and validation set, we place 36 different inter-
fering speakers at the 36 directions uniformly spaced between
−87.5◦ and 87.5◦ in steps of 5◦, i.e., one competing speaker in
each direction, resulting in a 36-talker diffuse babble noise. The
target speaker is randomly placed at one of the 36 directions.
For the testing data, we put 37 different interference speak-
ers at the 37 directions spanning from −90◦ to 90◦ in steps of
5◦ (one competing speaker in each direction), and the target
speaker randomly at one of the 37 directions. This way, the test
RIRs are different from the RIRs used for training and valida-
tion. The distance between each speaker and the array center is
1.5 m (see Fig. 2(a)). The room size is fixed at 8x8x3 m, and
the two microphones are placed around the center of the room.
The spacing between the two microphones is 0.2 m and the mi-
crophone heights are both set to 1.5 m. The reverberation time
(T60) of each mixture is randomly selected from 0.0 s to 1.0 s
in steps of 0.1 s. Target speech comes from the IEEE corpus
with 720 sentences uttered by a female speaker [48]. We split
the utterances into sets of 500, 100 and 120 (in the same order
as listed in the IEEE corpus) to generate training, validation and
test data. To create the diffuse babble noise for each mixture, we
randomly pick 37 (or 36) speakers from the 462 speakers in the
TIMIT training set and concatenate all the utterances of each
speaker, and then place them at all 37 (or 36) directions, with a
randomly chosen speech segment of each speaker per direction.
Note that we use the first half of the concatenated utterance of
each speaker to generate the training and validation diffuse bab-
ble noise, and the second half to generate the test diffuse noise.
There are in total 50,000, 1,000, and 3,000 two-channel mixtures
in the training, validation and test set, respectively. The average
duration of the mixtures is 2.4 s. The input SNR computed from
reverberant speech and reverberant noise is fixed at−6 dB. Note
that if the direct sound is considered as target speech and the re-
maining signal as noise, as is done in Eq. (21) and (22), the SNR
will vary a lot and be much lower than −6 dB, depending on the
direct-to-reverberant ratio (DRR)2 of the RIRs. We therefore fix
the SNR between the reverberant speech and reverberant noise
at −6 dB and systematically vary the RIRs to change the SNR
between the direct sound signal and the remaining components.

1See https://github.com/ehabets/RIR-Generator
2For a simulated RIR, the corresponding simulated anechoic RIR is consid-

ered as the RIR of direct sound. For a real RIR, we first find the sample � with
the largest absolute value. Then the RIR of direct sound is considered as the
first � + 0.0025fs samples for DRR and IRM/PSM computation.
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We train our BLSTM using all the single-channel signals
(50,000 × 2 in total) in the training data. The log power spec-
trogram is used as the input features for mask estimation. Global
mean-variance normalization is performed on the input features.
The BLSTM consists of two hidden layers each with 600 units
in each direction. Sigmoidal units are utilized in the output layer,
as the IRM and PSM are bounded between zero and one. During
training, the Adam algorithm is utilized to minimize the mean
squared error for a maximum of 100 epochs, starting with an
initial learning rate of 0.001, which is scaled by half if the er-
ror on the validation set is not reduced after three epochs. The
frame length is 32 ms, the frame shift is 8 ms, and the sampling
rate is 16 kHz. A 512-point FFT (fast Fourier transform) is per-
formed to extract 257-dimensional log spectrogram feature at
each frame. The input and output dimension are thus both 257.
The sequence length for BLSTM training and testing is just the
utteance length.

The proposed algorithms are also evaluated on the Multi-
Channel Impulse Responses Database [49]3 measured at Bar-
Ilan University using a set of eight-microphone linear arrays.
We use the microphone array with 8 cm spacing between the
two center microphones, and 4 cm spacing between the other
adjacent microphones in our experiments, i.e., 4-4-4-8-4-4-4.
The setup is depicted in Fig. 2(b). The RIRs are measured in a
room with the size 6 × 6 × 2.4 m in steps of 15◦ from −90◦

to 90◦, at a distance of 1.0 and 2.0 m to the array center, and
at three reverberation time (0.16, 0.36 and 0.61 s). Similar to
the two-microphone setup, the IEEE and TIMIT utterances are
utilized to generate 3,000 eight-channel test utterances for each
of the two distances. We put one interference speaker at each of
the 26 locations, resulting in a 26-talker diffuse babble noise.
For each of the two distances, the target speaker is placed at one
of the 11 interior locations on the hemi-circle (to avoid endfire
directions). Note that the RIRs, number of microphones, source-
to-array distance, and microphone geometry in this dataset are
all unseen during training. In addition, the diffuse babble noise
is generated using different locations and different number of
interfering speakers. The trained BLSTM is directly tested on
the generated test utterances using randomly selected sets of
microphones to demonstrate the versatility of our approach to
arrays with varying numbers of microphones arranged in diverse
geometries.

We also evaluate our algorithm on a binaural setup illustrated
in Fig. 2(c). The real BRIRs4 captured using a Cortex head
and torso simulator (HATS dummy head) in four real rooms
with different sizes and T60s at the University of Surrey are
utilized to generate the test utterances. The dummy head is
placed at various heights between 1.7 m and 2.0 m in each
room, and the source to array distance is 1.5 m. The real BRIRs
are measured using 37 directions ranging from −90◦ to 90◦

in steps of 5◦. The IEEE and TIMIT utterances are utilized to
generate 3,000 binaural test utterances in the same way as in
the two-microphone setup. The only difference from the two-
microphone setup illustrated in Fig. 2(a) is that now real BRIRs
rather than simulated two-channel RIRs are used to generate

3Available at http://www.eng.biu.ac.il/gannot/downloads/
4Available at https://github.com/IoSR-Surrey/RealRoomBRIRs

test utterances. Note that we directly apply the trained BLSTM
on this new binaural test set for DOA estimation, although the
BLSTM is not trained specifically on any binaural data and the
binaural setup is completely unseen during training.

For setup (a) and (b), the location or direction of interest k is
enumerated from −90◦ to 90◦ in steps of 1◦ on the hemi-circle.
The hypothesized time delay between microphone p and q for
location or direction k, τp,q (k), is computed as (dkq − dkp)/cs ,
where cs is 343 m/s in the air. Note that setup (b) uses real RIRs
measured by a given microphone array, so the distance between
each candidate location and each microphone, and microphone
configurations are all subject to inaccuracies. In addition, the
assumed sound speed may not equal the actual sound speed.
These factors complicate accurate localization. For setup (c), the
hypothesized time delay cannot be obtained from the distance
difference due to the shadowing of head and torso. τ1,2(k) is
instead enumerated from −15 to 15 samples in steps of 0.1
sample. The estimated time delay is then mapped to the azimuth
giving the closest time delay. This mapping is obtained from the
group delay of the measured BRIRs of the HATS dummy head
in the anechoic condition, as is done in [16].

Note that we assume that the target speaker is fixed within
each utterance (average length is 2.4 s), and compute a single
DOA estimate per utterance. For setup (a) and (c), which use 5o

step size for the candidate directions, we measure localization
performance using gross accuracy, which considers a prediction
correct if it is within 5o (inclusive) of the true target direction. For
the Multi-Channel Impulse Response Database with a coarser
spatial resolution, we consider a prediction correct if it is within
7.5◦ of the true direction. Gross accuracy is given as percent
correct over all test utterances.

In Eq. (6), (14) and (19), Ω contains all the microphone pairs
of an array for the summation.

IV. EVALUATION RESULTS

Table I presents localization gross accuracy results for two-
microphone setup (a), together with the DRR at each T60 and
the oracle performance marked in grey. We report DRR to-
gether with T60 as it is an important factor for the performance
of sound localization in reverberant environments. The rows
of eIRM and ePSM in the table mean that estimated IRM and
estimated PSM are used for DOA estimation, respectively. All
the three proposed algorithms lead to large improvements over
classic GCC-PHAT and MUSIC algorithms (on average 72.0%,
86.7% and 75.1% using ePSM vs. 21.6% and 25.2%). PSM
estimation yields consistently better performance than IRM es-
timation for all the algorithms; similar trends are observed from
later results in Tables II–IV. As is reported in Table I, frequency
weighting based on estimated masks, i.e., using Eq. (16) and
(20), leads to consistent improvements (more than 5 percent-
age points on average). Among the three proposed algorithms,
mask-weighted steered-response SNR performs the best, espe-
cially when reverberation time is high and DRR is low. For all
the three proposed algorithms, using the PSM or IRM results
in close to 100% gross accuracy, even when reverberation time
is as high as 1.0 s, the DRR is as low as −8.0 dB, and the
SNR between reverberant speech and reverberant noise is as
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TABLE I
DOA ESTIMATION PERFORMANCE (% GROSS ACCURACY) OF DIFFERENT METHODS IN TWO-MICROPHONE SETUP

TABLE II
DOA ESTIMATION PERFORMANCE (%GROSS ACCURACY) OF DIFFERENT METHODS IN MULTI-MICROPHONE SETUP BY RANDOMLY SELECTING TWO

MICROPHONES FOR EACH TEST UTTERANCE

TABLE III
DOA ESTIMATION PERFORMANCE (%GROSS ACCURACY, AVERAGED OVER ALL REVERBERATION TIMES) OF DIFFERENT METHODS AT 2 M DISTANCE IN

MULTI-MICROPHONE SETUP BY RANDOMLY SELECTING DIFFERENT NUMBERS OF MICROPHONES FOR EACH TEST UTTERANCE.
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TABLE IV
DOA ESTIMATION PERFORMANCE (% GROSS ACCURACY) OF DIFFERENT

METHODS IN BINAURAL SETUP

Fig. 3. Illustration of an estimated IRM for a mixture with babble noise in
the two-microphone setup (SNR = −6 dB and T60 = 0.9 s). (a) Mixture log
power spectrogram; (b) clean log power spectrogram; (c) IRM; (d) estimated
IRM.

low as −6 dB. These oracle results demonstrate the effective-
ness of T-F masking: the PSM and IRM can be considered as
strong training targets for robust speaker localization, just like
for speech separation and enhancement [50], [33]. In addition,
better estimated masks in the future will likely produce better
localization results.

For the mask-weighted GCC-PHAT algorithm, we have also
evaluated the average of estimated mask instead of the product
in Eq. (5), motivated by [21]. We find that the product rule pro-
duces significantly better localization than the average, 68.3%
vs. 55.3% using eIRM and 72.0% vs. 61.6% using ePSM. We
should note that the average mask is not exactly what is used
in [21] and there are many differences between our system and
[21], as discussed in Section II-A. These differences complicate
a direct comparison. Another way is to compare the relative
improvement over a baseline where no masking is performed.
It appears that our overall system obtains larger improvements.

Fig. 3 illustrates IRM estimation for a very noisy and re-
verberant mixture. As can be observed by comparing the IRM
in Fig. 3(c) and the estimated IRM in Fig. 3(d), the estimated

mask well resembles the ideal mask in this case, indicating the
effectiveness of BLSTM based mask estimation. Upon a closer
examination, we observe that the IRM is more accurately esti-
mated at speech onsets and lower frequencies, likely because the
direct speech energy is relatively stronger in these T-F regions.

Table II presents the accuracy of DOA estimation in setup
(b), which uses measured real RIRs. For each utterance, we ran-
domly choose two microphones from the eight microphones for
testing. Note that the microphone distances can vary from 4 cm
at minimum to 28 cm at maximum for the test utterances. As
the DNN in our algorithms only utilizes single-channel infor-
mation, our approach can still apply even as geometry varies
substantially. As can be seen, the proposed algorithms using
PSM lead to large improvements over GCC-PHAT and MU-
SIC, 84.9%, 86.5% and 82.8% vs. 36.1% and 34.1% for 1 m
distance, and 78.1%, 78.2% and 74.6% vs. 28.1% and 25.0% for
2 m distance. In this setup, the three proposed algorithms per-
form similarly, with the mask-weighted steered-response SNR
performing slightly better. Clearly, the performance is better
when the source to array distance is 1 m than 2 m. Using the
IRM or the PSM does not reach 100% accuracy in this setup,
likely because the aperture size can be as small as 4 cm, posing
a fundamental challenge for accurate localization of a distant
speaker.

In Table III, we show that our algorithms can be directly ex-
tended to multi-channel cases. This is done by combining differ-
ent microphone pairs as in the classic SRP-PHAT algorithm. For
each utterance, we randomly select a number of microphones
for testing. As can be seen from the results, using more mi-
crophones leads to better performance for all the algorithms. A
significant improvement occurs going from two to three micro-
phones, likely because three microphone pairs become available
for localization in a three-sensor array versus one pair in a two-
sensor array. The performance starts to plateau after five micro-
phones. Among the proposed algorithms, the mask-weighted
GCC-PHAT algorithm performs slightly better than the other
two when more microphones become available.

Table IV reports the results on binaural setup (c). Although
the neural network trained for mask estimation has not seen
binaural signals and binaural geometry, directly applying it to
binaural speaker localization results in substantial gains over
the GCC-PHAT and MUSIC algorithms. Notably, the mask-
weighted steered-response SNR algorithm is slightly worse than
the other two (92.9% vs. 95.8% and 93.3% using ePSM). The
reason, we think, is that the energy levels at the two channels
cannot be treated as equal as is done in Eq. (10), as head shadow
effects occur in the binaural setup. For the microphone array
setup (a) and (b), assuming equal energy levels is reasonable as
there is no blockage from sound sources to an array. Also the
localization performance in this binaural setup appears much
higher than the two-microphone setup, likely because the DRR
is much higher.

In the above localization evaluations, the IEEE utterances of
the same speaker are used in both training and testing. How
sensitive is our approach to a training speaker? To get an idea,
we evaluate the performance of the already-trained model with-
out any change on a new IEEE female speaker in the two-
microphone setup. In this evaluation, the last 120 sentences
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TABLE V
DOA ESTIMATION PERFORMANCE (% GROSS ACCURACY) OF DIFFERENT METHODS IN TWO-MICROPHONE SETUP ON A NEW IEEE FEMALE SPEAKER

uttered by the new speaker are used to generate 3,000 test ut-
terances in the same way as in the evaluation of Table I. The
results on the new speaker are given in Table V. As can be
observed from this table, the relative improvements of the pro-
posed algorithms over the baseline GCC-PHAT and MUSIC
are, as expected, not as large as those for the training speaker in
Table I (the estimated masks are less accurate in this case), but
they are still substantial.

V. CONCLUDING REMARKS

We have investigated a new approach to robust speaker
localization that is guided by T-F masking. Benefiting from
monaural masking based on deep learning, our approach
dramatically improves the robustness of conventional cross-
correlation-, beamforming- and subspace-based approaches for
speaker localization in noisy and reverberant environments. We
have found that balancing the contribution of each frequency is
important for the DOA estimation of broadband speech signals.
Although the neural network is trained using single-channel
information, our study shows that it is versatile in its application
to arrays with various numbers of microphones and diverse
geometries. This property should be useful for cloud-based
services, where client setup may vary significantly in terms of
microphone configuration.

Our approach has a number of limitations that need to be
dealt with in future work. Our system performs localization at
the utterance level, and as a result it cannot be applied to local-
izing moving sound sources. The current study does not locate
multiple speakers. BLSTM is inherently non-causal and can-
not be used for online applications where uni-directional LSTM
is more appropriate. Although our evaluations have employed
recorded RIRs, we have not used recorded speech signals. In
addition, one noise type and one SNR are considered in our
current study, although SNR generalization is not expected to
be difficult [19] and noise generalization can be addressed via
large-scale training [51], [52].

Before closing, we emphasize that the proposed approach
achieves robust speaker localization as guided by T-F masking.
Our experiments find that even for severely corrupted utter-
ances, ratio masking in the proposed algorithms leads to ac-
curate localization. Our study suggests that ideal ratio masks
can serve as strong training targets for robust speaker local-
ization. Clearly, the major factor limiting the localization per-
formance is the quality of estimated masks. Nonetheless, the
proposed T-F masking guided approach promises further lo-
calization improvements as robust speaker localization can di-
rectly benefit from the rapid development of deep learning based
time-frequency masking. Through training, masking guidance
plays the dual role of specifying the target source and attenu-
ating sounds interfering with localization. T-F masking affords
a view of the signal to be localized, as opposed to traditional
localization that blindly relies on signal energy.
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