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Abstract 
Deep learning based time-frequency (T-F) masking has dra-
matically advanced monaural speech separation and enhance-
ment. This study investigates its potential for robust time dif-
ference of arrival (TDOA) estimation in noisy and reverberant 
environments. Three novel algorithms are proposed to im-
prove the robustness of conventional cross-correlation-, beam-
forming- and subspace-based algorithms for speaker localiza-
tion. The key idea is to leverage the power of deep neural net-
works (DNN) to accurately identify T-F units that are relative-
ly clean for TDOA estimation. All of the proposed algorithms 
exhibit strong robustness for TDOA estimation in environ-
ments with low input SNR, high reverberation and low direc-
tion-to-reverberant energy ratio.  
Index Terms: GCC-PHAT, time-frequency masking, robust 
TDOA estimation, deep neural networks.  

1. Introduction 
Robust speaker localization has a lot of applications in real-
world products, such as human-computer interaction, robotics 
and beamforming. Conventionally, the generalized cross cor-
relation with phase transform (GCC-PHAT) [1] or steered-
response power with phase transform (SRP-PHAT) [2] algo-
rithm and the multiple signal classification (MUSIC) [3] algo-
rithm are the two most popular techniques in sound source lo-
calization. However, they are only designed to localize the 
loudest sources in an environment, which may not be the tar-
get speaker at all. In environments with strong reverberation 
and directional or diffuse noise, the summation of the GCC-
PHAT coefficients would exhibit high peaks from interference 
sources, and the noise subspace constructed from the eigen-
vectors corresponding to the smallest eigenvalues of noisy 
speech covariance matrices in the MUSIC algorithm would 
likely not be the true noise subspace.  

To improve the robustness, earlier studies apply SNR 
weighting to emphasize the frequencies with higher SNR for 
the GCC-PHAT algorithm. Many SNR estimation algorithms 
have been applied, such as the rule-based methods [4], voice 
activity detection based algorithms [5], or minimum mean 
square error based approaches [6]. However, these algorithms 
usually assume that the noise is stationary, which is an unreal-
istic assumption in real-world environments. In the area of 
computational auditory scene analysis, it has been suggested 
that human may perform sound localization by first perform-
ing speech separation [7]. Motivated by this auditory observa-
tion, we approach the speaker localization problem from the 
angle of monaural speech separation. 

Our key observation is that even for a severely corrupted 
signal, there are still many T-F units dominated by target 

speech [7]. According to Woodruff and Wang  [8], [9], these 
T-F units, with much cleaner phase, are sufficient enough for 
robust speaker localization. In other words, this formulation 
aims at assigning binary labels to T-F units according to 
speech and noise dominance. A profound consequence of this 
new formulation is that robust speaker localization can now be 
approached from the angle of T-F unit level classification (or 
regression) using modern machine learning techniques. How-
ever, previous attempts, which employ Gaussian mixture 
models and support vector machines [8], [9], [10], [11], are 
incapable of accurately finding these T-F units in a haystack 
of noise and reverberation. In recent years, monaural speech 
separation techniques based on T-F masking and deep learning 
have demonstrated strong potential and overwhelming ad-
vantages over conventional speech separation and enhance-
ment algorithms [12], [13]. It has been validated in many stud-
ies that, with the strong learning power of DNNs, this ap-
proach is capable of accurately determining the speech or 
noise dominance at each T-F unit [14], and the resulting sepa-
rated speech exhibits remarkable speech intelligibility and 
quality improvements [15].  

In this context, we propose three novel algorithms based 
on T-F masking and deep learning to improve conventional 
cross-correlation-, beamforming- and subspace-based algo-
rithms for speaker localization. In the literature, there are re-
cent studies applying deep learning based T-F masking for ro-
bust speaker localization [16], [17]. We note that our study is 
independently developed and we not only explore the classic 
algorithms, such as GCC-PHAT, but also propose new algo-
rithms to utilize the estimated masks from DNNs for better 
speaker localization in noisy and reverberant environments. 
Besides the T-F masking based approach, another popular 
deep learning based method for sound localization is to discre-
tize potential directions and formulate speaker localization as 
a supervised classification problem [18], [19]. However, such 
approaches generally suffer from resolution problems and mi-
crophone geometry mismatches. In contrast, the masking 
based approach is more flexible and versatile, as the DNN on-
ly needs to determine the speech or noise dominance at each 
T-F unit, which is a well-defined and well-studied task in 
monaural speech separation [13]. 

2. System Description 
We first review the GCC-PHAT algorithm in Section 2.1 and 
then present the proposed algorithms. The discussion on deep 
learning based mask estimation is in Section 2.5. 
2.1. GCC-PHAT 
Assuming that there is only one target source, the physical 
model for a pair of signals in reverberant and noisy environ-
ments can be formulated as: 
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where  (   ) represents the STFT value of the target source at 
time   and frequency  ,  ( ) is the relative transfer function, 
and  ( ) (   ),  (   ),  (   ), and  (   ) are the STFT 
vectors of the direct sound, early and late reverberation, rever-
berant noise and received mixture, respectively. By choosing 
the first microphone as the reference, the relative transfer 
function  ( ) is assumed to have the following form: 

 ( )  [   ( )     
 
    

 
]
 
  (2) 

where    is the underlying time delay in seconds,  ( ) is a re-
al-valued gain,    is the sampling rate in Hz,   is the number 
of DFT frequencies, and , -  stands for matrix transpose. Note 
that   ranges from 0 to   ⁄ . 

The GCC-PHAT algorithm [1], [2] estimates the time de-
lay by computing the generalized cross-correlation function 
with a weighting mechanism based on the phase transform: 
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where ( )  stands for conjugate transpose,     * + extracts the 
real part, | | computes the magnitude, and subscripts 1 and 2 
index microphone channel. Intuitively, this algorithm first tries 
to align these two signals using a candidate time delay   and 
then calculates their cosine distance. If the cosine distance is 
close to one, it means that the candidate time delay is close to 
the true time delay. Each GCC coefficient is therefore in be-
tween -1 and 1. Assuming that the sound source is fixed with-
in each utterance, the GCC coefficients are then pooled to-
gether and the   giving the largest summation is considered as 
the time delay estimate. We emphasize that the PHAT 
weighting [20] is essential here. If the normalization is not 
performed, some frequencies with higher energy would have 
larger GCC coefficients and dominate the summation. 
2.2. Mask-Weighted GCC-PHAT 
Although GCC-PHAT performs well in moderately reverber-
ant environments, it collapses even in slightly noisy environ-
ments. To improve the robustness, we include a masking-
based weighting term into the algorithm following [21], [22]: 

            (     )   (   )       (     )  (4) 
where  (   ) denotes the importance of the T-F pair for 
TDOA estimation. It is defined as: 

 (   )  ∏  ̂ (   )
 

   
  (5) 

where  (=2 in this case) is the number of microphone chan-
nels and   ̂  is the estimated mask representing the estimated 
speech energy portion at each T-F unit of signal  . The time 
delay is estimated using: 

 ̂        
 
∑             (     )

   
 (6) 

The weighting mechanism will put more weights on the T-F 
units dominated by target speech across all the microphone 
channels, as they contain much cleaner phase for localization. 
Adding this weighting term would hence likely sharpen the 
peak corresponding to target speech in the summation and 
suppress the peaks corresponding to noise sources, only if the 
masks can be accurately estimated.  

Note that our study estimates one mask from each single-
channel signal and then combine them using the product as the 
weights. The resulting neural network for mask estimation 
would be directly applicable to microphone arrays with vari-
ous numbers of microphones and microphone geometry, while 

microphone geometry information is still required to estimate 
the three-dimensional location. 

Following [21], [22], a recent study by Pertila et al. [16] 
also proposed to use neural network based T-F masking to im-
prove the SRP-PHAT algorithm. Their system first averages 
the log magnitude features from all the channels and then es-
timates a mask from the averaged features using a deep convo-
lutional neural network. Subsequently, the estimated mask is 
directly used as the weights for the classic SRP-PHAT algo-
rithm. Here, we point out that doing it this way could include 
unreliable T-F units for localization. Because the input SNRs 
at different microphone channels are normally different, aver-
aging the log magnitudes would lead to a signal with an SNR 
in between the SNRs of the original signals. The resulting es-
timated mask would likely contain estimated speech dominant 
T-F units that are not speech dominant across all the micro-
phone signals. In contrast, our system estimates a mask from 
each channel individually, and then combines them using the 
product. The product operation would automatically identify 
and only put more weights on T-F units dominated by speech 
across all the microphone channels.  
2.3. Mask-Weighted Steered-Response SNR 
The proposed mask-weighted GCC-PHAT algorithm uses a 
weighting mechanism to emphasize speech dominated T-F 
units so that the steered-response power of target speech, ra-
ther than noisy speech is used as the indicator of target direc-
tion. Following [23], this section explores the use of steered-
response SNR as the indicator, as SNR considers not only 
speech power but also noise power.  

We first compute the speech covariance matrix,  ̂ ( ), 
and noise covariance matrix,  ̂ ( ), at each frequency in the 
following way [24], [25], [26]. 
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with  (   ) computed using Eq. (5) and  (   ) computed as  

 (   )  ∏ (   ̂ (   ))
 

   
 (9) 

Essentially, Eq. (7) and (5) mean that only the T-F units domi-
nated by speech are utilized to compute the speech covariance 
matrix, and the more speech-dominant a T-F unit is, the more 
weight is placed. 

Next, following the free-field and plane-wave assumption 
[27], the unit-length steering vector for a potential location   
is modeled as 
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where     is the distance between sound source location   to 
microphone   and    is the speed of sound. Then, an MVDR 
beamformer is constructed: 

 ̂(   )  
 ̂ ( )   (   )

 (   )  ̂ ( )   (   )
 (11) 

After that, the SNR of beamformed signal is computed from 
the energy of beamformed speech and beamformed noise. 
   ( )

 ∑
 ̂(   )  ̂ ( ) ̂(   )

 ̂(   )  ̂ ( ) ̂(   )   ̂(   )  ̂ ( ) ̂(   ) 
 (12) 

Finally, the speaker location is predicted to be 
 ̂             ( ) (13) 

Note that in Eq. (12), we constrain the SNR to be between ze-
ro and one. It is essentially similar to the PHAT weighting in 
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the GCC-PHAT algorithm, where the GCC coefficient of each 
T-F unit is normalized to be between -1 and 1. In our experi-
ments, we put more weights to higher-SNR frequencies: 
   ( )

 ∑
 ( )   ̂(   )  ̂ ( ) ̂(   )

 ̂(   )  ̂ ( ) ̂(   )   ̂(   )  ̂ ( ) ̂(   )
  

 
 (14) 

where  ( ) is defined as 
 ( )  ∑  (   )

 
 (15) 

Note that the sum of the combined speech mask within each 
frequency is used to indicate the importance of each frequen-
cy. In our experiments, much better results have been ob-
served using Eq. (14) than using Eq. (12).  
2.4.  TDOA Estimation from Steering Vectors 
Time-frequency masking based on deep learning has shown 
considerable potential for beamforming and robust ASR in the 
recent CHiME challenges [25], [24], [26], [28]. The major ad-
vance is to use the estimated masks from a powerful DNN to 
compute speech and noise statistics that are critical for accu-
rate beamforming. Remarkable improvements have been ob-
served on many robust ASR tasks [29]. In this context, one po-
tential way to do robust TDOA estimation is to derive the time 
delay from the estimated steering vectors, as they contain suf-
ficient information for robust TDOA estimation. 

Following [24], [26], [30], the steering vector at each fre-
quency is estimated using: 

 ̂( )   { ̂ ( )}  ,
 

√ ̂( )   
 

 ̂( )

√ ̂( )   
   ̂( )-   (16) 

where  * + extracts the principal eigenvector of the estimated 
speech covariance matrix computed in Eq. (7). Note that if 
 ̂ ( ) is well-estimated, it would be close to a rank-one ma-
trix, and hence its principal eigenvector is a reasonable esti-
mate of the steering vector [24], [27]. To derive the underlying 
time delay  ̂, we enumerate all the potential time delays and 
find the one that maximizes the following objective: 

   ( )  ∑  ( )   ( ̂( )  (   
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 ̂             ( ) (18) 
The rationale is that the steering vector  ̂( ) is independently 
estimated at each frequency. Therefore,  ̂( ) does not strictly 
follow the linear phase assumption. Our study enumerates all 
the potential time delays and finds a time delay   with its 
phase delay     

 
    best matched with  ̂( ) at every 

frequency as the final prediction. Following Eq. (14), we use 
 ( ) in Eq. (15) to emphasize the frequencies with higher 
SNR. The cosine operation is naturally bounded, thus explicit 
normalization as in Eq. (3) and (12) is no longer necessary. 

There are previous studies [31], [32], [33] trying to derive 
time delays from estimated steering vectors at each frequency 
or each T-F unit. They usually assume that there is no phase-
wrapping, and divide the estimated phase delay by the angular 
frequency to get the time delay. This is however not realistic 
in practice, as there could be multiple time delays given exact-
ly the same phase delay due to spatial aliasing and phase 
wrapping. Instead, our approach avoids this ambiguity by 
enumerating all the time delays and checking the similarity 
objective at each time delay. This strategy is more reasonable 
as a time delay is deterministically corresponding to a phase 
delay [34]. Another major difference between our approach 
and the previous studies is that we are using powerful DNNs 
for mask estimation, while previous studies are focused on us-
ing spatial clustering [31], [32] and empirical rules [33]. 

2.5. Mask Estimation 
All the three proposed algorithms requires an accurate estima-
tion of the speech mask  ̂ . It is suggested in monaural speech 
separation [14], [13], [35] that DNNs are capable of accurately 
determining the speech dominance at each T-F unit. Among 
various types of neural networks, the bi-directional long short-
term memory (BLSTM) [36] has been shown to produce con-
sistently better separation results. In our study, a BLSTM is 
trained to estimate the ideal ratio mask. Depending on using 
the direct sound or the reverberant speech signal as the target, 
there are two ways to define the IRM: 

          (   )  
|  ( ) (   )    (   )| 

|  ( ) (   )    (   )|  |  (   )| 
 (19) 

          (   )  
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where   indexes the microphone channel. 

3. Experimental Setup 
The proposed algorithms are evaluated using a binaural setup 
and a two-microphone setup for robust TDOA estimation in 
highly reverberant environments with strong diffuse babble 
noise. Fig. 1 depicts the experimental setup. 

In the binaural setup, the simulated binaural room impulse 
responses1 (BRIR) with T60 ranging from 0.0s to 1.0s in steps 
of 0.1s generated using the CATT software is used for train-
ing. The simulated room size is fixed at 6x4x3m. The BRIRs 
are measured with the array placed around the center of the 
room and at a height of 2m, and the source located at one of 
the 37 directions (from -    to     in steps of   ) at the same 
height as the array and at a distance of 1.5m to the array cen-
ter. The real BRIRs2 captured using a HATS dummy head in 
four real rooms with different sizes and T60s are used for test-
ing. The dummy head is placed at a height of 2.8m, and the 
source to array distance is 1.5m. The real BRIRs are also 
measured using the same 37 directions. We put 37 different in-
terference speakers at each of the 37 directions and the target 
speaker at one of the directions. The 720 IEEE female utter-
ances are utilized as the target speech in our experiments. We 
randomly split them into 500, 100 and 120 utterances to gen-
erate the training, validation and testing data. To create the 
diffuse babble noise, we concatenate the utterances of each of 
the 630 speakers in the TIMIT dataset and randomly pick 37 
speech segments from 37 randomly-chosen speakers to put at 
each of the 37 directions. For each speaker in the babble noise, 
we use the first half of the concatenated utterance to generate 
the training and validation noise and the second half to gener-
ate the testing noise. There are 10,000, 800 and 3,000 binaural 
mixtures in the training, validation and testing set.  

In the two-microphone setup, the RIR generator3 based on 
the image method is employed to generate the RIRs. For the 
training and validation data, we put one interference speaker at 
each of the 36 directions spanning from -      to       in 
steps of   , and the target  speaker at one of the 36 directions.  
For the testing data, we put one inference speaker at each of 
the 37 directions ranging from      to     in steps of   , and 
the target speaker at one of the 37 directions. This way, the 
testing RIRs are unseen during training. The distance between 
each speaker and the array center is 1m. The room size is fixed 
at 8x8x3m, and the two microphones are placed around the 

                                                                 
1Available at http://iosr.uk/software/index.php#CATT_RIRs.  
2Available at https://github.com/IoSR-Surrey/RealRoomBRIRs.  
3Available at https://github.com/ehabets/RIR-Generator. 
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center of the room. The distance between the two microphones 
is 0.2m and the heights are both set to 1.5m. The T60 of each 
mixture is randomly picked from 0.0s to 1.0s in steps of 0.1s. 
The IEEE and TIMIT utterances are used to generate the same 
number of training, validation and testing utterances in the 
same way as in the binaural setup.  

The average duration of the mixture is 2.4s. The input 
SNR computed from reverberant speech and reverberant noise 
for both dataset is -6dB. Note that if we consider the direct 
sound signal as target speech and the rest as noise, the SNR 
would be even lower. We train our BLSTM using all the sin-
gle-channel signals (10,000*2 in total) in the training data. In 
the microphone array setup, log power spectrogram is used as 
the input feature, while in the binaural setup, interaural level 
differences (ILD) are also used. Sentence-level mean normali-
zation is performed on the input features before global mean-
variance normalization. The BLSTM contains two hidden lay-
ers each with 384 units in each direction. Sigmoidal units are 
used in the output layer. The Adam algorithm is used to mini-
mize the mean squared error for mask estimation. The window 
size is 32ms and the hop size is 8ms. The sampling rate is 16 
kHz. 512-point FFT is performed to extract 257-dimensional 
log spectrogram features at each frame.  

We measure the performance in terms of gross accuracy, 
which considers a prediction is correct if the prediction is 
within 5o (inclusive) from the true target direction.  

4. Evaluation Results 
The gross accuracy results are reported in Table 1 and 2, to-
gether with the oracle performance marked in grey and the di-
rection-to-reverberant energy ratio (DRR) at each T60 level. 
Using the estimated masks from the BLSTM, the proposed 
mask-weighted GCC-PHAT algorithm substantially improves 
the conventional GCC-PHAT algorithm (from 25.8% to 
78.5% and 88.2% in Table 1, and from 29.4% to 91.3% and 
90.8% in Table 2). The TDOA estimation algorithm based on 
steering vectors exhibits the strongest robustness among all 
the competing algorithms, especially when the T60 is high. In-
terestingly, using the IRM defined using the direct sound as 
target leads to almost 100% gross accuracy for all the pro-
posed algorithms (100.0%, 99.9% and 99.8% in Table 1, and 
99.4%, 99.4% and 99.4% in Table 2), indicating the strong po-
tential of the T-F masking based approach for robust TDOA 
estimation. Using the reverberant speech as target is only 
slightly worse in the oracle case (98.0%, 99.6% and 98.5% in 
Table 1, and 99.1%, 99.4% and 98.9% in Table 2). In the two-
microphone setup, estimating the IRM defined using the direct 
sound as target leads to consistently better performance over 
the alternative definition (88.2% v.s. 78.5%, 90.5% v.s. 
87.7%, and 91.0% v.s. 86.4%). This makes sense as the time 
delay information is mostly contained in the direct sound. 
However, estimating the IRM defined using the alternative 
definition gets slightly better performance in the binaural set-
up (91.3% v.s. 90.8%, 86.4% v.s. 70.0%, and 92.0% v.s. 
91.1%). This is possibly due to the head shadowing effects 
and the mismatch between training and testing BRIRs in the 
binaural setup. The mask-weighted steered-response SNR al-
gorithm performs less impressive in the binaural setup than in 
the two-microphone setup, likely because the gains at different 
channels cannot be simply treated as equal in the binaural case 
considering the head shadowing effects. 

5. Concluding Remarks 
 We have proposed three novel algorithms based on T-F mask-
ing and deep learning for robust TDOA estimation. All of 
them show strong robustness in environments with low SNR 
and high reverberation. Future research would extend the algo-
rithms to multi-channel cases, modify it to deal with moving 
sound sources, and evaluate its potential for beamforming and 
robust ASR. Before closing, we emphasize again that the pro-
posed algorithms formulate robust speaker localization as a T-
F mask estimation problem. It has much more potential over 
conventional algorithms, as now robust speaker localization 
can be approached and benefited from deep learning, a rapidly 
advancing field.  

Fig. 1. Illustration of (a) binaural, and (b) two-microphone setup. 
(a) (b)

Interference Source Target Source
1.0 m1.5 m +90o-90o

0o

-90o +90o

0o

+45o-45o +45o-45o

 
Table 2. Comparison of TDOA estimation performance (% Gross Ac-

curacy) of different approaches in binaural setup. 

IRM 
Type Approaches AVG 

Room - T60(s)/DRR(dB) 
A 

0.32/6.1 
B 

0.47/5.3 
C 

0.68/8.8 
D 

0.89/6.1 
- GCC-PHAT 29.4 27.3 30.7 35.9 23.8 

(19) 

Mask-Weighted GCC-PHAT 91.3 94.1 87.8 91.4 92.0 
Using IRM 99.1 98.8 99.8 98.9 98.8 

Mask-Weighted Steered-Response SNR 86.4 89.5 86.4 81.2 88.5 
Using IRM 99.4 99.0 100.0 99.2 99.5 

TDOA estimation from Steering Vectors 92.0 93.7 90.4 90.5 93.4 
Using IRM to get oracle  ̂( ) 98.9 98.8 99.5 98.9 98.3 

(20) 

Mask-Weighted GCC-PHAT 90.8 94.2 87.7 89.8 91.5 
Using IRM 99.4 99.2 99.8 98.9 99.7 

Mask-Weighted Steered-Response SNR 70.0 79.2 65.5 70.3 64.9 
Using IRM 99.4 98.8 100 98.9 99.8 

TDOA Estimation from Steering Vectors 91.1 93.2 89.9 89.4 91.8 
Using IRM to get oracle  ̂( ) 99.4 99.2 99.7 99.2 99.5 

 
 

Table 1. Comparison of TDOA estimation performance (% Gross Accuracy) of different approaches in two-microphone setup. 

IRM Type Approaches AVG T60(s)/DRR(dB) 
0.0/- 0.2/7.2 0.3/3.0 0.4/0.9 0.5/-0.5 0.6/-1.6 0.7/-2.5 0.8/-3.2 0.9/-3.9 1.0/-4.4 

- GCC-PHAT 25.8 40.4 39.9 33.9 37.4 25.2 19.4 20.1 15.8 13.4 13.4 

(19) 

Mask-Weighted GCC-PHAT 78.5 95.5 97.6 94.0 90.3 84.7 81.3 68.6 62.3 57.9 53.3 
Using IRM 98.0 100.0 100.0 100.0 100.0 99.7 98.6 97.7 96.1 93.0 94.6 

Mask-Weighted Steered-Response SNR 86.7 97.4 95.1 94.4 91.3 90.1 89.3 82.3 79.7 75.6 72.1 
Using IRM 99.6 100.0 100.0 99.7 100.0 99.7 100.0 99.7 99.4 98.0 99.3 

TDOA estimation from Steering Vectors 86.4 96.2 96.5 96.3 93.4 89.1 86.2 82.0 79.7 75.9 68.1 
Using IRM to get oracle  ̂( ) 98.5 100.0 100.0 100.0 100.0 100.0 99.3 97.7 96.8 95.3 96.4 

(20) 

Mask-Weighted GCC-PHAT 88.2 97.1 96.5 95.7 94.1 91.5 89.3 83.4 80.6 79.6 73.9 
Using IRM 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 99.7 100.0 

Mask-Weighted Steered-Response SNR  90.5 98.1 95.5 95.0 94.1 95.6 93.8 87.5 85.2 81.6 78.6 
Using IRM 99.9 100.0 100.0 99.7 100.0 100.0 100.0 99.7 100.0 100.0 100.0 

TDOA Estimation from Steering Vectors 91.0 96.8 95.5 97.0 95.8 93.5 91.7 87.8 86.8 84.3 80.8 
Using IRM to get oracle  ̂( ) 99.8 100.0 100.0 100.0 100.0 100.0 100.0 99.7 100.0 98.7 100.0 
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