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ABSTRACT

Bone-conduction (BC) microphones capture speech signals
by converting the vibrations of the human skull into electri-
cal signals. BC sensors are insensitive to acoustic noise, but
limited in bandwidth. On the other hand, conventional or air-
conduction (AC) microphones are capable of capturing full-
band speech, but are susceptible to background noise. We
propose to combine the strengths of AC and BC microphones
by employing a convolutional recurrent network that performs
complex spectral mapping. To better utilize signals from both
kinds of microphone, we employ attention-based fusion with
early-fusion and late-fusion strategies. Experiments demon-
strate the superiority of the proposed method over other re-
cent speech enhancement methods combining BC and AC
signals. In addition, our enhancement performance is signifi-
cantly better than conventional speech enhancement counter-
parts, especially in low signal-to-noise ratio scenarios.

Index Terms— bone conduction, speech enhancement,
complex spectral mapping, attention-based fusion

1. INTRODUCTION

In real-world applications, speech signals are unavoidably de-
teriorated by noise interference. Speech enhancement aims to
remove background noise and improves speech intelligibility
and quality. Recent studies in monaural speech enhancement
have demonstrated that deep neural networks (DNNs) based
methods perform much better than traditional speech en-
hancement methods in noise suppression, even for untrained
speakers and noise types [1, 2, 3, 4]. However, it remains
challenging to produce high enhancement performance in
low signal-to-noise ratio (SNR) conditions for non-stationary
noises.

Speech enhancement is usually conducted on air-conduction
(AC) microphone recordings. Unlike AC microphones, bone-
conduction (BC) microphones convert vibrations from the
human skull to electrical signals. On the one hand, BC sig-
nals are not contaminated by background interference that
is acoustic in nature. On the other hand, speech collected

from BC sensors suffers from limited bandwidth, as high-
frequency components are lost due to the nature of bone
conduction [5]. BC speech may sound intelligible but is
muffled. AC microphones can record full-band speech with
clear and natural sound, but are susceptible to background
interference.

Early studies exploit BC signals to extract auxiliary in-
formation, like voice activity and pitch, in noisy conditions
[6, 7]. Later, researchers attempt to recover clean AC speech
by extending the bandwidth of BC signals. Conventional ap-
proaches can be divided into two categories. One category
assumes that the BC signal can be simulated by passing an
AC signal through a low-pass filter, and then attempts to esti-
mate the transfer function to recover the AC signal [8, 9]. The
other category is based on an analysis and synthesis model,
observing that excitation sources are the same for both AC
and BC signals. Previous studies use various features like
linear predictive coding [10], linear spectral frequency [11],
and mel-frequency cepstrum [12] to predict the spectral enve-
lope of AC signals, and then perform speech synthesis. More
recently, DNN based models are introduced to perform band-
width extension to BC signals [13, 14, 15, 16]. However, the
bandwidth of BC speech is very narrow, limited to 1 kHz to 2
kHz, which makes it very difficult to recover high-frequency
components. In addition, unvoiced speech sounds are well
captured by AC microphones but usually lost by BC sensors,
as such sounds produce negligible bone vibrations in the hu-
man head. Therefore, performing bandwidth extension to BC
speech does not yield satisfactory speech quality.

Recently, earbuds like Apple AirPods are widely adopted
by consumers, and such devices feature both AC and BC sen-
sors, making it easier to utilize two kinds of microphone for
speech enhancement. Yu et al. [17] propose a time-domain
fully convolutional network (FCN), which regards BC speech
as another modality. This study demonstrates the utility of
fusing AC and BC signals in speech enhancement.

We propose to leverage both kinds of microphone sig-
nals, and employ a convolutional recurrent network (CRN)
[2] to perform speech enhancement in the complex domain.

7757978-1-6654-0540-9/22/$31.00 ©2022 IEEE ICASSP 2022

IC
A

SS
P 

20
22

 - 
20

22
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

66
54

-0
54

0-
9/

22
/$

31
.0

0 
©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P4

39
22

.2
02

2.
97

46
37

4

Authorized licensed use limited to: The Ohio State University. Downloaded on June 03,2022 at 18:41:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 1: Diagram of a DC block. The first four layers are stan-
dard 2D convolutions, and the last one utilizes the gated con-
volution.

To fully utilize the information of both AC and BC micro-
phones, we introduce attention-based fusion [18] and dense
connectivity [19] into our CRN. We also investigate the ef-
fects of different fusion strategies for merging AC and BC
signals. Experiments show that our proposed approach sub-
stantially outperforms existing methods. In addition, AC-BC
microphone fusion offers a clear advantage over conventional
speech enhancement in low-SNR conditions.

2. PROPOSED METHOD

We perform speech enhancement using signals collected
from both AC and BC microphones. A noisy mixture yAC is
collected from the AC microphone, which consists of back-
ground noise n and clean target speech s. Meanwhile, we
have a noise-insensitive signal yBC recorded from the BC
microphone. Our goal is to produce an estimate ŝ to recover
the target clean speech s with the help of the proposed model
f . Our CRN operates in the time-frequency (T-F) domain, so
we apply STFT to the signals involved. With the parameters
of the model denoted as θ, the problem can be formulated as,

Ŝ = f(θ, YAC , YBC), (1)

where Ŝ, YAC and YBC are the T-F representations of s, yAC

and yBC , respectively.

2.1. Densely Connected Block
A densely connected (DC) network has been shown to be ad-
vantageous over the same network without dense connections
[19]. In a DC network, one convolutional operation is decom-
posed into several, each having fewer channels and all convo-
lution layers are directly connected to each other. Such design
encourages the reusage of feature maps and alleviates the gra-
dient vanishing problem. In our model, we replace standard
convolutional layers with DC blocks. Fig. 1 illustrates the
design of a DC block. More specifically, it consists of five
convolutional layers. The first four are 2D convolutions with
the number of output channels set to 8, and each is followed
by a batch normalization and a parametric rectified linear unit
(PReLU) activation. The final layer accepts outputs from all
previous layers and performs the gated convolution [2] to fur-
ther facilitate the feature fusion across convolution channels.
The kernel size for each convolution layer is (1, 4) in the time
and frequency axis, respectively.

2.2. DNN Architecture
As depicted in Fig. 2a, we employ the densely connected
CRN (DC-CRN) to perform complex spectral mapping. Our
network is based on the CRN architecture [2, 20], which is
a complex-domain network built upon the typical encoder-
decoder structure, and a recurrent neural network bottleneck
is employed to model the temporal dependencies. CRN en-
coder is essentially a convolutional neural network (CNN)
downsampler which reduces the feature dimension along the
frequency axis using standard convolutions, and the decoder
has a symmetric design that performs upsampling with trans-
posed convolutions. In our case, we replace each convolution
layer within the encoder and decoder with a DC block as de-
scribed in Section 2.1. Pointwise convolutions are employed
as skip connections to connect the corresponding layers of the
encoder and decoder. Moreover, we use grouped bidirectional
long short-term memory (BLSTM) [21, 2] as the bottleneck,
allowing the reduction in the computational complexity and
model parameters. Finally, the output of the CNN decoder
is halved and then reshaped into one-dimensional features.
Each halve passes through a linear layer to produce real and
imaginary estimates.

2.3. Attention Based Fusion
Inspired by [18], we perform attention-based fusion on AC
and BC features as illustrated in Fig. 3. First, we aggregate
local context and global context which are obtained by point-
wise convolutions, and then calculate the attention score M
using a sigmoidal activation. Then, we concatenate two fea-
tures and assign weights M and 1 −M to each feature map,
respectively. We investigate two fusion strategies, as depicted
in Fig. 2b and 2c. Early-fusion merges AC and BC signals
before feeding them to the DC-CRN module. For the late-
fusion strategy, AC and BC signals are fed to separate DC-
CRN modules, and we perform feature fusion on the outputs
of the two modules.

2.4. Loss
Our loss function is defined in complex spectrogram. Recent
studies [22, 23, 24] show the importance of including a mag-
nitude loss in complex-domain networks and suggest that a
well-estimated magnitude implicitly compensates phase esti-
mation. Motivated by that observation, we construct the loss
by combining a magnitude difference with a complex repre-
sentation difference. With the total number of time steps and
frequency bins denoted as T and F , the loss is defined as,

L(t, f) =
1

TF

T∑
t=1

F∑
f=1

[||Ŝ(t, f)| − |S(t, f)||+

(|Ŝr(t, f)− Sr(t, f)|+ |Ŝi(t, f)− Si(t, f)|)], (2)

where t, f index the time step and frequency bin, and the
subscripts r and i correspond to the real and imaginary parts
of the complex representation, respectively.
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(a) DC-CRN (b) Early-Fusion (c) Late-Fusion

Fig. 2: Diagrams of the proposed architecture. (a). DC-CRN, (b). Early-fusion strategy, and (c). Late-fusion strategy.

(a) Attention Module (b) Attention-based Feature Fusion

Fig. 3: Illustration of the AC-BC feature fusion. (a) depicts
the process of calculating the score M , and (b) shows we use
the score M to perform soft selection and feature concatena-
tion. In the diagrams,

⊗
represents the element-wise multi-

plication, and
⊕

is the symbol for broadcasting summation.

3. EXPERIMENTS

3.1. Dataset

We conduct experiments on the Elevoc Simultaneously-
recorded Microphone/Bone-sensor (ESMB) speech corpus1,
which consists of 128 hours of Chinese speech uttered by 131
male and 156 female speakers. During recording, speech is
captured by a pair of Elevoc Clear earbuds, each of which
consists of a ST 25ba BC sensor located near the ear canal
to collect skull vibrations, and an AC sensor outside the ear
that serves as a close-talk microphone. Each speaker reads
Chinese prompts for around 20 minutes, and a 16 kHz stereo
speech is recorded by each earbud. For our experiments, we
set aside 4 speakers (2 male and 2 female) for validation and
4 speakers (2 male and 2 female) for testing. We use the same
noise set for training and validation, which is extracted from
the DNS challenge2 by randomly picking 20000 files. For
each training utterance, we generate a noisy speech utterance
by mixing an AC signal with a training noise at an SNR level
uniformly sampled from the range {-5, -4, -3, -2, -1, 0} dB.

1available at https://github.com/elevoctech/ESMB-corpus
2available at https://github.com/microsoft/DNS-Challenge

For testing, we select four challenging noises, babble and
cafeteria from an Auditec CD3, and factory and engine from
the NOISEX92 dataset [25]. Each testing utterance is mixed
with the four noises at three SNR levels -5, 0 and 5 dB. The
enhancement performance is evaluated with two standard
metrics, perceptual evaluation of speech quality (PESQ) and
short-time objective intelligibility (STOI). For both metrics,
higher values denote better performance.

3.2. Setup

All the recordings are resampled to 8 kHz. For training and
validation, we split each recording into non-silent utterances
and discard silent sequences with energy 60 dB below the
peak power reference. A window length of 32 ms with 50%
overlap between adjacent frames is used for STFT operations,
which corresponds to a 129-dimensional spectrum. We nor-
malize each noisy AC mixture using the mean-variance nor-
malization (MVN), and the corresponding clean AC utterance
is scaled accordingly. BC utterance is first passed through a
Butterworth low-pass filter, then normalized with MVN. Dur-
ing training, we use the Adam optimizer and train our model
with a batch size of 16 utterances for 30 epochs. An initial
learning rate is set to 0.0006, and is halved if the validation
loss has not improved for three consecutive epochs.

4. RESULTS AND ANALYSIS

Fig. 4 plots the enhancement performance of the baseline
approach FCN [17] and our proposed method on the ESMB
dataset. The networks denoted by the subscript AC only uti-
lizes AC signals, and the ones denoted by EF and LF uti-
lize both AC and BC signals with early-fusion and late-fusion
strategies, respectively. From the figure, we observe that net-
works that employ AC-BC fusion always outperform their
counterparts that only utilize AC signals. Especially at -5
dB SNR, microphone fusion considerably boosts the enhance-

3available at http://www.auditec.com

7759

Authorized licensed use limited to: The Ohio State University. Downloaded on June 03,2022 at 18:41:39 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4: Enhancement performance of the FCN baseline and our proposed method in terms of STOI (%) and PESQ.
Table 1: Ablation Study of the proposed network at -5 dB
SNR

STOI (%) PESQ

Proposed EF 74.4 2.98

- Convolutional skip connections (i) 74.0 2.96
- DC blocks (ii) 70.5 2.71

- Gated convolution (iii) 72.6 2.78
- Attention feature fusion (iv) 73.9 2.92

ment performance. Specifically, for our proposed approach,
STOI is improved by over 10% and PESQ by over 0.60. As
the SNR level becomes higher, incorporating BC signals is
less beneficial. At 5 dB SNR, STOI is merely 1.0% higher,
and PESQ is improved by 0.05. In addition, our complex-
domain approach shows consistently better enhancement per-
formance in all conditions compared with the time-domain
baseline FCN [17]. At -5 dB SNR, we achieve an STOI
of 74.8% for the late-fusion version, which is 21.5% higher
than the FCN counterpart. Comparing the two different fu-
sion strategies, late-fusion performs slightly better. However,
late-fusion has almost twice the model size as it employs two
DC-CRN modules. Therefore, there is a trade-off between
performance and computational cost.

In Table 1, an ablation study is conducted to investigate
the effects of different components within the proposed net-
work. We employ the early-fusion version of our network
as the baseline and compare several variants at -5 dB SNR:
(i) replacing pointwise convolution-based skip connections
with concatenation-based skip connections; (ii) replacing DC
blocks with standard convolutions; (iii) replacing the gated
convolutions within DC blocks with standard convolutions;
(iv) instead of using attention-based fusion, BC and AC fea-

tures are directly concatenated as the input vector. As shown
in the table, these variants all underperform the proposed
design. Among all factors, dense connectivity plays a signif-
icant role for the final performance, as removing DC blocks
degrades STOI by 3.9% and PESQ by 0.27. Furthermore,
attention-based feature fusion shows to be more effective
compared to the simple concatenation of microphone fea-
tures.

5. CONCLUSION

In this study, we have proposed a novel attention-based
method to fuse AC and BC microphone signals for complex-
domain speech enhancement. The proposed method takes
advantage of the full bandwidth of AC microphones and the
noise insensitivity of BC microphones to obtain high-quality
enhanced speech in adverse environments. Experiments have
demonstrated that our approach substantially outperforms a
previous time-domain baseline. Compared with conventional
speech enhancement on AC microphones, our AC-BC fusion
significantly boosts enhancement performance, especially in
low-SNR conditions. In future work, we plan to introduce
semi-supervised learning techniques to utilize AC and BC
speech data that are not recorded in parallel, so as to achieve
strong performance with a small amount of BC signals.
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