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This study proposes an approach to improve the perceptual quality of speech separated by binary

masking through the use of reconstruction in the time-frequency domain. Non-negative matrix

factorization and sparse reconstruction approaches are investigated, both using a linear combination

of basis vectors to represent a signal. In this approach, the short-time Fourier transform (STFT) of

separated speech is represented as a linear combination of STFTs from a clean speech dictionary.

Binary masking for separation is performed using deep neural networks or Bayesian classifiers. The

perceptual evaluation of speech quality, which is a standard objective speech quality measure, is

used to evaluate the performance of the proposed approach. The results show that the proposed

techniques improve the perceptual quality of binary masked speech, and outperform traditional

time-frequency reconstruction approaches. VC 2014 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4884759]

PACS number(s): 43.72.Ar, 43.72.Dv [MAH] Pages: 892–902

I. INTRODUCTION

In real-life scenarios, a speech signal is usually

corrupted by noise. Many speech processing applications

desire to separate the speech signal from the noisy back-

ground. This is often termed the cocktail-party problem.

Humans have the remarkable ability of perceiving speech in

the presence of noise. Computational approaches have been

proposed to separate the target speech signal from a noisy

recording. Despite extensive research over decades speech

separation systems struggle to produce a level of perform-

ance close to human listeners.

One approach known as computational auditory scene

analysis (CASA) often attempts to separate speech from

noise by means of binary masking (Wang and Brown, 2006):

which is related to the masking phenomenon of audition

whereby a sound within a critical band is rendered inaudible

when another louder sound is present in the same band

(Moore, 2003). A binary mask identifies speech dominant

and noise dominant units in a time-frequency (T-F) represen-

tation. A speech estimate is then produced by applying the

binary mask directly to the T-F representation of the mix-

ture. Binary masks have been shown to substantially

improve the intelligibility of speech signals corrupted by

noise (Brungart et al., 2006; Kim et al., 2009; Li and

Loizou, 2008; Wang et al., 2009). However, one perceived

weakness of binary masking is the resulting quality of the

separated speech. This occurs because mask estimation is

error prone, resulting in portions of the speech erroneously

removed and portions of the noise erroneously retained. This

degrades speech quality, which is typically evaluated by

comparing the estimated speech against the clean speech

(Araki et al., 2005; Mowlaee et al., 2012; Wang, 2008).

Estimated binary masks may also cause musical noise or

cross-talk problems (Madhu et al., 2008), which also lead to

poorer perceptual quality.

Methods have been proposed to address the speech qual-

ity problems associated with binary masking. For example,

cepstral domain smoothing on a binary mask has been shown

to reduce musical noise (Madhu et al., 2008). In Araki et al.
(2005), musical noise is reduced by employing finer frame

shifts when generating T-F representations, i.e., the overlap

amount between successive time frames in a T-F representa-

tion is increased beyond the commonly used 50%. These

methods reduce the effects of musical noise, however, they

do not address the errors in mask estimation.

Speech separation has also been investigated using

model-based approaches. Non-negative matrix factorization

(NMF) (Lee and Seung, 1999; Seung and Lee, 2001) is a

popular model-based approach that has been extensively

used for source separation (Smaragdis, 2007; Virtanen,

2007; Wilson et al., 2008). With NMF, a signal is decom-

posed into two matrices, a basis matrix and an activation ma-

trix. It is assumed that the signal and the two matrices are

non-negative. The main concept behind NMF is that the

product of the basis and activation matrix provides an accu-

rate estimation of the signal. When used for speech signals,

the basis matrix represents the spectral structure, while the

activation matrix linearly combines the elements in the basis

matrix to form an estimate of the speech signal. When sepa-

rating speech from noise, supervised NMF uses trained

speech and noise models to compute an activation matrix

that together approximates noisy speech. The speech model
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and activations are either used directly as a signal estimate

or to produce a Wiener mask that is applied to a T-F repre-

sentation of noisy speech. Supervised NMF has been shown

to be beneficial for source separation (Smaragdis, 2007;

Virtanen, 2007; Wilson et al., 2008) and robust automatic

speech recognition (Raj et al., 2010), however, it requires a

separate model for each of the sources present in a mixture.

Sparse representation approaches also represent a signal

as a linear combination of exemplars from a dictionary.

Unlike NMF, the dimensionality of each exemplar is much

smaller than the number of exemplars in the dictionary (i.e.,

the dictionary is overcomplete). The goal is to find the small-

est set of exemplars that, when linearly combined, best rep-

resent a target signal. When overcomplete dictionaries are

used, it has been shown that a unique set of exemplars can

represent a signal if the number of these exemplars is suffi-

ciently small (Candes et al., 2006; Donoho, 2006). There are

many approaches for determining how the exemplars are

linearly combined and these approaches have been used for

automatic speech recognition (ASR) (Sainath et al., 2011),

robust ASR (Gemmeke and Cranen, 2008; Gemmeke et al.,
2010; Gemmeke et al., 2011; Gemmeke, 2011) and source

separation (Blumensath and Davis, 2007; Schmidt and

Olsson, 2007; Shashanka et al., 2007). These approaches

require separate dictionaries for different sound sources

(speaker and noise) present in a signal. The methods in

Gemmeke and Cranen (2008) and Gemmeke et al. (2010)

are missing feature reconstruction approaches that use a

binary mask and a dictionary for improved performance.

These methods use the speech dominant T-F units and the

dictionary to generate estimated values for the noise domi-

nant T-F units. The reconstruction is, however, problematic

at low signal-to-noise ratios (SNRs) because few T-F units

are identified as speech dominant at low SNRs, making it

difficult to generate a reasonable estimate.

Our goal in this paper is to improve the perceptual qual-

ity of noisy speech on the basis of a binary mask and speech

dictionary. Initially a binary mask is estimated from a noisy

mixture and it is then used to separate the speech and noise

signals. We choose to use binary masks because this

approach has been shown to produce intelligible speech

from very noisy mixtures (Brungart et al., 2006; Li and

Loizou, 2008; Kim et al., 2009; Healy et al., 2013). The sep-

arated speech and noise estimates from a binary mask are

then used to generate a ratio mask (Srinivasan et al., 2006),

which will be shown to improve speech quality. We view

masking as the first stage, although the focus of this study is

on the second stage where reconstruction is applied to the

estimated speech signal for improved speech quality. In the

reconstruction stage, each time frame of the separated

speech is replaced by a linear combination of clean speech

basis vectors. Both NMF and sparse reconstruction techni-

ques will be studied. Unlike related approaches (Smaragdis,

2007; Virtanen, 2007; Wilson et al., 2008; Gemmeke and

Cranen, 2008; Gemmeke, 2011), we do not use NMF or

sparse representations for separating speech from noise, but

rather we use them for reconstruction to improve the percep-

tual quality of separated speech by binary masking. Our

approach also does not require separate source and noise

models. Compared to Gemmeke and Cranen (2008) and

Gemmeke et al. (2010), we use different masking techniques

and entire time frames to reconstruct speech. A number of

experiments are performed to assess the overall quality of

separated speech at different SNRs and with different noises.

The results show that the proposed techniques produce

higher speech quality compared to related methods.

The rest of the paper is organized as follows. An

overview of the proposed approach is presented in Sec. II.

Section III describes ideal binary masks and the approach for

estimating ratio masks for separating speech. The reconstruc-

tion techniques are presented in Sec. IV. Section V evaluates

and compares the proposed system with other approaches.

Finally, concluding remarks are given in Sec. VI.

II. SYSTEM OVERVIEW

A diagram of the proposed approach for improving

speech separated by binary masking is given in Fig. 1. A

binary mask, which is estimated from the noisy speech mix-

ture, is applied to the short-time Fourier transform (STFT) of

the mixture to produce estimated STFTs for the speech and

the noise, respectively. Speech and noise time-domain esti-

mates are generated from these STFTs and a ratio mask is

computed. The ratio mask is then applied to the original

noisy mixture, resulting in an STFT for the estimated

speech.

The resulting STFT is augmented to incorporate tempo-

ral continuity between successive STFT time frames.

Reconstruction (NMF or sparse) is then used to improve the

quality of the separated speech. With NMF reconstruction,

the STFT magnitude of the speech signal separated by the

ratio mask is represented as a linear combination of basis

vectors from a pre-trained speech basis matrix. With sparse

reconstruction, the STFT magnitude of the speech signal

separated by the ratio mask is represented as a sparse linear

combination of STFT magnitudes from a clean speech

dictionary. Finally, the reconstructed STFT magnitude is

combined with the STFT phase of noisy speech, and

overlap-and-add synthesis is used to produce the final esti-

mate of the speech signal. The following sections describe

these steps in more detail.

III. MASK ESTIMATION

The first stage of our approach is presented in this

section, i.e., the generation of a binary mask from a noisy

mixture and a ratio mask from the speech and noise that are

separated by a binary mask.

A. Binary mask estimation

One of the main goals of CASA is to estimate the ideal

binary mask (IBM), which is a two-dimensional binary

matrix used to label T-F units of a mixture signal as noise or

speech dominant (Wang, 2005). Given the T-F representa-

tions of the speech, S(t, f), and noise, N(t, f), the IBM is

defined as follows:
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IBMðt; f Þ ¼ 1; if jSðt; f Þj > jNðt; f Þj
0; otherwise;

�
(1)

where t and f index the time and frequency dimensions,

respectively. An estimate of the speech signal is generated

by applying the IBM to the T-F representation of the mix-

ture. Likewise, a noise estimate is generated by applying the

complement (i.e., replacing 1’s in the IBM with 0’s and 0’s

with 1’s) of the IBM to the mixture.

In real situations, a system does not have access to the

pre-mixed speech and noise components of a mixture, so the

IBM must be estimated. Since our goal is to improve the per-

ceptual quality of speech separated by binary masking we

evaluate two different IBM estimation approaches, namely the

approaches of Kim et al. (2009) and Wang and Wang (2013).

IBM estimation is treated as a binary classification prob-

lem in Kim et al. (2009). In particular, amplitude modulation

spectrogram (AMS) features along with delta features com-

puted across time and frequency are used to train a 256-

component Gaussian mixture model (GMM) for each binary

label: speech dominant and masker dominant. Separate

GMMs are trained for each frequency channel, where 25

channels are used. In the testing stage, the AMS and delta

features are computed from the noisy speech signal. Then a

Bayesian classifier based on the GMMs is used to estimate

the binary label for each T-F unit. This IBM estimation

approach will be denoted as GMM.

In Wang and Wang (2013) deep neural networks (DNNs)

are trained to generate a binary mask by classifying whether a

T-F unit is speech or noise dominant. A separate DNN is

trained for each channel of a 64-channel gammatone filterbank.

The following features are extracted from gammatone filter

responses: AMS, relative spectral transform and perceptual lin-

ear prediction (RASTA-PLP), and mel-frequency cepstral

coefficients (MFCC), as well as their deltas (Wang and Wang,

2013). The same features are also extracted from test utteran-

ces, and used along with the trained DNN classifiers to gener-

ate a binary mask. This approach will be denoted as DNN.

B. Ratio mask generation

Estimated IBMs are error prone, and these errors

remove portions of the speech and retain portions of the

noise. Such errors negatively impact perceptual quality so

we propose to produce a more continuous mask to mitigate

some of these problems. We compute a ratio mask from the

noise and speech estimates that are obtained by applying an

estimated IBM to the mixture. Other techniques for produc-

ing more continuous masks were investigated, such as

setting the noise dominant units to a small nonzero value

(Anzalone et al., 2006) or adding back some amount of noise

(Cao et al., 2011), but we find that these methods do not

improve perceptual quality. A ratio mask, RM(t, f), is gener-

ated from the STFT magnitudes of the speech and noise

(jŜðt; f Þj and jN̂ðt; f Þj) estimates (Srinivasan et al., 2006),

RMðt; f Þ ¼ jŜðt; f Þj
jŜðt; f Þj þ jN̂ðt; f Þj

; (2)

Ŝðt; f Þ is computed by first applying the binary mask to the

mixture STFT, and then performing overlap and add synthesis

to produce a time-domain speech estimate. Ŝðt; f Þ is the STFT

of the time-domain speech estimate. N̂ðt; f Þ is computed simi-

larly, however, the complement of the binary mask is applied

to the mixture STFT. Speech is then separated by applying

the ratio mask to the STFT magnitude of the original mixture.

IV. RECONSTRUCTION

This section describes the second stage of our approach.

We first explain how the STFT magnitudes of speech sepa-

rated by ratio masking are augmented to incorporate tempo-

ral continuity between adjacent frames. The process of

cleaning the augmented STFT magnitudes using reconstruc-

tion is then described.

The STFT is computed by first dividing the input signal

into a sequence of 20 ms frames, with a 10 ms overlap between

successive frames. A Hamming window is then applied to

each frame. The 320-point discrete Fourier transform is then

computed within each frame, resulting in a N� T T-F repre-

sentation, where N¼ 320 and T defines the number of time

frames for the STFT. The magnitude and phase responses of

the STFT are extracted, where the magnitude response will be

further processed, while the phase response will be used later

to synthesize a speech estimate in the time domain.

The human speech production system produces an

acoustic signal that varies slowly with time. Continuity

between neighboring frames in a T-F representation result

from this slow varying nature. In order to leverage temporal

continuity between nearby frames from the STFT of the sep-

arated speech, we concatenate several consecutive STFT

time frames into a single frame as in Gemmeke et al. (2009);

Gemmeke et al. (2011). Specifically, M (an odd integer)

frames from the original STFT are concatenated to a single

augmented frame. This is accomplished by using a sliding

window that is centered at the current frame. The STFT

magnitudes for ðM � 1Þ=2 frames before and after the cur-

rent frame are combined into a single frame along with the

FIG. 1. Block diagram of the proposed approach.
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STFT magnitude of the current time frame. If the current

frame is preceded by fewer than ðM � 1Þ=2 frames, the first

frame of the STFT is repeatedly counted toward ðM � 1Þ=2.

Likewise, if the current frame is not followed by ðM � 1Þ=2

frames, the last frame of the STFT is repeated. This results

in an augmented MN� T STFT magnitude response.

The augmented STFT magnitudes inevitably contain

noise components that negatively affect the perceptual qual-

ity of the separated speech. To combat this effect, recon-

struction techniques are used to clean the magnitude

response of the augmented STFT. More specifically, we pro-

pose sparse and NMF-based reconstruction in the second

stage.

A. Sparse reconstruction of ratio masked speech

Sparse reconstruction uses a linear combination of basis

vectors to represent a signal (Elad and Aharon, 2006b). The

signal in our approach is the augmented STFT magnitude S,

as defined above. The basis vectors collectively form a

dictionary, D, which in our case is the concatenation of aug-

mented STFT magnitude responses computed from clean

speech utterances. Each basis vector is normalized by its

L2-norm. Note that the clean speech utterances used for the

dictionary differ from the utterances used for testing.

Defining S as ½s1; s2;…; sT �, each frame of the augmented

STFT magnitude st is approximated as follows:

st � Dat; (3)

where at is an activation vector that selects the dictionary

entries used for linear combination. Each st is M � N dimen-

sional, whereas at is K dimensional.

Defining A as [a1; a2;…; aT], the augmented STFT

magnitude is approximated as the product of the dictionary

D and the activation matrix A

S ¼ ½s1; s2;…; sT � � DA; (4)

where S 2 RMN�T ; D 2 RMN�K , and A 2 RK�T .

Typically, the dictionary D is overcomplete in the sense of

M � N� K.

The goal of sparse reconstruction is to determine the

activation matrix A so that when it is combined with the dic-

tionary D, the resulting representation effectively approxi-

mates the speech separated by ratio masking. Many

approaches exist to find the activation matrix. The approach

by Carmi et al. (2009) and used in Sainath et al. (2011) is

termed approximate Bayesian compressive sensing (ABCS),

which is an iterative approach that uses the maximum a
posteriori (MAP) estimate. Gemmeke et al. (2011) use an

iterative approach computationally equivalent to NMF to

minimize the generalized Kullback-Leibler (KL) divergence

between the true data and the approximation, while enforc-

ing sparsity with the Lp norm of the activation matrix. We

solve A using orthogonal matching pursuit (OMP), which is

beneficial for sparse approaches for image denoising in com-

puter vision (Elad and Aharon, 2006a; Mairal et al., 2008).

Given D and S, OMP determines A by solving the following

equation:

at ¼ argmin
â t

k st � Dât k2
2 ;

subject to k âtk 1 � L; 1 � t � T: (5)

The first term is the cost function between S and DA that

measures the distance between the augmented STFT magni-

tude and the approximation based on the linear combination

of dictionary entries. The constraint ensures that only a small

number of dictionary entries are used to approximate each

time frame of the estimated speech, where L restricts the

maximum number of dictionary entries to use. OMP solves

Eq. (5) using a greedy approach. It is an iterative algorithm

that at each iteration selects the dictionary entry that maxi-

mizes its inner product with the residual, which is the differ-

ence between the signal, st, and the current approximation

Dât. The activation weight for this dictionary entry is set to

the computed inner product. The residual is then updated

after determining the new activation weights and these steps

are repeated (Pati et al., 1993). We use the fast implementa-

tion of the orthogonal matching pursuit algorithm in Mairal

et al. (2009, 2010) to solve for the activation matrix.

With the activation matrix solved, the augmented STFT

magnitude of the separated speech signal is approximated

using Eq. (4). The augmented STFT MN�T matrix is then

converted back to a N�T matrix. For each frame of the aug-

mented STFT matrix the ðM � 1Þ=2 frames before and after

the current frame are unwrapped and appropriately placed at

the correct time frame. Sliding this window across frames

results in multiple STFT magnitude responses for each time

frame. These responses are then averaged resulting in the

STFT magnitude response for the speech estimate. The esti-

mated STFT magnitude response is then combined with the

noisy phase response from the mixture to produce a sparsely

reconstructed STFT. An estimate of the speech signal is

finally produced by performing overlap-and-add synthesis on

the sparsely reconstructed STFT. This approach is denoted as

estimated ratio mask (ERM)/Sparse reconstruction.

B. NMF reconstruction of ratio masked speech

The goal of NMF is to approximate a given non-

negative matrix as the product of two non-negative matrices,

which are iteratively learned by minimizing a cost function

of the given matrix and the approximation. In our case, NMF

is used to approximate the augmented STFT magnitude S of

speech separated by a ratio mask. The two matrices used for

approximation are the trained basis matrix that defines the

spectral features and the activation matrix that linearly com-

bines the spectral features from the trained basis matrix. In

our NMF reconstruction, the basis matrix is trained from the

clean speech dictionary D, which is described in Sec. IV A,

using the approach described in Gemmeke et al. (2011). The

training process is described next.

Given a dictionary D, one learns a trained basis matrix Wtr

and a trained activation matrix Htr. The dictionary is approxi-

mated as the product of these two matrices (i.e., D � WtrHtr),

where D 2 RMN�K; Wtr 2 RMN�B, and Htr 2 RB�K . K is

the number of entries in the dictionary and B is the number of

basis vectors. M and N are as defined in Sec. IV A.
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The trained basis and activation matrices are found by

minimizing a cost function between the dictionary and its

approximation, where additional constraints may be

imposed. There are a multitude of NMF methods, and here

we use the approach defined by Eggert and Korner (2004)

and Schmidt (2007) where generalized KL divergence

between D and WtrHtr is used as the cost function along with

a constraint to enforce sparsity:

DKLðDjjWtrHtrÞ þ k
XX

Htr: (6)

The KL divergence between D and WtrHtr is denoted as

DKLðDjjWtrHtrÞ and k is a sparsity parameter. According to

Seung and Lee (2001), the cost function is convex in Wtr

only or Htr only, but not in both. Thus one cannot find a

global minimum. However techniques can be used to find

local minima. Specifically, Seung and Lee (2001) show that

a multiplicative update rule for determining Wtr and Htr finds

a local minimum for the cost function. We use the NMF

implementation in Grindlay (2010) to solve for the matrices,

where Wtr and Htr are randomly initialized. The update rules

are shown below

Htr  Htr: 	
WT

tr

D

WtrHtr

� �

WT
tr1H þ k

;

Wtr  Wtr: 	

D

WtrHtr

� �
HT

tr þ 1Wð1HHT
tr: 	WtrÞ

1HHT
tr þ 1W

D

WtrHtr

� �
HT

tr: 	Wtr

� � ; (7)

where “.*” denotes element-wise multiplication, 1H is an

all-one matrix with the same dimensions as D, and 1W is an

all-one square matrix with dimensions MN�MN. All divi-

sions in Eq. (7) represent element-wise division.

Once Wtr is found, the augmented STFT magnitude of

speech separated by a ratio mask, S, is approximated as the

product of the trained basis matrix and a new activation ma-

trix H (i.e., S � WtrH). H is computed using Eq. (7), how-

ever the basis matrix Wtr is held constant for each iteration

and S is used in place of D.

The augmented STFT magnitude of a speech signal sepa-

rated by a ratio mask is reconstructed as WtrH. The augmented

STFT MN�T matrix is then converted back to a N�T matrix

as described in Sec. IV A. The estimated STFT magnitude

response is then combined with the noisy phase response from

the mixture to produce an NMF-reconstructed STFT. An esti-

mate of the speech signal is finally produced by performing

overlap-and-add synthesis on the NMF-reconstructed STFT.

This approach is denoted as ERM/NMF reconstruction.

V. EVALUATION AND COMPARISON

In this section, the proposed system is evaluated to

determine its ability to produce high quality separated

speech. Our reconstruction approach will also be compared

against other reconstruction approaches, namely missing fea-

ture reconstruction, sparse reconstruction and vector

quantization. Our approach will also be compared with

supervised NMF and supervised sparse speech separation.

A. Experiment setup

Our reconstruction approach using GMM based (Kim

et al., 2009) and DNN based (Wang and Wang, 2013) binary

mask estimators are evaluated with 60 clean male speech

signals from the IEEE corpus (Rothauser et al., 1969). Each

signal is down sampled to 12 kHz and is mixed with three

non-speech noises at SNRs of �5 and 0 dB, resulting in a

testing set of 360 noisy speech mixtures. The noises used

match those in Kim et al. (2009) and they are babble, fac-

tory, and speech-shaped noise. Random cuts from each noise

are used to generate the mixtures. A different set of 390

clean IEEE male speech utterances are mixed with random

cuts of the above noises at �5 and 0 dB SNRs for training

the channel-specific DNN classifiers, and mixed at �5, 0,

and 5 dB SNRs for training a Bayesian classifier for the

GMM masks. The Bayesian classifier is trained for each

noise type, as defined in Kim et al. (2009). Sixty-four DNN

classifiers are trained using the features extracted from

64-channel gammatone filterbank responses as defined in

Sec. III A. The parameter values for feature extraction are

given in Wang et al. (2013).

The sparse reconstruction dictionary consists of the aug-

mented STFT magnitudes of 270 clean speech signals

selected from the IEEE corpus that differ from the testing

and training signals. The STFTs are augmented using M¼ 5

frames, i.e., two before and two after the current frame. For

ERM/Sparse reconstruction, the value of L is set to 5. For

ERM/NMF reconstruction, a basis matrix is trained from the

dictionary described above, where the trained basis matrix

consists of 80 basis vectors. For training and testing, 200

iterations are used to generate the basis and activation matri-

ces. The sparsity parameter k is set to 0.1. See Sec. V E for

how these parameter values are chosen.

B. Comparison reconstruction systems

We compare our reconstruction against three commonly

used STFT magnitude reconstruction approaches, namely

missing feature reconstruction (Raj et al., 2004; Zhao et al.,
2012), sparse reconstruction (Gemmeke et al., 2010), and

vector quantization (VQ) that is based on the version in

Radfar et al. (2007). For comparisons, the VQ approach

replaces the reconstruction module in our proposed system,

while the missing feature reconstruction and sparse recon-

struction approaches perform reconstruction using the

STFT-domain binary mask. In all cases, temporal continuity

is incorporated by using augmented STFTs, where the num-

ber of stacked frames is identical to our proposed method

(i.e., M¼ 5). Unless stated otherwise, the parameters for

each approach are empirically determined to maximize

performance.

As presented in Raj et al. (2004) and Zhao et al. (2012),

missing feature reconstruction uses speech-dominant T-F

units and Gaussian mixture models coupled with a universal

background model (GMM-UBM) to replace the values in

noise dominant T-F units, where the speech and noise
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dominant T-F units are determined by the estimated binary

mask. The GMM-UBM is trained from the corresponding

utterances that are used to train the sparse reconstruction

dictionary. We empirically determine that 1024 Gaussians

are used, along with diagonal covariance matrices for the

GMM-UBM. This form of reconstruction will be denoted as

GMM-UBM reconstruction.

Sparse reconstruction is similar to missing feature

reconstruction, where the speech-dominant T-F units are

used to estimate new values for the noise dominant T-F

units. However, a dictionary is used in place of the GMM-

UBM. For each time frame, the speech dominant T-F units

along with the corresponding entries in the dictionary are

used to determine an activation matrix. An augmented mag-

nitude estimate is generated by multiplying the activation

matrix with the complete dictionary, where the values for

the speech-dominant T-F units are replaced by the corre-

sponding values in the noisy speech mixture. The values for

the noise-dominant T-F units are bounded by the correspond-

ing values of the noisy speech (i.e., a noise dominant T-F

unit takes the minimum of the noisy speech and estimated

value). Sparse reconstruction differs from our proposed

ERM/Sparse reconstruction approach in that we use a ratio

mask rather than just a binary mask for separation, and we

use the entire time frame rather than just the speech-

dominant T-F units in a time frame to determine an activa-

tion matrix. We also use an orthogonal matching pursuit

(OMP) algorithm to determine the activation matrix, rather

than an iterative approach based on NMF as in Gemmeke

et al. (2010).

The VQ approach used simply amounts to K-means

clustering, where each time frame of the augmented STFT

magnitude of speech separated by ratio masking is replaced

with the closest codeword from a pre-trained VQ codebook.

The codebook for the VQ approach is also trained with utter-

ances in the sparse reconstruction dictionary, and 2048 code

words are used in the codebook. A splitting technique is

used to train the codebook, where the initial set of training

data is iteratively split into clusters (Linde et al., 1980),

where the average value of all the augmented STFT time

frames within each cluster corresponds to a codeword. For

reconstruction, the time frame of the augmented STFT of

ratio masked speech is replaced by the closest codeword

from the codebook, where closeness is measured in terms of

mean square error.

C. Comparison separation approaches

Our employment of NMF is for reconstruction of

already-separated speech, whereas NMF is typically used as

a separation approach. We also compare our approach

against such an supervised NMF speech separation approach

based on Raj et al. (2010). In addition, we compare our sys-

tem to a supervised sparse separation approach described in

Gemmeke et al. (2011). Both approaches use trained speech

and noise models to separate speech from the background

noise. For supervised NMF, the speech model is identical to

the speech basis matrix used for ERM/NMF reconstruction,

while the noise basis matrix (i.e., noise model) is trained

from the augmented STFTs of the noise utterances men-

tioned in Sec. V A. We modify the approach described in

Raj et al. (2010) by incorporating a sparsity parameter as

described in Sec. IV B, which is set to 0.1 (as in our pro-

posed ERM/NMF approach). For supervised sparse separa-

tion, the speech model is identical to the dictionary from

ERM/Sparse reconstruction, while the concatenation of the

augmented (i.e., M¼ 5) STFT magnitudes of the noise data

is used as the noise model. In both cases, all other parameter

values match those used for our proposed methods. These

systems were tested with the same 60 test utterances, and

each utterance was mixed with the three noises at �5 and

0 dB.

D. Experimental results

The speech quality from the proposed method and the

comparison methods is evaluated with PESQ, which is a

standard objective perceptual speech quality measure (ITU-

T, 2001). PESQ scores are between �0.5 and 4.5, where

higher scores correspond to higher perceptual speech quality.

A PESQ score is computed by comparing the clean speech

signal in the mixture against the estimated speech signal.

This is possible because we have access to the pre-mixed

clean signal for each test mixture.

The average PESQ scores for unprocessed mixtures, the

signals separated by estimated binary masks (EBMs), the

signals separated by estimated ratio masks, and the signals

separated by the ideal binary mask are shown in Table I for

each IBM estimation approach. For the GMM masks, apply-

ing the EBM to the mixture results in an improvement of

PESQ score compared to the unprocessed mixture. PESQ

scores also improve with the DNN masks at 0 dB, but at

�5 dB applying the EBM to a mixture results in a lower

PESQ score compared to the unprocessed mixture. Speech

quality is improved when ERMs are used instead of EBMs

in both cases, but these results are still not as good as

the IBM results, indicating that there is still room for

improvement.

The average short-time objective intelligibility (STOI)

scores for the signals are also shown in Table I. STOI is a

recently established objective measure that quantifies the

intelligibility of an altered speech signal (Taal et al., 2011).

STOI scores range between 0 and 1, where higher scores

indicate higher intelligibility. As shown in Table I, the STOI

TABLE I. Average PESQ and STOI scores for noisy speech, speech sepa-

rated by the IBM, speech separated by EBMs, and speech separated by

ERMs for GMM and DNN masks.

PESQ Score STOI Score

�5 dB 0 dB �5 dB 0 dB

Mixture 1.34 1.62 0.54 0.66

IBM 2.37 2.73 0.83 0.89

GMM EBM 1.45 1.81 0.71 0.77

ERM 1.48 1.85 0.72 0.78

DNN EBM 1.18 1.69 0.60 0.72

ERM 1.35 1.80 0.60 0.74
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scores, in both IBM estimation approaches, for the EBM-

masked speech are greater than the STOI scores of unpro-

cessed mixtures, while the IBM-masked speech yields the

highest STOI scores. STOI scores for ratio masked speech

are approximately equal to those for binary masked speech.

Table II shows the average PESQ scores for our systems

(ERM/NMF and ERM/Sparse) and the other reconstruction

approaches when estimated or ideal masks are used. In this

and subsequent tables, boldface indicates best result. For the

GMM masks, the performance with GMM-UBM reconstruc-

tion is worse than that of the EBM and it is approximately

equivalent to the unprocessed mixtures at �5 dB (see

Table I). For the DNN masks, GMM-UBM reconstruction

improves performance compared to EBM and ERM. For

both masks, sparse reconstruction, ERM/VQ, ERM/NMF,

and ERM/Sparse reconstruction offer noticeable improve-

ments over the unprocessed mixtures, estimated binary and

ratio masks at each SNR. Like ERM/NMF, ERM/Sparse

reconstruction considerably outperforms GMM-UBM recon-

struction, sparse reconstruction and ERM/VQ reconstruction

approaches. ERM/Sparse reconstruction also produces slight

improvements over ERM/NMF reconstruction at both SNRs.

The results of NMF and sparse reconstruction when applied

to binary masked speech (i.e., EBM/NMF and EBM/sparse)

are also shown. When the estimated masks are used,

EBM/Sparse reconstruction performs about the same as

ERM/Sparse reconstruction for the GMM masks, but notice-

ably worse for the DNN masks. The performance for the pro-

posed ERM/Sparse approach is comparable to the

EBM/Sparse approach for the GMM masks, because the per-

formance for the binary and ratio masks is comparable.

When the ideal masks are used, EBM/Sparse reconstruction

produces the highest speech quality compared against all the

other approaches. However, even this sparse reconstruction

approach is a little worse than the IBM alone, suggesting

that no reconstruction is needed when IBM estimation is

accurate.

We conducted experiments where a proportion (i.e., 1%

to 7%) of the noise was added back to the speech separated

by ratio masks. Adding this noise resulted in roughly an 8%

improvement in PESQ scores for the approaches listed in

Table II using estimated masks. Although the PESQ scores

were improved by adding noise, we noticed that adding noise

seemed to degrade the perceptual quality during informal lis-

tening, which may indicate a potential limitation with PESQ.

Hence we have decided not to add noise in our proposed

methods.

The STOI results are provided in Table III. Both

ERM/Sparse and ERM/NMF reconstruction produce notice-

able improvements in STOI scores compared to the other

reconstruction approaches when the GMM masks are used.

Only sparse reconstruction and our ERM/NMF and

ERM/Sparse approaches improve performance over the

unprocessed mixtures, estimated binary and ratio masks at

each SNR. When the DNN masks are used sparse recon-

struction produces the best STOI scores. The larger point is

that incorporating our reconstruction stage generates signifi-

cant speech quality improvements over binary masking using

estimated masks, and does so without degrading speech

intelligibility as measured by STOI.

A PESQ analysis of the voiced and unvoiced compo-

nents of the reconstructed speech from the different

approaches is shown in Table IV, where the performance is

averaged over both masking approaches. The PESQ score

for the voiced signal is determined from the voiced clean

speech signal and the voiced estimated speech signal. The

PESQ score for the unvoiced signal is computed similarly

using the unvoiced clean and estimated speech signals. The

voiced and unvoiced signals for each mixture result from

synthesizing the predetermined voiced frames and unvoiced

frames of the mixture, respectively. The voiced and

unvoiced frames of a mixture are determined from clean

speech using Praat (Boersma and Weeknink, 2012). Clearly

both ERM/NMF and ERM/Sparse reconstruction approaches

offer significant improvements over the comparison

approaches for voiced frames at both SNRs, while ERM/VQ

reconstruction performs the best for unvoiced frames. As

expected PESQ scores are generally higher at voiced frames

indicating better separation.

Table V shows the average PESQ scores evaluated for

each interference, where the performance is averaged over

both masking approaches. This table shows that the

ERM/Sparse approach performs best for babble and factory

noise at each SNR, while ERM/NMF performs best for

speech shaped noise at each SNR. Each of our proposed

approaches is noticeably better than the other reconstruction

approaches at each noise type.

One issue that has not been addressed thus far regards

the use of estimated binary masks, since it lowers the

TABLE II. Average PESQ scores for different STFT magnitude reconstruc-

tion approaches using estimated or ideal masks. “[First Stage]/[Second

Stage]” refers to the first and second stage methods, and EBM means that a

binary mask is used in the first stage and ERM means that a ratio mask is

used.

GMM DNN Ideal

�5 dB 0 dB �5 dB 0 dB �5 dB 0 dB

GMM-UBM reconstruction 1.36 1.75 1.48 1.85 1.95 2.21

Sparse reconstruction 1.74 2.04 1.51 2.03 2.23 2.54

EBM/NMF 1.72 2.02 1.49 1.92 2.10 2.41

EBM/Sparse 1.83 2.14 1.52 2.00 2.35 2.66

ERM/VQ 1.77 1.97 1.63 1.89 1.76 2.04

ERM/NMF 1.85 2.14 1.73 2.15 2.30 2.66

ERM/Sparse 1.86 2.17 1.74 2.16 2.25 2.58

TABLE III. Average STOI scores for different STFT magnitude reconstruc-

tion approaches using GMM, DNN, or ideal masks. Boldface indicates the

approach that produced the best result for a condition.

GMM DNN Ideal

�5 dB 0 dB �5 dB 0 dB �5 dB 0 dB

GMM-UBM Reconstruction 0.61 0.72 0.64 0.73 0.79 0.85

Sparse Reconstruction 0.74 0.80 0.70 0.81 0.85 0.90

ERM/VQ 0.71 0.73 0.68 0.75 0.74 0.80

ERM/NMF 0.78 0.82 0.68 0.79 0.82 0.88

ERM/Sparse 0.77 0.82 0.67 0.78 0.79 0.86
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perceptual quality of the separated speech as shown in

Table I for the DNN masks at �5 dB. To determine whether

binary masking is useful, the reconstruction approaches are

applied directly to the mixture by omitting masking-based

separation. Note that GMM-UBM reconstruction and sparse

reconstruction require a binary mask, so their performance

without masking is not computed. The other reconstruction

models were trained with the same 270 training utterances.

The same 60 test utterances were mixed with the 3 noises at

�5 and 0 dB, and the average speech quality results are

shown in Table VI. Comparing this table and Table II, it is

clear that the average PESQ score at each SNR with no

masking is lower than the average PESQ score with mask-

ing. Also, the average performance for each reconstruction

approach without masking is lower than or only slightly

greater than the average performance of the unprocessed

mixtures at each SNR. Thus, although binary masking alone

may lower speech quality it provides a useful intermediate

result that can be utilized in subsequent reconstruction. In

other words, the proposed two-stage model is better than a

one-stage model.

We also compare our proposed approach to supervised

NMF (Raj et al., 2010) and supervised sparse (Gemmeke

et al., 2011) separation approaches. The PESQ and STOI

results for these supervised separation approaches are listed

in Table VII along with our ERM/NMF reconstruction and

ERM/Sparse reconstruction results (copied from Tables II

and III). Our model with either ERM/NMF or ERM/Sparse

reconstruction clearly outperforms both supervised separa-

tion approaches in terms of PESQ and STOI, suggesting that

reconstructing speech separated by binary masking outper-

forms traditional supervised speech separation approaches.

E. Parameter selection

Many parameters affect the performance of the above

mentioned approaches. In this section, we address how the

different parameter values effect each approach using the

experimental setup described above.

One important parameter for all reconstruction

approaches is the size of the data used for training the differ-

ent models (i.e., speech dictionary, basis matrix, codebook,

and GMM). Using 270 utterances for ERM/Sparse recon-

struction may be computationally expensive, so we assess

the performance of all approaches using smaller training

sizes of 135 and 54 utterances, while the remaining parame-

ters are unchanged. In other words, the GMM used for

GMM-UBM reconstruction, the codebook for ERM/VQ, the

speech basis matrix for ERM/NMF and supervised NMF, as

well as the speech dictionary used for ERM/Sparse, sparse

and supervised sparse reconstruction, are trained using 135

speech utterances or 54 speech utterances in each case. The

average PESQ score at each training size is shown in

Fig. 2(a). Note that ERM/Sparse reconstruction outperforms

all other approaches at each size, indicating that a smaller

training size may be used for ERM/Sparse reconstruction

without much loss of speech quality. The performance

changes little as the model size increases for all approaches

except for GMM-UBM reconstruction where performance

degrades as the model training size increases from 54 to 135

utterances. In this case, with larger training sizes we find that

more noise dominant T-F units are being replaced by the

noisy speech values rather than estimated values, since

GMM-UBM reconstruction is a bounded approach. The esti-

mated value is dependent on the Gaussian means, and at

larger training sizes we find that the mean values are larger,

resulting in larger estimated values than the noisy speech

values.

TABLE IV. Voiced and unvoiced PESQ analysis of the different reconstruc-

tion approaches.

�5 dB 0 dB

Voiced Unvoiced Voiced Unvoiced

GMM-UBM reconstruction 1.38 1.16 1.77 1.38

Sparse reconstruction 1.63 1.07 2.06 1.39

ERM/VQ 1.69 1.25 1.92 1.46

ERM/NMF 1.79 1.17 2.19 1.39

ERM/Sparse 1.79 1.21 2.20 1.45

TABLE V. Average PESQ scores for reconstruction approaches by noise.

�5 dB 0 dB

Babble Factory

Speech

shaped Babble Factory

Speech

shaped

GMM-UBM

Reconstruction 1.52 1.38 1.36 1.88 1.74 1.79

Sparse

Reconstruction 1.75 1.63 1.51 2.11 2.03 1.96

ERM/VQ 1.77 1.76 1.58 1.99 1.96 1.84

ERM/NMF 1.81 1.85 1.71 2.14 2.21 2.08

ERM/Sparse 1.82 1.88 1.69 2.19 2.24 2.07

TABLE VI. Average PESQ and STOI scores for different reconstruction

approaches when applied directly to the mixture.

PESQ STOI

�5 dB 0 dB �5 dB 0 dB

MIX/VQ 1.38 1.58 0.47 0.53

MIX/NMF 1.37 1.62 0.56 0.67

MIX/Sparse 1.37 1.66 0.56 0.67

TABLE VII. Average PESQ and STOI scores for supervised NMF and

Sparse separation, along with the proposed ERM/NMF and ERM/Sparse

reconstruction approaches.

PESQ STOI

�5 dB 0 dB �5 dB 0 dB

Supervised NMF 1.51 1.82 0.58 0.70

Supervised Sparse 1.47 1.72 0.61 0.71

GMM ERM/NMF 1.85 2.14 0.78 0.82

GMM ERM/Sparse 1.86 2.17 0.77 0.82

DNN ERM/NMF 1.73 2.15 0.68 0.79

DNN ERM/Sparse 1.74 2.16 0.67 0.78
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All reconstruction approaches are affected by the num-

ber of frames that are used to augment the STFT. In

Fig. 2(b) we show how the PESQ scores of our ERM/NMF

reconstruction approach change with the number of stacked

frames, M. The figure shows that the performance increases

as the number of stacked frames increases, which is expected

since this allows more information to be used in the recon-

struction. We elect to use five frames since the further

FIG. 2. Parameter evaluations for the different reconstruction approaches. (a) Comparisons of the average PESQ score for the different reconstruction

approaches with different numbers of utterances used to train the models. (b) Comparison of the number of frames used to augment the STFT. (c) Comparison

between the different NMF variants. [1] KL diverengence (Seung and Lee, 2001); [2] Euclidean norm (Seung and Lee, 2001); [3] generalized KL divergence

(Eggert and Korner, 2004; Schmidt, 2007); [4] Smaragdis (2004); [5] Cichocki et al. (2006); [6] Choi (2008); [7] Wilson et al. (2008). (d) Comparison of the

number of basis vectors used for ERM/NMF. (e) Comparison of k for ERM/NMF. (f) Comparison of different approaches for generating the activation matrix.

(g) Comparison of the number of dictionary entries used for ERM/Sparse. (h) Comparison of the number of Gaussians used in the GMM-UBM. (i)

Comparison of the codebook sizes to used for ERM/VQ.
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increase in performance does not seem to justify the increase

in computational time.

We considered many NMF variants in terms of the cost

function, when developing our ERM/NMF approach. We

evaluated the different NMF variants on our test data and the

results for seven different cost functions are shown in Fig.

2(c). The approach by Eggert and Korner (2004) and

Schmidt (2007) uses generalized KL divergence as its cost

function along with a sparsity constraint and performs

slightly better than the other approaches, and hence it is used

in our system. This NMF approach is also affected by the

number of vectors in the basis matrix and the sparsity con-

straint. Figures 2(d) and 2(e) evaluate ERM/NMF recon-

struction using different values for the mentioned

parameters. Notice that the values used in our approach, i.e.,

80 basis vectors and k equal to 0.1, produce the best results

in each case. ERM/Sparse reconstruction is dependent on the

cost function used to approximate the activation matrix. The

variants considered are ABCS (Carmi et al., 2009), an NMF

approach (Gemmeke et al., 2011), and OMP (Mairal et al.,
2009, 2010). The comparison of these three approaches is

shown in Fig. 2(f), where OMP performs the best. Figure

2(g) shows how OMP varies with the number of dictionary

entries, L, and 5 entries give the best scores.

The number of Gaussians and the codebook size used

for the GMM-UBM reconstruction and ERM/VQ reconstruc-

tion approaches, respectively, were also empirically deter-

mined. Figures 2(h) and 2(i) show the results of the two

approaches when different parameter values are used. We

use the parameters that produce the best results.

VI. CONCLUDING REMARKS

We have proposed a novel approach to speech quality

enhancement. Given a binary mask and the STFT of a mix-

ture we produce a ratio mask for higher quality. We then

incorporate a second stage using sparse and NMF recon-

struction to further clean the speech separated by masking.

Our reconstruction stage to enhance separated speech

improves perceptual quality over binary masked speech,

ratio masked speech, and supervised speech separation. It is

also worth noting that speech quality gains of the proposed

approach do not come at the expense of speech

intelligibility.

The evaluations show that ERM/Sparse reconstruction

produces better speech quality and outperforms GMM-UBM

reconstruction, sparse reconstruction, and ERM/VQ recon-

struction approaches. Although ERM/NMF reconstruction

performance is slightly worse than ERM/Sparse reconstruc-

tion, the computational efficiency of ERM/NMF reconstruc-

tion is superior, particularly when larger model sizes are

used. Therefore, in situations where computational efficiency

is most important, ERM/NMF reconstruction is preferred.
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