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ABSTRACT

This paper presents an approach for improving the percep-
tual quality of speech separated from background noise at
low signal-to-noise ratios. Our approach uses two stages of
deep neural networks, where the first stage estimates the ideal
ratio mask that separates speech from noise, and the second
stage maps the ratio-masked speech to the clean speech ac-
tivation matrices that are used for nonnegative matrix factor-
ization (NMF). Supervised NMF systems make assumptions
about the relationship between the activation and basic ma-
trices that do not always hold. Other two-stage approaches
combining masking with NMF reconstruction do not account
for mask estimation errors. We show that the proposed algo-
rithm achieves higher objective speech quality and intelligi-
bility compared to these related methods.

Index Terms— nonnegative matrix factorization, deep
neural network, speech quality, speech separation

1. INTRODUCTION

Nonnegative matrix factorization (NMF) has been used in
many algorithms for separating speech from background
noise. NMF approximates a signal as the product between a
basis matrix and an activation matrix, where the basis matrix
provides spectral structure and the activation matrix linearly
combines the basis matrix elements [1, 2]. The main goal
of NMF is to train an appropriate basis matrix that provides
a generalized spectral representation of speech and to de-
termine an activation matrix that successfully combines the
basis elements, so that the error between the signal and its
approximation is minimized.

Supervised NMF uses trained speech and noise models
that when linearly combined estimate noisy speech [3, 4, 5, 6].
Its objective during speech enhancement is to produce an ac-
tivation matrix that is split into a speech portion and a noise
portion, where the portions are combined with the corre-
sponding model to generate an approximation of the speech
and noise components of the mixture. For instance, the first
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portion of the activation matrix when combined with the
speech basis matrix approximates the speech portion of the
mixture, whereas the later portion of the activation matrix and
the noise model estimates the noise. An assumption is made
that the speech model and activations only approximate the
speech portion of the signal and do not provide any approxi-
mations for the noise. This assumption does not always hold,
however, since portions of the speech model and activations
may approximate the noise source, especially at low signal-
to-noise ratios (SNRs) or when the noise exhibits speech-like
qualities.

In [7, 8], it is shown that combining a masking approach
with NMF produces higher quality speech than supervised
NMF approaches and other two-stage methods. A deep neu-
ral network is used to estimate a time-frequency (T-F) mask
that when applied to the noisy mixture produces a speech es-
timate. This speech estimate is further enhanced by apply-
ing NMF reconstruction, where this stage approximates the
masked speech as a linear combination of speech model vec-
tors. The masking stage removes the need for a noise model
during reconstruction. Performing NMF reconstruction af-
ter masking provides quality improvements, but using recon-
struction to approximate the masked speech is a limiting fac-
tor since the mask may contain errors that degrade perceptual
quality.

Deep neural networks (DNNs) have been able to map
noisy speech features to various targets such as: ideal binary
masks (IBMs), ideal ratio masks (IRMs), cochleagrams, and
spectrograms [9, 10, 11, 12, 13]. This has inspired us to train
a DNN with a different target mapping and now we propose
to use a DNN for estimating NMF activation matrices from
clean speech. We will use two stages of DNNs to separate
speech from background noise. In the first stage, a DNN will
be trained using the IRM as target, where the ratio mask will
be applied to the mixture to get a speech estimate. Features
will be extracted from this speech estimate and then the sec-
ond DNN will learn a mapping from the ratio-masked speech
features to NMF activation matrices of clean speech. The
product between the trained speech model and the estimated
activation matrix will provide an estimate of clean speech
in the T-F domain. The initial DNN is part of the feature
extraction stage for the second DNN.
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This paper is organized as follows. The next section re-
lates our work to previous studies. Section 3 describes the
details of our proposed approach. Experimental results and
system comparisons are presented in Section 4. Section 5
concludes the discussion of the proposed system.

2. RELATION TO PRIOR WORK

Two-stage approaches for improving speech quality are pre-
sented in our previous work [7, 8]. In [8], a ratio mask that
is constructed from a binary mask is used to separate speech
from background noise; then NMF is used for reconstruction.
Likewise, in [7], a soft mask is used for separation followed
by NMF reconstruction. Our proposed approach differs from
these in the use of a DNN to estimate the ideal ratio mask (i.e.
not the IBM), and a sliding window to augment our features
and ground-truth training labels. We also use a second DNN
to estimate the NMF activations of clean speech, not NMF
reconstruction. The work in [14] also estimates NMF acti-
vations, but it estimates activations that are combined with a
basis matrix to approximate the IRM. In addition, they esti-
mate the activations of clean speech, and they do not use an
initial masking stage.

3. ALGORITHM DESCRIPTION

3.1. Feature extraction

The first phase of feature extraction uses a DNN to esti-
mate the IRM. The DNN is trained from the following
complimentary set of features that are extracted from the
64-channel gammatone filter response of noisy speech: am-
plitude modulation spectrogram (AMS), relative spectral
transform and perceptual linear prediction (RASTA-PLP),
and Mel-frequency cepstral coefficients (MFCC), as well as
their deltas [15]. Unlike [15], the features are extracted and
a single DNN is trained from the noisy speech and not sep-
arately for each frequency subband. The DNN is trained to
estimate the ideal ratio mask, which is defined as:

S%(t, f)

TRMU 1) = o,y + N2, 1) M
where TRM (t, f) denotes the gain at time frame ¢ and fre-
quency channel f. S?(t, f) and N2(t, f) represent the clean
speech and noise energy, respectively. The IRM has been
shown to be the proper training target for DNN mapping, as
it has outperformed other targets such as IBMs, target binary
masks (TBMs), cochleagrams, and spectrograms in terms of
speech quality and intelligibility [11].

A context window is used for the features and training tar-
gets of the DNN, meaning that for each time frame adjacent
frames (before and after) are reshaped into a feature vector for
that time frame. In other words, the DNN maps a set of frames
of features to a set of frames of ground-truth IRM labels for
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Fig. 1. Structure of DNN that maps a sliding window of log-
magnitude spectrogram features from ratio-masked speech to
a single frame of clean speech NMF activations.

each time frame. A context window is used for the features
since useful information is carried across frames, while it is
used for the labels since it has been shown to improve voice
activity detection [16]. The DNN output is appropriately un-
wrapped and averaged to produce an estimate of the IRM,
which is applied to the cochleagram of the noisy speech to
produce a speech estimate. The DNN for this phase is re-
ferred to as IRM-DNN.

The second phase of feature extraction computes the log-
magnitude spectrogram of the ratio-masked speech and then
uses a sliding window to concatenate adjacent frames into a
single feature vector for each time frame. These features are
normalized to have zero mean and unit variance and are then
used to train the second DNN.

3.2. DNN for NMF activation matrix estimation

A depiction of the second DNN is shown in Fig. 1, where
the DNN consists of three hidden layers each includes 1024
hidden units. The input for each training sample is the log-
magnitude spectrogram in a window of 5 frames, equating to
1285 input units. The output is the NMF activation weights in
the current frame, corresponding to 80 output units, since 80
basis vectors are used for the NMF basis matrix. This DNN
is referred to as NMF-DNN.

The NMF activation weights are determined from clean
speech. More specifically, a NMF basis matrix is trained from
a set of clean spectrograms [17]. NMF activation matrices
are then computed from a second set of clean speech training
data, where these activations linearly combine the elements
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of the NMF basis matrix to approximate their spectrograms.
This second set of clean training data is combined with vari-
ous noises at different SNRs and processed through the IRM-
DNN to produce a ratio mask that is subsequently applied to
the mixture to generate ratio-masked speech. Log-magnitude
spectrogram features are extracted from these signals and are
used to train the second DNN to estimate the clean NMF acti-
vations. The clean NMF activations are also slightly modified
before training, so that only the activations with values above
the average activation amount for each time frame are used.
This is done since the activation vector contains many small
values that do not contribute much in listening quality to the
result.

Once the clean NMF activations are estimated, the prod-
uct between the NMF basis matrix and the estimated activa-
tion matrix is taken to produce the estimated log-magnitude
spectrogram of the clean speech signal.

4. EXPERIMENTS

4.1. Experimental settings

The performance of our system is evaluated by construct-
ing training, development, and testing data from the IEEE
male speech corpus [18], after each signal is downsampled
to 16 kHz. Datasets are developed for both DNNs that are
used. The IRM-DNN is trained by combining 250 utterances
with random cuts from babble, factory, speech-shaped noise
(SSN), and military vehicle noise at -6, -3, and 0 dB, result-
ing in 3000 training utterances. A development set of 30 sen-
tences mixed with each combination of noise and SNR is used
to fine-tune parameters for the IRM-DNN. The NMF-DNN is
trained by combining a different set of 250 utterances with
random cuts of the noises at each SNR. These 3000 examples
are each processed through the trained IRM-DNN, where log-
magnitude spectrogram features are subsequently extracted
from the ratio-mask speech. The spectrograms are computed
using a window length of 32 ms, a 512 length FFT, with
75% overlap between adjacent segments. A Hann window
is also used. The same development set used to train IRM-
DNN is also used to train the NMF-DNN. The NMF basis
matrix is trained from the concatenation of magnitude spec-
trograms from 10 clean speech utterances, using the above
spectrogram parameters and a context window that spans 5
frames. The complete system is tested with a unique set of
720 noisy speech mixtures (60 clean utterances x 4 noises x 3
SNRs).

4.2. Results

Objective metrics PESQ [19] and the short-time objective in-
telligibility (STOI) [20] are used to evaluate the speech qual-
ity and intelligibility, respectively, of our system since they
have been shown to correlate well with subjective quality and
intelligibility evaluations from human subjects.

Table 1. Average PESQ and STOI scores for the different
systems at each SNR.

PESQ STOI
-6dB -3dB 0dB | -6dB -3dB 0dB
Noisy Speech  1.650 1.816 1.990 | 0.584 0.641 0.701
SM/NMF 2.037 2.119 2.188 | 0.643 0.689 0.724
IRM/NMF 2.055 2.130 2.195| 0.656 0.696 0.727
N-FHMM 1.841 1976 2.141 | 0.580 0.632 0.695
NMF 1.939 2.110 2.285 | 0.632 0.694 0.754
Proposed 2370 2.570 2.736 | 0.775 0.820 0.851
Prop. w/o IRM 2394 2.548 2.675| 0.782 0.824 0.854

Table 2. Average PESQ scores for the different systems at
each noise type.

PESQ

Babble Factory SSN  Vehicle
Noisy Speech 1.728 1.631 1.669 2.247
SM/NMF 2.081 2.063 2.115 2.199
IRM/NMF 2.085 2.106  2.107 2.208
N-FHMM 1.823 1.803 1.880 2.438
NMF 1.961 1.872 1951 2.661
Proposed 2.492 2496 2420 2.827
Prop. w/o IRM  2.503 2.508 2436 2.710

We compare our approach to four separate systems [7, 17,
21], two NMF approaches and two systems that incorporate
masking and NMF reconstruction. A supervised NMF ap-
proach from [17] uses trained speech and noise models to ap-
proximate noisy speech. The speech model matches the NMF
basis matrix that we use, while the noise model is trained
from the concatenated spectrograms of all the noise signals.
The work in [21] uses a semi-supervised nonnegative fac-
torial hidden Markov model (N-FHMM) that incorporates a
non-negative hidden Markov model (N-HMM) as the speech
model, while a noise model is learned during testing. N-
HMM uses several small dictionaries, each of which repre-
sent a particular phoneme, and a HMM to model transitions
between different phonemes. The N-HMM is trained from the
10 clean speech utterances that are used for the NMF basis
matrix. Since our goal is to show that using a DNN to deter-
mine activation weights is better than using NMF reconstruc-
tion, we compare our system to [7] (i.e. SM/NMF) and a sys-
tem that uses an estimated IRM to separate speech from noise,
followed by NMF reconstruction (i.e. IRM/NMF). Both of
these approaches use DNNSs to generate a mask, but [7] uses a
soft mask in its first stage, where the IBM is used as a ground-
truth label. Context windows are used to modify the spectro-
grams for each of the models.

Table 1 shows the average PESQ and STOI performance
for each system at each SNR. Note that at -6 dB SNR condi-
tions, the two stage approaches offer much quality improve-
ment over the NMF based approaches, indicating that a mask-
ing stage that removes noise is important. It also indicates
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Table 3. Average STOI scores for the different systems at
each noise type.

STOI

Babble Factory SSN  Vehicle
Noisy Speech ~ 0.570  0.588  0.605  0.805
SM/NMF 0.667 0.642 0.686 0.746
IRM/NMF 0.672  0.658 0.692 0.749
N-FHMM 0576  0.583 0.605 0.780
NMF 0.647  0.635 0.646 0.844
Proposed 0.808  0.789 0.797 0.866
Prop. wo IRM 0.817 0.791 0.808 0.864

that at very low SNRs, portions of the speech activations from
NMF and N-FHMM approximate some of the noise compo-
nents. Our proposed approach offers significant PESQ and
STOI improvements over the four comparison systems at each
SNR, indicating that a masking DNN and DNN for estimating
clean activation matrices are beneficial. The NMF-DNN of-
fers improvements over NMF reconstruction because some of
the mistakes that are made during the mask estimation stage
can be corrected in the second-stage DNN and masked speech
energy can be restored. IRM/NMF also offers slight improve-
ments over SM/NMF because the estimated IRM outperforms
soft masking, which matches results from [11] and justifies its
use as the first phase of feature extraction for our proposed al-
gorithm. Fig. 2 shows spectrogram results for the different
systems at -3 dB with babble noise. Notice that portions of
the speech are removed in the IRM/NMF and SM/NMF ap-
proaches, but some of the speech energy is restored in the
proposed signal.

Table 2 shows the PESQ performance of the systems av-
eraged over the different SNR levels, for each noise type.
From these results we see that NMF and N-FHMM strug-
gle with speech-like and non-stationary noises such as babble
and factory. The proposed method substantially outperforms
the IRM/NMF method at each noise type. All systems show
much improvement when the mixture contains military vehi-
cle noise. Similar performance results are seen in Table 3,
which shows the average objective intelligibility of the sys-
tems at each noise type.

As a final comparison, a DNN is trained that maps the
log-magnitude spectrograms from noisy speech utterances to
clean speech activations. This DNN is trained with the same
utterances used to train our proposed system, however, each
utterance is not processed with the IRM-DNN. The different
results for this system are shown in Tables 1-3 as "Prop. w/o
IRM’. Table 1 shows that the STOI performance for this sys-
tem and the proposed are approximately identical. In terms of
PESQ, the proposed system offers slight improvements over
"Prop w/o IRM’ at -3 dB and O dB, but performs slightly
worse at -6 dB. The performance by noise type (i.e. Table 2)
shows that the speech quality of the signals is approximately
equal at each noise type, except military vehicle noise where

(% T 10

(g) Proposed (h) Proposed w/o IRM
Fig. 2. Example spectrograms of different signals at -3 dB
using babble noise.

the proposed approach performs better. Table 3 shows that
the STOI scores for the two approaches are approximately the
same across the different noise types. Fig. 2 shows that the
proposed method that does not use ratio masking may over-
emphasize some speech components as compared to the clean
speech, which is indicated by observing some of the high-
frequency components of the unvoiced frames.

5. CONCLUSION

We have proposed to use DNNs to estimate the NMF activa-
tion matrices of clean speech. The first DNN estimates the
ideal ratio mask and is part of the feature extraction stage for
the second DNN. The second DNN estimates the NMF acti-
vation weights from ratio-masked speech. The algorithm im-
proves objective speech quality and intelligibility at various
noisy conditions. The results show that this approach outper-
forms similar techniques.
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