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ABSTRACT

Binary time-frequency masking and model-based non-
negative matrix factorization (NMF) are two common ap-
proaches to speech separation. However, binary masking
often suffers from poor perceptual quality, while NMF typ-
ically requires pretrained models for both speech and noise
and frequently does not perform well. In this paper we ex-
amine whether a single or two-stage approach should be used
for performing separation. We propose a two-stage algorithm
that uses a soft mask in the first stage for separation, and
NMF in the second stage for improving perceptual quality
where only a speech model needs to be trained. We show
that the proposed two-stage approach achieves higher objec-
tive perceptual quality and intelligibility compared to related
single-stage methods.

Index Terms— nonnegative matrix factorization, speech
separation, speech quality, binary masking

1. INTRODUCTION

Separating speech from noise is a challenging task that has
been studied extensively. Robust automatic speech recogni-
tion, speaker identification, and hearing prosthesis all benefit
from algorithms that successfully perform this task. Com-
monly used approaches for separating speech from noise
include nonnegative matrix factorization (NMF) and binary
masking [1, 2, 3, 4].

NMF is a model-based approach that uses trained speech
and noise models, along with an activation matrix to sepa-
rate noisy speech [1, 2, 5, 6]. This approach often requires
knowledge of the speaker and noise. A recent improve-
ment to supervised NMF is the nonnegative factorial hidden
Markov model (N-FHMM) [7, 8]. This semi-supervised ap-
proach uses a nonnegative hidden Markov model (N-HMM)
to model speech, while the model for the noise is determined
during the separation process. N-HMM uses several small
dictionaries and HMM to model the spectral structure and
temporal dynamics of speech, respectively. N-FHMM pro-
duces a Wiener mask that is used to separate the speech from
the noise.

Binary masking often amounts to ideal binary mask
(IBM) estimation, i.e. to determine whether a time-frequency
(T-F) unit is speech or noise dominant. The resulting binary
mask is applied directly to the T-F representation of the noisy
speech to obtain a speech estimate. Various techniques exist
for estimating the IBM [3, 4]. A common problem with this
approach is that the incorrect classification of T-F units leads
to a degradation of speech quality.

Both of the above mentioned approaches may be viewed
as single stage. We propose to use two stages to perform
speech separation, mainly for enhanced speech quality. In
the first stage a deep neural network (DNN) is used to pro-
duce a soft mask to perform separation. In the second stage
we use an NMF basis matrix that is trained just from clean
speech to reconstruct the speech separated by the soft mask.
Our two-stage approach is compared to several single-stage
approaches, including binary masking, supervised NMF, and
semi-supervised N-FHMM. Unlike our previous method [9],
we use a soft mask instead of a binary mask and an NMF ba-
sis matrix instead of a sparse representation approach for the
second stage. We evaluate our system using PESQ [10] and
STOI [11] to measure perceptual speech quality and predicted
intelligibility, respectively.

The rest of the paper is organized as follows. The pro-
posed algorithm is presented in Section 2. Our approach and
the comparison approaches are evaluated in Section 3. Sec-
tion 4 concludes the paper.

2. PROPOSED METHOD

In this section, we describe our proposed two-stage approach.
We start with a description of our first stage, which generates
a soft mask. We then describe our NMF stage that enhances
the quality of the speech separated by the soft mask.

2.1. First stage: soft mask separation

In the first stage of our approach we use DNNs to generate
a soft mask that separates speech from background noise.
Specifically, the DNNs are trained from the following fea-
tures that are extracted from the gammatone filter responses
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of noisy speech training data: amplitude modulation spectro-
gram (AMS), relative spectral transform and perceptual linear
prediction (RASTA-PLP), and mel-frequency cepstral coeffi-
cients (MFCC), as well as their deltas [12]. Separate DNNs
are trained for each channel of the 64-channel gammatone fil-
terbank [3], where the IBM is used for ground truth labels.
The same features are also extracted from test mixtures, and
used along with the trained DNNs to generate a soft mask.
The output of each DNN can be interpreted as the posterior
probability of a T-F unit being speech dominant. We use this
posterior probability as our soft mask. This differs from the
approaches in [3, 9], where the output of the DNN is binarized
to form a binary mask.

For each test mixture, the soft mask is applied to the gam-
matone response of the mixture to produce estimated speech.
The estimated speech is re-synthesized to the time domain
and the STFT of the time-domain signal is computed. Fig-
ure 1 shows the spectrogram for a clean speech, noisy speech
signal at -5 dB, and the speech estimate that is generated by
applying the soft mask to the noisy speech.

After separation, a sliding window augments the STFT
magnitude response by combining M frames (M−1

2 before
and after the current frame, along with the current frame) into
a single vector, resulting in a MN ×T matrix [13]. Note that
M is an odd integer and N and T correspond to the number
of frequency channels and the number of time frames in the
STFT, respectively.

2.2. Second stage: soft mask/NMF reconstruction

NMF uses a linear combination of basis vectors to approxi-
mate a signal [5, 6]. We use NMF to enhance the augmented
STFT magnitude S of speech separated by a soft mask (i.e.
output from Section 2.1). Two nonnegative matrices are used
and they are a trained basis matrix W train that defines the
spectral features, and an activation matrix H that linearly
combines the spectral features.

The basis matrix is trained from clean speech training data
D, using the approach described in [13], where the product
of the trained basis and activation matrices approximates the
training data.

D ≈W trainHtrain (1)

The training data is the concatenation of augmented STFTs
from clean speech utterances. The trained basis and acti-
vation matrices are determined by minimizing a cost func-
tion between the training data and the product of the matri-
ces. There are a multitude of cost functions that are used for
NMF, but the generalized Kullback-Leibler (KL) divergence
has worked well for source separation [1, 2], thus we use it for
the approximation. The empirical mean and covariance of the
log values ofHtrain, denoted by µ and Λ, are also computed
and are used during the reconstruction process.

(a) Clean speech (b) Noisy speech

(c) Soft mask (d) Binary mask

(e) N-FHMM (f) NMF

Fig. 1. Example spectrograms of clean speech, noisy speech
and single-stage separation approaches. The noisy speech has
a signal-to-noise ratio of -5 dB and is produced using factory
noise.

Once W train is computed, S is approximated as the
product of the trained basis matrix and a new activation ma-
trix H (i.e. S ≈ W trainH). H is computed using the
regularized NMF approach defined in [2]. Specifically, the
update rule for each entry in the activation matrix is as fol-
lows:

Hab ← Hab

∑
i W

train
ia Sib/(W

trainH)ib∑
kW

train
ka + β ϕ(H)

(2)

ϕ(H) = − (Λ−1(log(H:,b)− µ))a
Hab

(3)

whereHab refers to the element at the ath row and bth column
of H . The parameter β encourages consistency between the
statistics of H and Htrain. Note that in (2) the trained basis
matrix is held constant for each iteration.
S is a MN × T matrix that is converted back to a N ×

T matrix by appropriately unwrapping, placing, and averag-
ing the multiple responses within each frame. The estimated
STFT magnitude response is combined with the noisy phase
response of the mixture to produce an SM/NMF reconstructed
STFT. An estimate of the speech signal is produced by per-
forming overlap-and-add synthesis.
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3. EXPERIMENTS AND DISCUSSION

We perform speech separation using 60 male utterances ran-
domly selected from the IEEE speech corpus [14], which
are downsampled to 12 kHz. Each utterance is mixed with
random cuts of 20-talker babble, factory, and speech-shaped
noise at -5 and 0 dB, resulting in a total of 360 test examples.

The DNNs are trained by mixing 390 male clean speech
utterances randomly selected from the IEEE speech corpus,
with random cuts of the noises mentioned above at -5 and 0
dB. The STFT magnitudes from 10 male IEEE clean speech
utterances are augmented, concatenated, and used to train the
NMF basis matrix. The STFTs are augmented with M = 5
frames and are generated using a window and hop size of 20
and 10 ms, respectively. The NMF training basis matrix has
80 basis vectors. The utterances used for testing, training the
DNNs, and training the basis matrix are different and do not
overlap.

As a comparison of two-stage approaches, we also train a
N-HMM from the concatenated STFT magnitudes described
previously. A N-HMM uses several small dictionaries (rather
than a single large dictionary that is used for NMF) to model
the non-stationarity of speech, and a HMM to model tempo-
ral dynamics. In a given time frame the speech is modeled
as a linear combination of the spectral components from one
of the many dictionaries of the N-HMM [7]. As in [7, 8],
we use 40 dictionaries of 10 spectral components each to re-
construct the speech separated by the soft mask, using the
approach described in [15]. We also use the concatenated
STFT magnitudes directly and use the sparse reconstruction
approach from [9] as another comparison, which is denoted
as EBM/Sparse.

We compare our two-stage approach to binary masking,
semi-supervised N-FHMM [8], and supervised NMF [2].
The binary mask is generated by binarizing the output of the
DNNs (i.e. the T-F unit is speech dominant if the posterior
probability is greater than 0.5), which is done in [9]. The bi-
nary mask is applied to the STFT of noisy speech to produce
a speech estimate. The N-FHMM models noisy speech using
a trained N-HMM speech model, while iteratively learning
the parameters for the noise model during speech separation.
Each time frame of noisy speech is modeled by a linear com-
bination of the spectral components from the concatentation
of one of the speech dictionaries and the noise dictionary.
The trained N-HMM mentioned above is used for the speech
model of the N-FHMM. The noise is modeled using 1 dic-
tionary of 10 spectral components, as in [8]. The N-FHMM
returns a Wiener mask that is applied to the STFT of noisy
speech to obtain a speech estimate. The supervised NMF
approach uses the above mentioned NMF training basis ma-
trix as a speech model. The noise is modeled by computing
a basis matrix from the concatenation of augmented STFT
magnitudes from the 20-talker babble, factory, and speech-
shaped noises used above. Eighty basis vectors are used

PESQ Score STOI Score
-5 dB 0 dB -5 dB 0 dB

Noisy Speech 1.3586 1.6189 0.5454 0.6561
Binary Mask 1.4416 1.8194 0.6664 0.7749

Soft Mask 1.8444 2.1628 0.7036 0.8073
N-FHMM 1.6535 1.9683 0.5822 0.6967

NMF 1.5128 1.7997 0.5636 0.6780

Table 1. Average PESQ and STOI scores for noisy speech
and the single-stage approaches.

PESQ Score STOI Score
-5 dB 0 dB -5 dB 0 dB

EBM/Sparse 1.6871 2.0389 0.6989 0.7858
SM/NMF 2.0887 2.3596 0.7483 0.8210

SM/N-HMM 1.9400 2.1219 0.7457 0.8015

Table 2. Average PESQ and STOI scores for the two-stage
approaches. SM/NMF refers to our proposed approach that is
described in Section 2.

for the noise basis matrix. We also performed semi-supervised
N-FHMM and supervised NMF using non-augmented STFTs
[8, 2], but the performance is better when using augmented
STFTs.

We use PESQ to evaluate the speech quality of the differ-
ent approaches. PESQ is an objective perceptual speech qual-
ity measure that returns scores between -0.5 and 4.5, where
higher scores correspond to higher perceptual speech quality
[10]. The predicted intelligibility of the different approaches
is evaluated with STOI, which is an objective intelligibility
measure [11]. STOI scores range between 0 and 1, where
higher scores indicate higher intelligiblity. Table 1 shows the
PESQ and STOI scores for noisy speech at -5 and 0 dB, along
with results for the single-stage approaches. Notice that our
soft mask produces the highest scores over all single-stage
approaches in terms of PESQ and STOI at each signal to
noise ratio, which justifies its use as the first stage of our two-
stage approach. The soft mask produces larger speech qual-
ity gains over the binary mask because it does not produce
musical noise that is prevalent with binary masks. The soft
mask outperforms semi-supervised N-FHMM because a sin-
gle small dictionary (i.e. a dictionary with 10 spectral com-
ponents) cannot always explain the subtleties of speech [8],
where a speech dictionary with 10 spectral components was
found to be optimal in [15]. N-FHMM produces noticeable
improvements in terms of PESQ over the noisy speech and
the binary mask, however, according to STOI the intelligibil-
ity is not much improved over the noisy speech. As expected,
N-FHMM outperforms supervised NMF since it models the
spectral structure and temporal dynamics of speech. Figure 1
also shows spectrogram examples for these approaches.

The PESQ and STOI scores of the different two-stage
approaches are shown in Table 2. Notice that each approach
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(a) Speech separated using EBM/Sparse approach

(b) Speech separated using SM/NMF approach

(c) Speech separated using SM/N-HMM approach

Fig. 2. Example spectrograms for the different two-stage ap-
proaches.

provides improvements in terms of PESQ and STOI over
its single-stage counterpart (i.e. EBM/Sparse improves bi-
nary masking and SM/NMF provides improvements over soft
mask) except for SM/N-HMM at 0 dB. Since a speech model
can only adequately model speech (and not noise), the sec-
ond stage is able to suppress some of the noise that remains
after the first stage of separation. SM/NMF performs better
than SM/N-HMM for the same reason that the soft mask
outperforms N-FHMM. On the other hand, SM/NMF per-
forms better than EBM/Sparse because the former approach
gets better performance in the first stage with the soft mask.
Example spectrograms for the different two-stage approaches
are shown in Figure 2. Experiments were also conducted
where the individual speech models (i.e. sparse, NMF, and
N-HMM) where used to model noisy speech, but no im-
provements were made over the un-processed noisy speech,
indicating that the first stage for separation is necessary.

4. CONCLUSIONS

We have proposed a two-stage approach for improving the
perceptual quality of separated speech. In the first stage
of our approach, a DNN generates a soft mask that sepa-
rates speech from background noise. We then reconstruct
the speech separated by the soft mask, using nonnegative
matrix factorization. This proposed two-stage approach sig-
nificantly improves perceptual quality and intelligibility, and
outperforms single-stage approaches and other two-stage
approaches.
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