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Abstract—An effective multipitch tracking algorithm for noisy
speech is critical for acoustic signal processing. However, the
performance of existing algorithms is not satisfactory. In this
paper, we present a robust algorithm for multipitch tracking of
noisy speech. Our approach integrates an improved channel and
peak selection method, a new method for extracting periodicity
information across different channels, and a hidden Markov
model (HMM) for forming continuous pitch tracks. The resulting
algorithm can reliably track single and double pitch tracks in
a noisy environment. We suggest a pitch error measure for the
multipitch situation. The proposed algorithm is evaluated on
a database of speech utterances mixed with various types of
interference. Quantitative comparisons show that our algorithm
significantly outperforms existing ones.

Index Terms—Channel selection, correlogram, hidden Markov
model (HMM), multipitch tracking, noisy speech, pitch detection.

I. INTRODUCTION

DETERMINATION of pitch is a fundamental problem in
acoustic signal processing. A reliable algorithm for multi-

pitch tracking is critical for many applications, including com-
putational auditory scene analysis (CASA), prosody analysis,
speech enhancement, speech recognition, and speaker identifi-
cation (for example, see [9], [27], [39], and [41]). However, due
to the difficulty of dealing with noise intrusions and mutual in-
terference among multiple harmonic structures, the design of
such an algorithm has proven to be very challenging and most
existing pitch determination algorithms (PDAs) are limited to
clean speech or a single pitch track in modest noise.

Numerous PDAs have been proposed [14] and are gener-
ally classified into three categories: time-domain, frequency-
domain, and time-frequency domain algorithms. Time-domain
PDAs directly examine the temporal structure of a signal wave-
form. Typically, peak and valley positions, zero-crossings, auto-
correlations and residues of comb-filtered signals (for example,
see [6]) are analyzed for detecting the pitch period. Frequency-
domain PDAs distinguish the fundamental frequency by uti-
lizing the harmonic structure in the short-term spectrum. Time-
frequency domain algorithms perform time-domain analysis on
band-filtered signals obtained via a multichannel front-end.
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Many PDAs have been specifically designed for detecting
a single pitch track with voiced/unvoiced decisions in noisy
speech. The majority of these algorithms were tested on clean
speech and speech mixed with different levels of white noise (for
example, see [1], [3], [19], [20], [24], [25], and [34]). Some sys-
tems also have been tested in other speech and noise conditions.
For example, Wang and Seneff [40] showed that their algorithm
is particularly robust for telephone speech without a voiced/un-
voiced decision. The system by Rouatet al. [32] was tested on
telephone speech, vehicle speech, and speech mixed with white
noise. Takagiet al. [35] tested their single pitch track PDA on
speech mixed with pink noise, music, and a male voice. In their
study, multiple pitches in the mixtures are ignored and a single
pitch decision is given.

An ideal PDA should perform robustly in a variety of acoustic
environments. However, the restriction of a single pitch track
puts limitations on the background noise in which PDAs are
able to perform. For example, if the background contains har-
monic structures such as background music or voiced speech,
more than one pitch is present in some time frames, and a mul-
tipitch tracker that can yield multiple pitches at a given frame is
required.

The tracking of multiple pitches has also been investigated.
For example, Gu and van Bokhoven [11] and Chazanet al. [4]
proposed algorithms for detecting up to two pitch periods for
cochannel speech separation. A recent model by Tolonen and
Karjalainen [37] was tested on musical chords and a mixture
of two vowels. Kwonet al. [21] proposed a system to segre-
gate mixtures of two single pitch signals. Pernández-Cid and
Casajús-Quirós [30] presented an algorithm to deal with poly-
phonic musical signals. However, these multipitch trackers were
designed for and tested on clean music signals or mixtures of
single-pitch signals with little or no background noise. Their
performance on tracking speech mixed with broadband inter-
ference (e.g., white noise) is not clear.

In this paper, we propose a robust algorithm for multipitch
tracking of noisy speech. By using a statistical approach, the
algorithm can maintain multiple hypotheses with different
probabilities, making the model more robust in the presence of
acoustic noise. Moreover, the modeling process incorporates
the statistics extracted from a corpus of natural sound sources.
Finally, a hidden Markov model (HMM) is incorporated for
detecting continuous pitch tracks. A database consisting of
mixtures of speech and a variety of interfering sounds (white
noise, “cocktail party” noise, rock music, etc.) is used to
evaluate the proposed algorithm, and very good performance
is obtained. In addition, we have carried out quantitative
comparison with related algorithms and the results show that
our model performs significantly better.

This paper is organized as follows. In the next section, we give
an overview of our model. Section III presents a multichannel
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Fig. 1. Schematic diagram of the proposed model. A mixture of speech and interference is processed in four main stages. In the first stage, the normalized
correlogram is obtained within each channel after the mixture is decomposed into a multichannel representation by cochlear filtering. Channel/peak selection is
performed in the second stage. In the third stage, the periodicity information is integrated across different channels using a statistical method. Finally, an HMM is
utilized to form continuous pitch tracks.

front-end. Detailed explanations of our pitch-tracking method
are given in Section IV. Section V provides evaluation experi-
ments and shows the results. Finally, we discuss related issues
and conclude the article in Section VI.

II. M ODEL OVERVIEW

In this section, we first give an overview of the algorithm and
stages of processing. As shown in Fig. 1, the proposed algo-
rithm consists of four stages. In the first stage, the front-end,
the signals are filtered into channels by an auditory peripheral
model and the envelopes in high-frequency channels are ex-
tracted. Then, normalized correlograms [2], [39] are computed.
Section III gives the details of this stage.

Channel and peak selection comprises the second stage. In
noisy speech, some channels are significantly corrupted by
noise. By selecting the less corrupted channels, the robustness
of the system is improved. Rouatet al. [32] suggested this idea,
and implemented on mid- and high-frequency channels with
center frequencies greater than 1270 Hz (see also [15] in the
context of speech recognition). We extend the channel selection
idea to low-frequency channels and propose an improved
method that applies to all channels. Furthermore, we employ
the idea for peak selection as well. Generally speaking, peaks
in normalized correlograms indicate periodicity of the signals.
However, some peaks give misleading information and should
be removed. The detail of this stage is given in Section III.

The third stage integrates periodicity information across
all channels. Most time-frequency domain PDAs stem from
Licklider’s duplex model for pitch perception [23], which
extracts periodicity in two steps. First, the contribution of each
frequency channel to a pitch hypothesis is calculated. Then,
the contributions from all channels are combined into a single
score. In the multiband autocorrelation method, the conven-
tional approach for integrating the periodicity information in
a time frame is to summate the (normalized) autocorrelations
across all channels. Though simple, the periodicity information
contained in each channel is under-utilized in the summary.
By studying the statistical relationship between the true pitch
periods and the time lags of selected peaks obtained in the
previous stage, we first formulate the probability of a channel
supporting a pitch hypothesis and then employ a statistical
integration method for producing the conditional probability
of observing the signal in a time frame given the hypothesized

pitch. The relationship between true pitch periods and time
lags of selected peaks is obtained in Section IV-A and the
integration method is described in Section IV-B.

The last stage of the algorithm is to form continuous pitch
tracks using an HMM. In several previous studies, HMMs have
been employed to model pitch track continuity. Weintraub [41]
utilized a Markov model to determine whether zero, one or two
pitches were present. Gu and van Bokhoven [11] used an HMM
to group pitch candidates proposed by a bottom-up PDA and
form continuous pitch tracks. Tokudaet al. [36] modeled pitch
patterns using an HMM based on a multispace probability dis-
tribution. In these studies, pitch is treated as an observation and
both transition and observation probabilities of the HMM must
be trained. In our formulation, pitch is explicitly modeled as
hidden states and hence only transition probabilities need to be
specified by extracting pitch statistics from natural speech. Fi-
nally, optimal pitch tracks are obtained by using the Viterbi al-
gorithm. This stage is described in Section IV-C.

III. M ULTICHANNEL FRONT-END

The input signal is sampled at a rate of 16 kHz and then passed
through a bank of fourth-order gammatone filters [29], which is
a standard model for cochlear filtering. The bandwidth of each
filter is set according to its equivalent rectangular bandwidth
(ERB) and we use a bank of 128 gammatone filters with center
frequencies equally distributed on the ERB scale between 80 Hz
and 5 kHz [5], [39]. After the filtering, the signals are re-aligned
according to the delay of each filter.

The rest of the front-end is similar to that described by Rouat
et al.[32]. The channels are classified into two categories. Chan-
nels with center frequencies lower than 800 Hz (channels 1–55)
are called low-frequency channels. Others are called high-fre-
quency channels (channels 56–128). The Teager energy oper-
ator [16] and a low-pass filter are used to extract the envelopes
in high-frequency channels. The Teager energy operator is de-
fined as for a digital signal . Then,
the signals are low-pass filtered at 800 Hz using the third-order
Butterworth filter.

In order to remove the distortion due to very low frequen-
cies, the outputs of all channels are further high-pass filtered to
64 Hz (FIR, window length of 16 ms). Then, at a given time step
, which indicates the center step of a 16 ms long time frame,

the normalized correlogram for channel with a time
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lag is computed by running the following normalized autocor-
relation in every 10-ms interval:

(1)

where is the filter output. Here, corresponds to
the 16 ms window size (one frame) and the normalized correl-
ograms are computed for .

In low-frequency channels, the normalized correlograms are
computed directly from filter outputs, while in high-frequency
channels, they are computed from envelopes. Due to their dis-
tinct properties, separate methods are employed for channel and
peak selection in the two categories of frequency channels.

A. Low-Frequency Channels

Fig. 2(a) and (b) shows the normalized correlograms in the
low-frequency range for a clean and noisy channel, respectively.
As can be seen, normalized correlograms are range limited
( ) and set to 1 at the zero time lag. A value
of 1 at a nonzero time lag implies a perfect repetition of the
signal with a certain scale factor. For a quasiperiodic signal
with period , the greater the normalized correlogram is at time
lag , the stronger the periodicity of the signal. Therefore, the
maximum value of all peaks at nonzero lags indicates the noise
level of this channel. If the maximum value is greater than a
threshold , the channel is considered clean and thus
selected. Only the time lags of peaks in selected channels are
included in the set of selected peaks, which is denoted as.

B. High-Frequency Channels

As suggested by Rouatet al. [32], if a channel is not se-
verely corrupted by noise, the original normalized correlogram
computed using a window size of 16 ms and the normalized
correlogram using a longer window size of 30 ms
should have similar shapes. This is illustrated in Fig. 2(c) and
(d) which show the normalized correlograms of a clean and
a noisy channel in the high-frequency range respectively. For
every local peak of , we search for the closest local
peak in . If the difference between the two corre-
sponding time lags is greater than lag steps, the channel
is removed.

Two methods are employed to select peaks in a selected
channel. The first method is motivated by the observation that,
for a peak suggesting true periodicity in the signal, a peak that
is around the double of the time lag of the first one should be
found. This second peak is thus checked and if it is outside

lag steps around the predicted double time lag of the
first peak, the first peak is removed.

It is well known that a high-frequency channel responds to
multiple harmonics, and the nature of beats and combinational
tones dictates that the response envelope fluctuates at the fun-
damental frequency [13]. Therefore, the occurrence of strong

Fig. 2. Examples of normalized correlograms: (a) normalized correlogram
of a clean low-frequency channel, (b) that of a noisy low-frequency channel,
(c) that of a clean high-frequency channel, and (d) that of a noisy high-frequency
channel. Solid lines represent the correlogram using the original time window
of 16 ms and dashed lines represent the correlogram using a longer time window
of 30 ms. Dotted lines indicate the maximum height of nonzero peaks. All
correlograms are computed from the mixture of two simultaneous utterances
of a male and a female speaker. The utterances are “Why are you all weary” and
“Don’t ask me to carry an oily rag like that.”

peaks at time lag and its multiples in a high-frequency channel
suggests a fundamental period of. In the second method of
peak selection, if the value of the peak at the smallest nonzero
time lag is greater than , all of its multiple peaks are
removed. The second method is critical for reducing the errors
caused by multiple and submultiple pitch peaks in autocorrela-
tion functions.

The selected peaks in all high-frequency channels are added
to .

To demonstrate the effects of channel selection, Fig. 3(a)
shows the summary normalized correlograms of a speech utter-
ance mixed with white noise from all channels, and Fig. 3(b)
from only selected channels. As can be seen, selected channels
are much less noisy and their summary correlogram reveals
the most prominent peak near the true pitch period whereas
the summary correlogram of all channels fails to indicate the
true pitch period. To further demonstrate the effects of peak
selection, Fig. 3(c) shows the summary normalized correlogram
of a speech utterance from selected channels, and Fig. 3(d) that
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Fig. 3. (a) Summary normalized correlogram of all channels in a time frame
from a speech utterance mixed with white noise. The utterance is “Why are you
all weary.” (b) Summary normalized correlogram of only selected channels in
the same time frame as shown in (a). (c) Summary normalized correlogram
of selected channels in a time frame from the speech utterance “Don’t ask
me to carry an oily rag like that.” (d) Summary normalized correlogram of
selected channels where the removed peaks are excluded in the same time
frame as shown in (c). To exclude a removed peak means that the segment of
correlogram between the two adjacent minima surrounding the peak is not
considered. Dashed lines represent the delay corresponding to the true pitch
periods. Dotted lines indicate the peak heights at pitch periods.

from selected channels where removed peaks are excluded.
To exclude a removed peak means that the segment of the
correlogram between the two adjacent minima surrounding the
peak is not considered. As can be seen, without peak selection,
the height of the peak that is around double the time lag of the
true pitch period is comparable or even slightly greater than
the height of the peak that is around the true pitch period. With
peak selection, the height of the peak at the double of the true
pitch period has been significantly reduced.

IV. PITCH TRACKING

A. Pitch Period and Time Lags of Selected Peaks

The alignment of peaks in the normalized correlograms
across different channels signals a pitch period. By studying
the difference between the true pitch period and the time lag
from the closest selected peaks, we can derive the evidence of

Fig. 4. Histogram and estimated distribution of relative time lags for a single
pitch in channel 22. The bar graph represents the histogram and the solid line
represents the estimated distribution.

the normalized correlogram in a particular channel supporting
a pitch period hypothesis.

More specifically, consider channel. We denote the true
pitch period as , and the relative time lag is defined as

(2)

where denotes the time lag of the closest peak.
The statistics of the relative time lagare extracted from

a corpus of five clean utterances of male and female speech,
which is part of the sound mixture database collected by Cooke
[5]. A true pitch track is estimated by running a correlogram-
based PDA on clean speech before mixing, followed by manual
correction. The speech signals are passed through the front-end
and the channel/peak selection method described in Section III.
The statistics are collected for every channel separately from the
selected channels across all voiced frames.

As an example, the histogram of relative time lags for channel
22 (center frequency: 264 Hz) is shown in Fig. 4. As can be
seen, the distribution is sharply centered at zero, and can be
modeled by a mixture of a Laplacian and a uniform distribution.
The Laplacian represents the majority of channels “supporting”
the pitch period and the uniform distribution models the “back-
ground noise” channels, whose peaks distribute uniformly in the
background. The distribution in channelis defined as

(3)

where is a partition coefficient of the mixture model.
The Laplacian distribution with parameter has the formula

The uniform distribution with range is fixed in a
channel according to the possible range of the peak. In a low-fre-
quency channel, multiple peaks may be selected and the av-
erage distance between the neighboring peaks is approximately
the wavelength of the center frequency. As a result, we set the
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TABLE I
FOUR SETS OFESTIMATED MODEL PARAMETERS

length of the range in the uniform distribution to this wave-
length, that is, , where is the
sampling frequency and is the center frequency of channel
. In a high-frequency channel, however, ideally only one peak

is selected. Therefore, is the uniform distribution over
all possible pitch periods. In other words, it is between 2 ms to
12.5 ms, or 32 to 200 lag steps, in our system.

The Laplacian distribution parameter and the partition
parameter can be estimated independently for each channel.
However, some channels have too few data points to have
accurate estimations. We observe thatestimated this way
decreases slowly as the channel center frequency increases. In
order to have more robust and smooth estimations across all
channels, we assumeto be constant across channels and a
linear relationship between the frequency channel index and
the Laplacian distribution parameter

(4)

A maximum likelihood method is utilized to estimate the
three parameters , , and . Due to the different properties
for low- and high-frequency channels, the parameters were es-
timated on each set of channels separately and the resulting pa-
rameters are shown in the upper half of Table I, where LF and
HF indicate low- and high-frequency channels respectively. The
estimated distribution of channel 22 is shown in Fig. 4. As can
be seen, the distribution fits the histogram very well.

Similar statistics are extracted for time frames with two pitch
periods. For a selected channel with signals coming from two
different harmonic sources, we assume that the energy from one
of the sources is dominant. This assumption holds because oth-
erwise, the channel is likely to be noisy and rejected by the se-
lection method in Section III. In this case, we define the relative
time lags as relative to the pitch period of the dominant source.
The statistics are extracted from the mixtures of the five speech
utterances used earlier. For a particular time frame and channel,
the dominant source is decided by comparing the energy of the
two speech utterances before mixing. The probability distribu-
tion of relative time lags with two pitch periods is denoted as

and has the same formulation as in (3)–(4). Likewise, the
parameters are estimated for low- and high-frequency channels
separately and shown in the lower half of Table I.

B. Integration of Periodicity Information

As noted in Tokudaet al. [36], the state space of pitch is
not a discrete or continuous state space in a conventional sense.
Rather, it is a union space consisting of three spaces

(5)

where , , are zero-, one-, and two-dimensional spaces
representing zero, one, and two pitches, respectively. A state
in the union space is represented as a pair , where

and is the space index. This section
derives the conditional probability of observing the set
of selected peaks given a pitch state.

The hypothesis of a single pitch periodis considered first.
For a selected channel, the closest selected peak relative to the
period is identified and the relative time lag is denoted as

, where is the set of selected peaks in channel.
The channel conditional probability is derived as

if channel selected
otherwise

(6)

where and is the parameterof channel
estimated from one-pitch frames as shown in Table I. Note

that, if a channel has not been selected, the probability of back-
ground noise is assigned.

The channel conditional probability can be easily combined
into the frame conditional probability if the mutual indepen-
dence of the responses of all channels is assumed. However,
the responses are usually correlated due to the wideband na-
ture of speech signals and the independence assumption pro-
duces very “spiky” distributions. This is known as the proba-
bility overshoot phenomenon and can be partially remedied by
smoothing the combined probability estimates by taking a root
greater than 1 [12]. Hence, we propose the following formula
with a smoothing operation to combine the information across
the channels

(7)

where is the number of all channels, the parameter
is the smoothing factor (see Section IV-D for more

discussion), and is a normalization constant for probability
definition.

Then, we consider the hypothesis of two pitch periods,and
, corresponding to two different harmonic sources. Letcor-

respond to the stronger source. The channels are labeled as the
source if the relative time lags are small. More specifically,

channel belongs to the source if , where
and denotes the Laplacian parameter for channel

calculated from (4). The combined probability is defined as

(8)

where (see (9) at the bottom of the next page) with denotes
the parameter of channel estimated from two-pitch frames
as shown in Table I.

The conditional probability for the time frame is the larger of
assuming either or to be the stronger source

(10)

where and 10 .
Finally, we fix the probability of zero pitch

(11)
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Fig. 5. Schematic diagram of an HMM for forming continuous pitch tracks.
The hidden nodes represent possible pitch states in each time frame. The
observation nodes represent the set of selected peaks in each frame. The
temporal links in the Markov model represent the probabilistic pitch dynamics.
The link between a hidden node and an observation node is called observation
probability.

where and 10 .
In many time-frequency domain PDAs (e.g., [26]), the score

of a pitch hypothesis is computed by weighting the contribu-
tions of frequency channels according to, say, energy levels.
Our formulation treats every frequency channel equally. Sev-
eral considerations are in order. First, in principle, the peri-
odicity information extracted from different channels should
be integrated so that greater weights are assigned to channels
providing more reliable information. For speech mixed with a
moderate level of interference, the channels with higher energy
tend to indicate more reliable periodicity information. However,
for speech mixed with comparable or higher levels of interfer-
ence, high-energy channels can be significantly corrupted and
give unreliable periodicity information. The channel selection
method described in Section III serves to choose channels that
are not strongly corrupted by noise. As a result, selected chan-
nels should provide relatively reliable information on period-
icity, and hence we allow selected channels to contribute equally
to pitch estimation. Second, the source with dominant energy
tends to mask other weaker sources. Our integration scheme
maintains the sensitivity of pitch detection to weaker sources.

C. Pitch Tracking Using an HMM

We propose to use a hidden Markov model for approximating
the generation process of harmonic structure in natural environ-
ments. The model is illustrated in Fig. 5. In each time frame, the
hidden node indicates the pitch state space, and the observation
node the observed signal. The temporal links between neigh-
boring hidden nodes represent the probabilistic pitch dynamics.

Fig. 6. Histogram and estimated distribution of pitch period changes in
consecutive time frames. The bar graph represents the histogram and the solid
line represents the estimated distribution.

The link between a hidden node and an observation node de-
scribes observation probabilities, which have been formulated
in the previous section (bottom-up pitch estimation).

Pitch dynamics have two aspects. The first is the dynamics
of a continuous pitch track. The statistics of the changes of the
pitch periods in consecutive time frames can be extracted from
the true pitch contours of five speech utterances extracted ear-
lier and their histogram is shown in Fig. 6. This is once again
indicative of a Laplacian distribution. Thus, we model it by the
following Laplacian distribution:

(12)

where represents pitch period changes, andand are dis-
tribution parameters. Using a maximum likelihood method, we
have estimated that lag steps and lag steps.
A positive indicates that, in natural speech, speech utterances
have a tendency for pitch periods to increase; conversely, pitch
frequencies tend to decrease. This is consistent with the decli-
nation phenomenon [28] that in natural speech pitch frequen-
cies slowly drift down where no abrupt change in pitch occurs,
which has been observed in many languages including English.
The distribution is also shown in Fig. 6 and it fits the histogram
very well.

The second aspect concerns jump probabilities between the
state spaces of zero pitch, one pitch, and two pitches. We as-
sume that a single speech utterance is present in the mixtures
approximately half of the time and two speech utterances are

if channel not selected
if channel belongs to
otherwise

(9)
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TABLE II
TRANSITION PROBABILITIES BETWEENSTATE SPACES OFPITCH

present in the remaining time. The jump probabilities are esti-
mated from the pitch tracks of the same five speech utterances
analyzed above and the values are given in Table II.

Finally, the state spaces of one and two pitch are discretized
and the standard Viterbi algorithm [16] is employed for finding
the optimal sequence of states. Note that the sequence can be a
mixture of zero, one, or two pitch states.

D. Parameter Determination

The frequency separating the low- and high-frequency chan-
nels is chosen according to several criteria. First, the separa-
tion frequency should be greater than possible pitch frequen-
cies of speech, and the bandwidth of any high-frequency chan-
nels should be large enough to contain at least two harmonics of
a certain harmonic structure so that amplitude modulation due
to beating at the fundamental frequency is possible. Second, as
long as such envelopes can be extracted, the normalized cor-
relograms calculated from the envelopes give better indication
of pitch periods than those calculated from the filtered signals
directly. That is because envelope correlograms reveal pitch pe-
riods around the first peaks, whereas direct correlograms have
many peaks in the range of possible pitch periods. Therefore,
the separation frequency should be as low as possible so long
as reliable envelopes can be extracted. By considering these cri-
teria, we choose the separation frequency of 800 Hz.

In our model, there are a total of eight free parameters: four
for channel/peak selection and four for bottom-up estimation of
observation probability (their values are given). The parameters

, , , and are introduced in channel/peak selection
method and they are chosen by examining the statistics from
sample utterances mixed with interferences. The true pitch
tracks are known for these mixtures. In every channel, the
closest correlogram peak relative to the true pitch period is
identified. If this peak is off from the true pitch period by more
than 7 lag steps, we label this channel “noisy.” Otherwise, the
channel is labeled “clean.” Parameter is selected so that
more than half of the noisy channels in low-frequency channels
are rejected. Parameters and are chosen so that majority
of the noisy channels are rejected while minimizing the chance
that a clean channel is rejected. Finally, parameteris chosen
so that, for almost all selected channels in high-frequency
channels, the multiple peaks are removed.

Parameters , , , and are employed for bottom-up esti-
mation of observation probability. Parameteris used to specify
the criterion for identifying the channels that belong to the dom-
inant pitch period. It is chosen so that, in clean speech samples,
almost all selected channels belong to the true pitch periods. Pa-
rameters and are employed to tune the relative strengths of
the hypotheses of zero, one or two pitch periods. The smoothing

factor can be understood as tuning the relative influence of
bottom-up and top-down processes., , and are optimized
with respect to the combined total detection error for the training
mixtures. We find that can be chosen in a considerable range
without influencing the outcome.

We note that in the preliminary version of this model [42],
a different set of parameters has been employed and good re-
sults were obtained. In fact, there is a considerable range of ap-
propriate values for these parameters, and overall system per-
formance is not very sensitive to the specific parameter values
used.

E. Efficient Implementaion

The computational expense of the proposed algorithm can
be improved significantly by employing several efficient im-
plementations. First, a logarithm can be taken on both sides
of (6)–(11) and in the Viterbi algorithm [16]. Instead of com-
puting multiplications and roots, which are time-consuming,
only summations and divisions need to be calculated. Moreover,
the number of pitch states is quite large and checking all of them
using the Viterbi algorithm requires an extensive use of compu-
tational resources. Several techniques have been proposed in the
literature to alleviate the computational load while achieving al-
most identical results [16].

1) Pruning has been used to reduce the number of pitch
states to be searched for finding the current candidates
of a pitch state sequence. Since pitch tracks are contin-
uous, the differences of pitch periods in consecutive time
frames in a sequence can be restricted to a reasonable
range. Therefore, only pitch periods within the range need
to be searched.

2) Beam search has been employed to reduce the total
number of pitch state sequences considered in evalua-
tion. In every time frame, only a limited number of the
most probable pitch state sequences are maintained and
considered in the next frame.

3) The highest computational load comes from searching the
pitch states corresponding to two pitch periods. In order to
reduce the search effort, we only check the pitch periods
in the neighborhood of the local peaks of bottom-up ob-
servation probabilities.

By using the above efficient implementation techniques, we
find that the computational load of our algorithm is drastically
reduced. Meanwhile, our experiments show that the results from
the original formulation and that derived for efficient implemen-
tation have negligible differences.

V. RESULTS AND COMPARISONS

A corpus of 100 mixtures of speech and interference [5],
commonly used for CASA research [2], [8], [39], has been used
for system evaluation and model parameter estimation. The
mixtures are obtained by mixing ten voiced utterances with ten
interference signals representing a variety of acoustic sounds.
As shown in Table III, the interferences are further classified
into three categories: 1) those with no pitch, 2) those with some
pitch qualities, and 3) other speech. Five speech utterances
and their mixtures, which represent approximately half of the
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TABLE III
CATEGORIZATION OF INTERFERENCESIGNALS

corpus, have been employed for model parameter estimation.
The other half of the corpus is used for performance evaluation.

To evaluate our algorithm (or any algorithm for that matter)
requires a reference pitch contour corresponding to true pitch.
However, such a reference is probably impossible to obtain [14],
even with instrument support [18]. Therefore, our method of ob-
taining reference pitch contours starts from pitch tracks com-
puted from clean speech and is followed by a manual correc-
tion as mentioned before. Reference pitch contours obtained this
way are far more accurate than those without manual correction,
or those obtained from noisy speech.

To measure progress, it is important to provide a quantitative
assessment of PDA performance. The guidelines for the perfor-
mance evaluation of PDAs with single pitch track were estab-
lished by Rabineret al. [31]. However, there are no generally
accepted guidelines for multiple pitch periods that are simulta-
neously present. Extending the classical guidelines, we measure
pitch determination errors separately for the three interference
categories documented in Table III because of their distinct pitch
properties. We denote as the error rate of time frames
where pitch points are misclassified aspitch points. The
pitch frequency deviation is calculated by

(13)

where is the closest pitch frequency estimated by
the PDA to be evaluated and is the reference pitch frequency.
Note that may yield more than one pitch point for
a particular time frame. The gross detection error rate
is defined as the percentage of time frames where
and the fine detection error is defined as the average fre-
quency deviation from the reference pitch contour for those time
frames without gross detection errors.

For speech signals mixed with Category 1 interferences, a
total gross error is indicated by

(14)

Since the main interest in many contexts is to detect the pitch
contours of speech utterances, for Category 2 mixtures only

is measured and the total gross error is indicated
by the sum of and . Category 3 interferences are
also speech utterances and therefore all possible decision errors
should be considered. For time frames with a single reference
pitch, gross and fine determination errors are defined as earlier.
For time frames with two reference pitches, a gross error occurs
if either one exceeds the 20% limit, and a fine error is the sum of
the two for two reference pitch periods. For many applications,
the accuracy with which the dominating pitch is determined is of
primary interest. Therefore, the total gross error and the
fine error for dominating pitch periods are also measured.

Fig. 7. (a) Time-frequency energy plot for a mixture of two simultaneous
utterances of a male and a female speaker. The utterances are “Why are you all
weary” and “Don’t ask me to carry an oily rag like that.” The brightness in a
time-frequency cell indicates the energy of the corresponding gammatone filter
output in the corresponding time frame. For better display, energy is plotted as
the square of the logarithm. (b) Result of tracking the mixture. The solid lines
indicate the true pitch tracks. The “�” and “o” tracks represent the pitch tracks
estimated by our algorithm.

Our results show that the proposed algorithm reliably tracks
pitch points in various situations, such as one speaker, speech
mixed with other acoustic sources, and two speakers. For in-
stance, Fig. 7(a) shows the time-frequency energy plot for a
mixture of two simultaneous utterances (a male speaker and a
female speaker with signal-to-signal energy ratio dB) and
Fig. 7(b) shows the result of tracking the mixture. As another ex-
ample, Fig. 8(a) shows the time-frequency energy plot for a mix-
ture of a male utterance and white noise (signal-to-noise ratio

dB). Note here that the white noise is very strong. Fig. 8(b)
shows the result of tracking the signal. In both cases, our algo-
rithm robustly tracks either one or two pitches. Systemic per-
formance of our algorithm for the three interference categories
is given in Tables IV–VI respectively. As can be seen, our algo-
rithm achieves total gross errors of 7.17% and 3.50% for Cat-
egory 1 and 2 mixtures, respectively. For Category 3 interfer-
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Fig. 8. (a) Time-frequency energy plot for a mixture of a male utterance
and white noise. The utterance is “Why are you wary.” The brightness in a
time-frequency cell indicates the energy of the corresponding gammatone
filter output in the corresponding time frame. For better display, energy is
plotted as the square of logarithm. (b) Result of tracking the mixture. The solid
lines indicate the true pitch tracks. The “�” tracks represent the pitch tracks
estimated by our algorithm.

ences, a total gross error rate of 0.93% for the dominating pitch
is obtained.

To put the above performance in perspective, we compare
with two recent multpitch detection algorithms proposed by
Tolonen and Karjalainen [37] and Gu and van Bokhoven
[11]. In the Tolonen and Karjalainen model, the signal is first
passed through a pre-whitening filter and then divided into
two channels, below and above 1000 Hz. Generalized autocor-
relations are computed in the low-frequency channel directly
and those of the envelope are computed in the high-frequency
channel. Then, enhanced summary autocorrelation functions
are generated and the decisions on the number of pitch points as
well as their pitch periods are based on the most prominent and
the second most prominent peaks of such functions. We choose
this study for comparison because it is a recent time-frequency
domain algorithm based on a similar correlogram representa-
tion. We refer to this PDA as the TK PDA.

TABLE IV
ERRORRATES (IN PERCENTAGE) FOR CATEGORY 1 INTERFERENCE

TABLE V
ERRORRATES (IN PERCENTAGE) FOR CATEGORY 2 INTERFERENCE

Gu and van Bokhoven’s multpitch PDA is chosen for com-
parison because it is an HMM-based algorithm, and an HMM
is also used in our system. The algorithm can be separated into
two parts. The first part is a pseudo-perceptual estimator [10]
that provides coarse pitch candidates by analyzing the envelopes
and carrier frequencies from the responses of a multichannel
front-end. Such pitch candidates are then fed into an HMM-
based pitch contour estimator [10] for forming continuous pitch
tracks. Two HMMs are trained for female and male speech ut-
terances separately and are capable of tracking a single pitch
track without voiced/unvoiced decisions at a time. In order to
have voicing decisions, we add one more state representing un-
voiced time frames to their original three-state HMM. Knowing
the number and types of the speech utterances presented in a
mixture in advance (e.g., a mixture of a male and a female ut-
terance) we can find the two pitch tracks by applying the male
and female HMM separately. For a mixture of two male utter-
ances, after the first male pitch track is obtained, the pitch track
is subtracted from the pitch candidates and the second track is
identified by applying the male HMM again. We refer to this
PDA as the GB PDA.

Our experiments show that sometimes the GB PDA provides
poor results, especially for speech mixed with a significant
amount of white noise. Part of the problem is caused by
its bottom-up pitch estimator, which is not as good as ours.
To directly compare our HMM-based pitch track estimator
with their HMM method, we substitute our bottom-up pitch
estimator for theirs but still use their HMM model for forming
continuous pitch tracks. The revised algorithm is referred as
the R-GB PDA.

Fig. 9 shows the multipitch tracking results using the TK, the
GB, and the R-GB PDAs, respectively, from the same mixture
of Fig. 7. As can been seen, our algorithm performs significantly
better than all those algorithms. Fig. 10(a)–(c) give the results
of extracting pitch tracks from the same mixture of Fig. 8 using
the TK, the GB, and the R-GB PDAs, respectively. As can be
seen, our algorithm has much less detection error.

Quantitative comparisons are shown in Tables IV–VI. For
Category 1 interferences, our algorithm has a total gross error of
7.17% while others have errors varying from 14.50% to 50.10%.
The total gross error for Category 2 mixtures is 3.50% for ours,
and for others it ranges from 10.04% to 24.21%. Our algorithm
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TABLE VI
ERRORRATES (IN PERCENTAGE) FOR CATEGORY 3 INTERFERENCE

yields the total gross error rate of 0.93% for the dominating
pitch. The corresponding error rates for the others range from
3.63% to 7.70%.

Note in Table VI that the error rate of the R-GB PDA is
considerably lower than ours. This, however, does not imply the
R-GB PDA outperforms our algorithm. As shown in Fig. 9(c),
the R-GB PDA tends to mistake harmonics of the first pitch pe-
riod as the second pitch period. As a result, the overall perfor-
mance is much worse.

Finally, we compare our algorithm with a single-pitch deter-
mination algorithm for noisy speech proposed by Rouatet al.
[32].1 Fig. 10(d) shows the result of tracking the same mixture
as in Fig. 8. As can be seen, our algorithm yields less error. We
do not compare with this PDA quantitatively because it is de-
signed as a single-pitch tracker and cannot be applied to Cate-
gory 2 and 3 interferences.

In summary, these results show that our algorithm outper-
forms the other algorithms significantly in almost all the error
measures.

VI. DISCUSSION ANDCONCLUSION

A common problem in PDAs is harmonic and subharmonic
errors, in which the harmonics or subharmonics of a pitch are
detected instead of the real pitch itself. Several techniques have
been proposed to alleviate this problem. For example, a number
of algorithms check submultiples of the time lag for the highest
peak of the summary autocorrelations to ensure the detection of
the real pitch period (for example, see [19]). Shimamura and
Kobayashi [34] proposed a weighted autocorrelation method
discounting the periodicity score of the multiples of a poten-
tial pitch period. The system by Rouatet al. [32] checks the
submultiples of the two largest peaks in normalized summary
autocorrelations and further utilizes the continuity constraint of
pitch tracks to reduce these errors. Liu and Lin [24] compen-
sate two pitch measures to reduce the scores of harmonic and
subharmonic pitch periods. Medanet al. [25] disqualify such
candidates by checking the normalized autocorrelation using a
larger time window and pick the pitch candidate that exceeds a
certain threshold and has the smallest pitch period.

In our time-frequency domain PDA, several measures con-
tribute to alleviate these errors. First, the probabilities of sub-
harmonic pitch periods are significantly reduced by selecting
only the first correlogram peaks calculated from envelopes in
high-frequency channels. Second, noisy channels tend to have
random peak positions, which can reinforce harmonics or sub-
harmonics of the real pitch. By eliminating these channels using

1Results provided by J. Rouat.

Fig. 9. Results of tracking the same signal as in Fig. 7 using (a) the TK PDA,
(b) the GB PDA, and (c) the R-GB PDA. The solid lines indicate the true pitch
tracks. The “�” and “�” tracks represent the estimated pitch tracks.
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Fig. 10. Result of tracking the same signal as in Fig. 8 using (a) the TK PDA, (b) the GB PDA, (c) the R-GB PDA, and (d) the PDA proposed by Rouatet al.[32].
The solid lines indicate the true pitch tracks. The “�” and “�” tracks represent the estimated pitch tracks. In subplot (d), time frames with negative pitch period
estimates indicate the decision of voiced with unknown period.

channel selection, harmonic and subharmonic errors are greatly
reduced. Third, the HMM for forming continuous pitch tracks
contributes to decrease these errors.

The HMM in our model plays a similar role (utilizing pitch
track continuity) as post-processing in many PDAs. Some
algorithms, such as [32], employ a number of post-processing
rules. These ad-hoc rules introduce new free parameters.
Although there are parameters in our HMM, they are learned
from training samples. Also, in many algorithms (for example,
see [38]), pitch tracking only considers several candidates
proposed by the bottom-up algorithm and composed of peaks
in bottom-up pitch scores. Our tracking mechanism considers
all possible pitch hypotheses and therefore performs in a wider
range of conditions.

There are several major differences in forming continuous
pitch tracks between our HMM model and that of Gu and van
Bokhoven [11]. Their approach is essentially for single pitch
tracking while ours is for multipitch tracking. Theirs uses two
different HMMs for modeling male and female speech while
ours uses the same model. Their model needs to know the
number and types of speech utterances in advance, and has
difficulty tracking a mixture of two utterances of the same type
(e.g., two male utterances). Our model does not have these
difficulties.

Many models estimate multiple pitch periods by directly ex-
tending single-pitch detection methods, and they are called the
one-dimensional paradigm. A common one-dimensional repre-
sentation is a summary autocorrelation. Multiple pitch periods
can be extracted by identifying the largest peak, the second
largest peak, and so on. However, this approach is not very
effective in a noisy environment, because harmonic structures
often interact with each other. Cheveigné and Kawahara [7]
have pointed out that a multistep “estimate-cancel-estimate” ap-
proach is more effective. Their pitch perception model cancels
the first harmonic structure using an initial estimate of the pitch,
and the second pitch is estimated from the comb-filtered residue.
Also, Meddis and Hewitt’s [26] model of concurrent vowel sep-
aration uses a similar paradigm. A multidimensional paradigm
is used in our model, where the scores of single and combined
pitch periods are explicitly given. Interactions among the har-
monic structures are formulated explicitly, and our results show
that this multidimensional paradigm is effective for dealing with
noise intrusions and mutual interference among multiple har-
monic structures.

As stated previously, approximately half of the mixture
database is employed for estimating (learning) relative time
lag distributions in a channel (see Fig. 4) and pitch dynamics
(see Fig. 6), while the other half is utilized for evaluation. It
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is worth emphasizing that such statistical estimations reflect
general speech characteristics, not specific to either speaker or
utterance. Hence, estimated distributions and parameters are
expected to generalize broadly, and this is confirmed by our
results. We have also tested our system on different kinds of
utterance and different speakers, including digit strings from
TIDigit [22], after the system is trained, and we observe equally
good performance.

The proposed model can be extended to track more than
two pitch periods. To do so, the union space described in
Section IV-B would be augmented to include more than three
pitch spaces. The conditional probability for the hypotheses of
more than two pitch periods may be formulated using the same
principles as for formulating up to two pitch periods.

There are two aspects of our proposed algorithm: multipitch
tracking and robustness. Rather than considering these two as-
pects separately, we treat them as a single problem. As men-
tioned in the Introduction, the ability to track multiple pitch pe-
riods increases the robustness of an algorithm by allowing it to
deal with other voiced interferences. Conversely, the ability to
operate robustly improves the reliability of detecting the pitch
periods of weaker sources. More specifically, the channel/peak
selection method mainly contributes to the robustness of the
system. The cross-channel integration method and the HMM
for pitch tracking are formulated for detecting multiple pitch pe-
riods, although considerations are also given to the robustness
of our system.

In summary, we have shown that our algorithm performs re-
liably for tracking single and double pitch tracks in a noisy
acoustic environment. A combination of several novel ideas en-
ables the algorithm to perform well. First, an improved channel
and peak selection method effectively removes corrupted chan-
nels and invalid peaks. Second, a statistical integration method
utilizes the periodicity information across different channels. Fi-
nally, an HMM realizes the pitch continuity constraint.
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