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Abstract—An effective multipitch tracking algorithm for noisy Many PDAs have been specifically designed for detecting
speech is critical for acoustic signal processing. However, the g single pitch track with voiced/unvoiced decisions in noisy
performance of existing algorithms is not satisfactory. In this speech. The majority of these algorithms were tested on clean

paper, we present a robust algorithm for multipitch tracking of . . . . .
noisy speech. Our approach integrates an improved channel and speech and speech mixed with different levels of white noise (for

peak selection method, a new method for extracting periodicity €Xample, see [1], [3], [19], [2_0]: [24], [25], and [34])..Some sys-
information across different channels, and a hidden Markov tems also have been tested in other speech and noise conditions.
model (HMM) for forming continuous pitch tracks. The resulting  For example, Wang and Seneff [40] showed that their algorithm
algorithm can reliably track single and double pitch tracks in s particularly robust for telephone speech without a voiced/un-
a noisy environment. We suggest a pitch error measure for the \i00 decision. The system by Rowtal. [32] was tested on
multipitch situation. The proposed algorithm is evaluated on lenh h. vehicl h d h mixed with whi
a database of speech utterances mixed with various types of € ep one Speec Ve IcespeeC. 'a.m Spgec mixed with white
interference. Quantitative comparisons show that our algorithm noise. Takaget al. [35] tested their single pitch track PDA on
significantly outperforms existing ones. speech mixed with pink noise, music, and a male voice. In their
Index Terms—Channel selection, correlogram, hidden Markov study, multiple pitches in the mixtures are ignored and a single

model (HMM), multipitch tracking, noisy speech, pitch detection.  Pitch decision is given.
An ideal PDA should perform robustly in a variety of acoustic
environments. However, the restriction of a single pitch track
. INTRODUCTION puts limitations on the background noise in which PDAs are
ETERMINATION of pitch is a fundamental problem in@ble to perform. For example, if the background contains har-
acoustic signal processing. A reliable algorithm for multimonic structures such as background music or voiced speech,
pitch tracking is critical for many applications, including commore than one pitch is present in some time frames, and a mul-
putational auditory scene analysis (CASA), prosody analysfitch tracker that can yield multiple pitches at a given frame is
speech enhancement, speech recognition, and speaker idefigifiuired.
cation (for example, see [9], [27], [39], and [41]). However, due The tracking of multiple pitches has also been investigated.
to the difficulty of dealing with noise intrusions and mutual inFor example, Gu and van Bokhoven [11] and Chaetaal. [4]
terference among multiple harmonic structures, the designf¥Pposed algorithms for detecting up to two pitch periods for
such an algorithm has proven to be very challenging and m&§channel speech separation. A recent model by Tolonen and
existing pitch determination algorithms (PDAs) are limited téarjalainen [37] was tested on musical chords and a mixture
clean speech or a single pitch track in modest noise. of two vowels. Kwonet al. [21] proposed a system to segre-
Numerous PDAs have been proposed [14] and are gen@ate mixtures of two single pitch signals. Pernandez-Cid and
ally classified into three categories: time-domain, frequenc§asajus-Quirds [30] presented an algorithm to deal with poly-
domain, and time-frequency domain algorithms. Time-domaRhonic musical signals. However, these multipitch trackers were
PDAs directly examine the temporal structure of a signal wavéesigned for and tested on clean music signals or mixtures of
form. Typically, peak and valley positions, zero-crossings, autdingle-pitch signals with little or no background noise. Their
correlations and residues of comb-filtered signals (for exampRerformance on tracking speech mixed with broadband inter-
see [6]) are analyzed for detecting the pitch period. Frequendé§rence (e.g., white noise) is not clear.
domain PDAs distinguish the fundamental frequency by uti- In this paper, we propose a robust algorithm for multipitch
lizing the harmonic structure in the short-term spectrum. Tim&acking of noisy speech. By using a statistical approach, the
frequency domain algorithms perform time-domain analysis @tgorithm can maintain multiple hypotheses with different
band-filtered signals obtained via a multichannel front-end. Probabilities, making the model more robust in the presence of
acoustic noise. Moreover, the modeling process incorporates
the statistics extracted from a corpus of natural sound sources.
Manuscript rt_aceived August 16, 2002; revised October 1, 2002. This wom'na"y' a hidden Markov model (HMM) is incorporated for
Uinder Grant F4620-01.1-0027. The associate ecitor coordinaiing the revienigteoting continuous pitch tracks. A database consisting of
this manuscript and approving it for publication was Dr. Shrikanth NarayanaRlixtures of speech and a variety of interfering sounds (white
M. Wu is with t_h_e Dep_artment of Computer and Ir_]formation Science andoise, “cocktail party” noise, rock music, etc_) is used to
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Fig. 1. Schematic diagram of the proposed model. A mixture of speech and interference is processed in four main stages. In the first stage, ¢de normaliz
correlogram is obtained within each channel after the mixture is decomposed into a multichannel representation by cochlear filtering. Ghealaetipeas
performed in the second stage. In the third stage, the periodicity information is integrated across different channels using a statisticahatigttaodHMM is

utilized to form continuous pitch tracks.

front-end. Detailed explanations of our pitch-tracking methqguitch. The relationship between true pitch periods and time
are given in Section IV. Section V provides evaluation experiags of selected peaks is obtained in Section IV-A and the
ments and shows the results. Finally, we discuss related issimsgration method is described in Section IV-B.
and conclude the article in Section VI. The last stage of the algorithm is to form continuous pitch
tracks using an HMM. In several previous studies, HMMs have
been employed to model pitch track continuity. Weintraub [41]
[I. MoDEL OVERVIEW utilized a Markov model to determine whether zero, one or two
, ) , ) ) ) pitches were present. Gu and van Bokhoven [11] used an HMM
In this section, we first give an overview of the algorithm ang, group pitch candidates proposed by a bottom-up PDA and

stages of processing. As shown in Fig. 1, the proposed al§grm continuous pitch tracks. Tokues al. [36] modeled pitch

rithm consists of four stages. In the first stage, the front'e”ﬁ'atterns using an HMM based on a multispace probability dis-

the signals are filtered into channels by an auditory periphetghtion. In these studies, pitch is treated as an observation and
model and the envelopes in high-frequency channels are g, (ransition and observation probabilities of the HMM must
tracted. Then, normalized correlograms [2], [39] are comput§gl {rained. In our formulation, pitch is explicitly modeled as
Section 1l gives the details of this stage. hidden states and hence only transition probabilities need to be
Channel and peak selection comprises the second stagesdBcified by extracting pitch statistics from natural speech. Fi-

noisy speech, some channels are significantly corrupted By optimal pitch tracks are obtained by using the Viterbi al-
noise. By selecting the less corrupted channels, the robust hm. This stage is described in Section IV-C.

of the system is improved. Rouet al. [32] suggested this idea,
and implemented on mid- and high-frequency channels with
center frequencies greater than 1270 Hz (see also [15] in the Il. M ULTICHANNEL FRONT-END
context of speech recognition). We extend the channel selection
idea to low-frequency channels and propose an improvedThe inputsignalis sampled at a rate of 16 kHz and then passed
method that applies to all channels. Furthermore, we empltyough a bank of fourth-order gammatone filters [29], which is
the idea for peak selection as well. Generally speaking, peakstandard model for cochlear filtering. The bandwidth of each
in normalized correlograms indicate periodicity of the signal§lter is set according to its equivalent rectangular bandwidth
However, some peaks give misleading information and sho(ldRB) and we use a bank of 128 gammatone filters with center
be removed. The detail of this stage is given in Section Ill.  frequencies equally distributed on the ERB scale between 80 Hz
The third stage integrates periodicity information acrossnd 5 kHz [5], [39]. After the filtering, the signals are re-aligned
all channels. Most time-frequency domain PDAs stem fromccording to the delay of each filter.
Licklider's duplex model for pitch perception [23], which The rest of the front-end is similar to that described by Rouat
extracts periodicity in two steps. First, the contribution of eactt al.[32]. The channels are classified into two categories. Chan-
frequency channel to a pitch hypothesis is calculated. Thergls with center frequencies lower than 800 Hz (channels 1-55)
the contributions from all channels are combined into a singdge called low-frequency channels. Others are called high-fre-
score. In the multiband autocorrelation method, the convegiency channels (channels 56—-128). The Teager energy oper-
tional approach for integrating the periodicity information irator [16] and a low-pass filter are used to extract the envelopes
a time frame is to summate the (normalized) autocorrelatioimshigh-frequency channels. The Teager energy operator is de-
across all channels. Though simple, the periodicity informatidimed asE,, = s2 — s,.1s,—1 for a digital signals,,. Then,
contained in each channel is under-utilized in the summatke signals are low-pass filtered at 800 Hz using the third-order
By studying the statistical relationship between the true pit@utterworth filter.
periods and the time lags of selected peaks obtained in thén order to remove the distortion due to very low frequen-
previous stage, we first formulate the probability of a channeles, the outputs of all channels are further high-pass filtered to
supporting a pitch hypothesis and then employ a statisti®& Hz (FIR, window length of 16 ms). Then, at a given time step
integration method for producing the conditional probability, which indicates the center step of a 16 ms long time frame,
of observing the signal in a time frame given the hypothesizéide normalized correlogram(c, j, 7) for channek with a time
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lag T is computed by running the following normalized autocor- 1

relation in every 10-ms interval: 05}
. o-
Ale,jrm) = 05}
N/2
> rlejt+n)r(e,j+n+71) o 50 100 150 200
=N @) (@)
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wherer is the filter output. HereN' = 256 corresponds to ¢!

the 16 ms window size (one frame) and the normalized corre

ograms are computed fer= 0, . .., 200. ) 50 100 150 200
In low-frequency channels, the normalized correlograms al (b)

computed directly from filter outputs, while in high-frequency 1

channels, they are computed from envelopes. Due to their di 0.5}

tinct properties, separate methods are employed for channele |

peak selection in the two categories of frequency channels.

0.5

A. Low-Frequency Channels o 50 100 150 200

Fig. 2(a) and (b) shows the normalized correlograms in th
low-frequency range for a clean and noisy channel, respective
As can be seen, normalized correlograms are range limite %5}
(-1 < A(e,j,7) < 1) and setto 1 at the zero time lag. A value of
of 1 at a nonzero time lag implies a perfect repetition of thi_gs|
signal with a certain scale factor. For a quasiperiodic sign: _, )

with periodT', the greater the normalized correlogram is at time¢ 0 50 100 150 200
lag T', the stronger the periodicity of the signal. Therefore, th Lag (delay steps)
maximum value of all peaks at nonzero lags indicates the noi (d)

level of this channel. If the maximum value is greater than a

thresholdd; = 0.945, the channel is considered clean and thu€g. 2. Examples of normalized correlograms: (a) normalized correlogram
selected. Only the time lags of peaks in selected channels ((Jj{s. clean Iow—frequency channel, (b) that of a noisy Iow-frgque_ncy channel,
. . L C) that of a clean high-frequency channel, and (d) that of a noisy high-frequency
included in the set of selected peaks, which is denot@l.as  channel. Solid lines represent the correlogram using the original time window

of 16 ms and dashed lines represent the correlogram using a longer time window
. of 30 ms. Dotted lines indicate the maximum height of nonzero peaks. All
B. ngh'FrequenCy Channels correlograms are computed from the mixture of two simultaneous utterances

As Suggested by Rouat al [32] if a channel is not se- of amale and a female speaker. The utterances are “Why are you all weary” and
. e . “Don’t ask me to carry an oily rag like that.”
verely corrupted by noise, the original normalized correlogram

computed using a window size of 16 ms and the normalized
correlogramA’(c, j, 7) using a longer window size of 30 mspeaks attime lag  and its multiples in a high-frequency channel
should have similar shapes. This is illustrated in Fig. 2(c) astiggests a fundamental period’6f In the second method of
(d) which show the normalized correlograms of a clean ameak selection, if the value of the peak at the smallest nonzero
a noisy channel in the high-frequency range respectively. Rgne lag is greater thaéy = 0.6, all of its multiple peaks are
every local peak ofd(c, j, 7), we search for the closest localremoved. The second method is critical for reducing the errors
peak in A’(c, j, 7). If the difference between the two corre-caused by multiple and submultiple pitch peaks in autocorrela-
sponding time lags is greater thén= 2 lag steps, the channeltion functions.
is removed. The selected peaks in all high-frequency channels are added
Two methods are employed to select peaks in a selectedd.
channel. The first method is motivated by the observation that,To demonstrate the effects of channel selection, Fig. 3(a)
for a peak suggesting true periodicity in the signal, a peak thetows the summary normalized correlograms of a speech utter-
is around the double of the time lag of the first one should l@ce mixed with white noise from all channels, and Fig. 3(b)
found. This second peak is thus checked and if it is outsiffl®m only selected channels. As can be seen, selected channels
A3 = +5 lag steps around the predicted double time lag of trege much less noisy and their summary correlogram reveals
first peak, the first peak is removed. the most prominent peak near the true pitch period whereas
It is well known that a high-frequency channel responds the summary correlogram of all channels fails to indicate the
multiple harmonics, and the nature of beats and combinatiomale pitch period. To further demonstrate the effects of peak
tones dictates that the response envelope fluctuates at the &election, Fig. 3(c) shows the summary normalized correlogram
damental frequency [13]. Therefore, the occurrence of stronfa speech utterance from selected channels, and Fig. 3(d) that
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(c) . . : :
150 the normalized correlogram in a particular channel supporting
100 a pitch period hypothesis.
More specifically, consider channel We denote the true
50 pitch period agl, and the relative time lagis defined as
o.
, . . b=1-d (2)
% 50 100 150 200
Lag (delay steps) wherel denotes the time lag of the closest peak.

(d) The statistics of the relative time lagare extracted from
a corpus of five clean utterances of male and female speech,
][:ig- 3. (@ Shummary nom_ﬂaliéed ﬁor[]elogram OfT ﬁ” channels in a Vt/iﬂﬂe framghich is part of the sound mixture database collected by Cooke
rom a speech utterance mixed with white noise. e utterance is “ y are H H H H _
all weary.” (b) Summary normalized correlogram of only selected channelsyﬁ]' A true pitch track is estimated by_n_‘mmng a correlogram
the same time frame as shown in (a). (c) Summary normalized correlogr@@Sed PDA on clean speech before mixing, followed by manual
of selected channels in a time frame from the speech utterance “Don't as§rrection. The speech signa|s are passed through the front-end
me to carry an oily rag like that.” (d) Summary normalized correlogram ; : : :
selected channels where the removed peaks are excluded in the same(%rrﬁg the _ch_annel/peak selection method described in Section Ill.
frame as shown in (c). To exclude a removed peak means that the segmenk € Statistics are collected for every channel separately from the
correlogram between the two adjacent minima surrounding the peak is mgilected channels across all voiced frames.
considered. Dashed lines represent the delay corresponding to the true pitc : : :
periods. Dotted lines indicate the peak heights at pitch periods. IAS an example, the histogram ,Of relatlve.tlmg lags for channel
22 (center frequency: 264 Hz) is shown in Fig. 4. As can be
seen, the distribution is sharply centered at zero, and can be
from selected channels where removed peaks are excludeddeled by a mixture of a Laplacian and a uniform distribution.
To exclude a removed peak means that the segment of thee Laplacian represents the majority of channels “supporting”
correlogram between the two adjacent minima surrounding tf: pitch period and the uniform distribution models the “back-
peak is not considered. As can be seen, without peak selectigund noise” channels, whose peaks distribute uniformly in the
the height of the peak that is around double the time lag of thackground. The distribution in channeis defined as
true pitch period is comparable or even slightly greater than
the height of the peak that is around the true pitch period. With pe(0) = (1 = q)L(6; Xe) + qU (65 7) 3)
where0 < ¢ < 1is a partition coefficient of the mixture model.

peak selection, the height of the peak at the double of the true
pitch period has been significantly reduced. . 2R )
The Laplacian distribution with parametkr has the formula

L(6; ) = 2;0 exp <—%> )
The uniform distributionU (6;7.) with rangen. is fixed in a

The alignment of peaks in the normalized correlogranthannel according to the possible range of the peak. In a low-fre-
across different channels signals a pitch period. By studyiggency channel, multiple peaks may be selected and the av-
the difference between the true pitch period and the time lagage distance between the neighboring peaks is approximately
from the closest selected peaks, we can derive the evidencehaf wavelength of the center frequency. As a result, we set the

IV. PITCH TRACKING

A. Pitch Period and Time Lags of Selected Peaks
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TABLE | where€q, Q;, Q5 are zero-, one-, and two-dimensional spaces
FOUR SETS OFESTIMATED MODEL PARAMETERS representing zero, one, and two pitches, respectively. A state
Model parameters in the upion space is represented as a pait (y,Y), where
a, a, q y € RY andY € {0,1,2} is the space index. This section
One pitch (LF) 121 0011 0.016 derives the conditional probability(®|x) of observing the set
One pitch (HF)  2.60 —-0.008 0.063 of selected peaks given a pitch state
Two pitches (LF) 1.56 -0.018 0.016 The hypothesis of a single pitch peridds considered first.
Two pitches (HF) 3.58 -0.016 0.108 For a selected channel, the closest selected peak relative to the

period d is identified and the relative time lag is denoted as

. : N : 6(®.,d), whered, is the set of selected peaks in channel
length of the range in the uniform distribution to this wave- The channel conditional probability is derived as

length, that isy). = (—Fs/(2F.), Fs/(2F.)), whereF; is the .
sampling frequency and, is the center frequency of channel p(®]1) = {pc(é(% d)), if chanpelc selected ©6)
c. In a high-frequency channel, however, ideally only one peak " ° q1(c)U(0;7.), otherwise

is selected. Thereforé](6;7.) is the uniform distribution over wherez; = (d,1) € Q; andgy (c) is the paramete of channel
all possible pitch periods. In other words, it is between 2 ms {0actimated from one-pitch frames as shown in Table I. Note

12.5ms, or 32 to 200 lag steps, in our system. _ that, if a channel has not been selected, the probability of back-
The Laplacian distribution parametgr. and the partition ground noise is assigned.

parameter can be estimated independently for each channél.thg channel conditional probability can be easily combined

However, some channels have too few data points to hgyg, the frame conditional probability if the mutual indepen-
accurate estimations. We observe thatestimated this way gence of the responses of all channels is assumed. However,
decreases slowly as the channel center frequency increasegiresponses are usually correlated due to the wideband na-
order to have more robust and smooth estimations acrosstgllle of speech signals and the independence assumption pro-
channels, we assumgto be constant across channels and &,ces very “spiky” distributions. This is known as the proba-
linear relationship between the frequency channel index agflty, overshoot phenomenon and can be partially remedied by
the Laplacian distribution parameter smoothing the combined probability estimates by taking a root
greater than 1 [12]. Hence, we propose the following formula
with a smoothing operation to combine the information across

A maximum likelihood method is utilized to estimate thdhe channels
three parameters,, a1, andq. Due to the different properties
for low- and high-frequency channels, the parameters were es-
timated on each set of channels separately and the resulting pa-
rameters are shown in the upper half of Table |, where LF ar\}v%ereC — 128 is the number of all channels, the parameter

HF indicate low- and high-frequency channels respectively. Trge: 6 is the smoothing factor (see Section IV-D for more

estimated dlstr_lbu_tlon_ of c_hannel .22 is shown in Fig. 4. As Cacﬂscussion), and is a normalization constant for probability
be seen, the distribution fits the histogram very well. ﬂefinition

Similar statistics are extracted for time frames with two pitc Then, we consider the hypothesis of two pitch peridgsnd

periods. For a selected channel with signals coming from tvw corresponding to two different harmonic sources dsator-

different harmonic sources, we assume that the energy from gfié
. . . : respond to the stronger source. The channels are labeled as the
of the sources is dominant. This assumption holds because 9ﬁ1-

erwise, the channel is likely to be noisy and rejected by the SC% source if the relative time lags are small. More specifically,

lection method in Section Ill. In this case, we define the relativ annek: belongs to thel, source 'f|.5(q)c’ d1)| < f3Ac, where
£ = 5.0 and\. denotes the Laplacian parameter for charnel

time lags as relative to the pitch period of the dominant sour . S !
The statistics are extracted from the mixtures of the five spee% lculated from (4). The combined probability is defined as

Ae = ao + aqc. 4)

()

utterances used earlier. For a particular time frame and channel, c
the dominant source is decided by comparing the energy of the p2(®,dy,do) = ¢ Hp’g(d)m dy,ds) (8)
two speech utterances before mixing. The probability distribu- c=1

tion of relative time lags with two pitch periods is denoted A here (see (9) at the bottom of the next page) witl) denotes

p(6) and has the same formulation as in (3)-(4). Likewise, tq e parametey of channelc estimated from two-pitch frames
parameters are estimated for low- and high-frequency channg S

: dsh i the | half of Table | shown in Table I.
separately and shown in the lower half of Table |. The conditional probability for the time frame is the larger of

assuming eithed; or d, to be the stronger source

As noted in Tokudaet al. [36], the state space of pitch is p(®|zs) = ko max(py(®, di, d2), p2(®, d2,dr)]  (10)
not a discrete or continuous state space in a conventional seQgeres, = ((d;, d2),2) € Qs anday = 1.7 x 107°.
Rather, it is a union spade consisting of three spaces Finally, we fix the probability of zero pitch

B. Integration of Periodicity Information

Q= QO @] Ql U QQ (5) p((I)|.T}0) = ]CO(O (11)



234 IEEE TRANSACTIONS ON SPEECH AND AUDIO PROCESSING, VOL. 11, NO. 3, MAY 2003

Observed 180 T T T T T
Signal

Q

A

160+ 1

Ql  1al

120} 1

O

100 .

80F

Pitch State
2 O O——0| 3]

Pitch Dynamics

Observation Probability

C

One Time Frame 201

Fig. 5. Schematic diagram of an HMM for forming continuous pitch tracks. ' py

The hidden nodes represent possible pitch states in each time frame. 1 '%0 -20 . -10 0 ,10 20 30

observation nodes represent the set of selected peaks in each frame. - Change hlstogram ofpltch perlods (delay steps)

temporal links in the Markov model represent the probabilistic pitch dynamics.

The link between a hidden node and an observation node is called observafign 6. Histogram and estimated distribution of pitch period changes in

probability. consecutive time frames. The bar graph represents the histogram and the solid
line represents the estimated distribution.

wherez, € Q andag = 2.3 x 10733,

In many time-frequency domain PDAs (e.g., [26]), the scorEhe link between a hidden node and an observation node de-
of a pitch hypothesis is computed by weighting the contribigcribes observation probabilities, which have been formulated
tions of frequency channels according to, say, energy levelsthe previous section (bottom-up pitch estimation).

Our formulation treats every frequency channel equally. Sev-Pitch dynamics have two aspects. The first is the dynamics
eral considerations are in order. First, in principle, the pef a continuous pitch track. The statistics of the changes of the
odicity information extracted from different channels shoulgitch periods in consecutive time frames can be extracted from
be integrated so that greater weights are assigned to chanfi@gstrue pitch contours of five speech utterances extracted ear-
providing more reliable information. For speech mixed with ber and their histogram is shown in Fig. 6. This is once again
moderate level of interference, the channels with higher enerigiglicative of a Laplacian distribution. Thus, we model it by the
tend to indicate more reliable periodicity information. Howevefpllowing Laplacian distribution:
for speech mixed with comparable or higher levels of interfer-

. A 1 |A —m)|
ence, high-energy channels can be significantly corrupted and p(A) = — exp <_7> (12)
give unreliable periodicity information. The channel selection 22 A

method described in Section 11l serves to choose channels thkreA represents pitch period changes, andnd)\ are dis-
are not strongly corrupted by noise. As a result, selected chgfstion parameters. Using a maximum likelihood method, we
nels should provide relatively reliable information on periods,e estimated that = 2.4 lag steps andn = 0.4 lag steps.
icity, and hence we allow selected channels to contribute equally,ositiver indicates that, in natural speech, speech utterances
to pitch estimation. Second, the source with dominant energye 5 tendency for pitch periods to increase: conversely, pitch
tends to mask other weaker sources. Our integration schefg,yencies tend to decrease. This is consistent with the decli-
maintains the sensitivity of pitch detection to weaker sourcesytion phenomenon [28] that in natural speech pitch frequen-
. . , cies slowly drift down where no abrupt change in pitch occurs,
C. Pitch Tracking Using an HMM which has been observed in many languages including English.
We propose to use a hidden Markov model for approximatiriche distribution is also shown in Fig. 6 and it fits the histogram
the generation process of harmonic structure in natural enviramery well.
ments. The model is illustrated in Fig. 5. In each time frame, the The second aspect concerns jump probabilities between the
hidden node indicates the pitch state space, and the observasiate spaces of zero pitch, one pitch, and two pitches. We as-
node the observed signal. The temporal links between neiglume that a single speech utterance is present in the mixtures
boring hidden nodes represent the probabilistic pitch dynamiegproximately half of the time and two speech utterances are

q2(c)U(0;7.), if channelc not selected
Py (P, dv,d2) = { PL(A(D.,d1)), if channelc belongs taiy 9)
HlaJX(pIC(A((DC_/ dl))p::(A((DC d2))) otherwise
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TABLE I factor b can be understood as tuning the relative influence of
TRANSITION PROBABILITIES BETWEEN STATE SPACES OFPITCH bottom-up and top-down processasg, ., andb are optimized
with respect to the combined total detection error for the training

-Q, —-Q -Q

O, 00250 00750 0.0000 mixtures. We find thab can be chosen in a considerable range

Q" 00079 09737 0.0184 without influencing the outcome.

Q‘ 0.0000 00323 0.9677 We note that in the preliminary version of this model [42],
, O ) .

a different set of parameters has been employed and good re-
sults were obtained. In fact, there is a considerable range of ap-

ropriate values for these parameters, and overall system per-
Qumance is not very sensitive to the specific parameter values
used.

present in the remaining time. The jump probabilities are es
mated from the pitch tracks of the same five speech utteran
analyzed above and the values are given in Table II.

Finally, the state spaces of one and two pitch are discretized ___. . .
and the standard Viterbi algorithm [16] is employed for finding Efficient Implementaion
the optimal sequence of states. Note that the sequence can beldie computational expense of the proposed algorithm can

mixture of zero, one, or two pitch states. be improved significantly by employing several efficient im-
plementations. First, a logarithm can be taken on both sides
D. Parameter Determination of (6)—(11) and in the Viterbi algorithm [16]. Instead of com-

puting multiplications and roots, which are time-consuming,

The frequency separating the low- and high-frequency chaghly summations and divisions need to be calculated. Moreover,
nels is chosen according to several criteria. First, the sepafige number of pitch states is quite large and checking all of them
tion frequency should be greater than possible pitch frequgsing the Viterbi algorithm requires an extensive use of compu-
cies of speech, and the bandwidth of any high-frequency chagtional resources. Several techniques have been proposed in the
nels should be large enough to contain at least two harmonicsigfrature to alleviate the computational load while achieving al-
a certain harmonic structure so that amplitude modulation digyst identical results [16].
to beating at the fundamental frequency is possible. Second, aﬁ) Pruning has been used to reduce the number of pitch
long as such envelopes can be extracted, the normalized cor-" gia105 1o be searched for finding the current candidates
relograms calculated from the envelopes give better indication of a pitch state sequence. Since pitch tracks are contin-
of pitch periods than those calculated from the filtered signals uous, the differences of pitch periods in consecutive time
directly. That is because envelope correlograms reveal pitch pe- frames in a sequence can be restricted to a reasonable
riods around the first peaks, whereas direct correlograms have range. Therefore, only pitch periods within the range need
many peaks in the range of possible pitch periods. Therefore, to be searched.
the separation frequency should be as low as possible so Iongz) Beam search has been employed to reduce the total
as 'reliable envelopes can be gxtracted. By considering these cri- number of pitch state sequences considered in evalua-
teria, we choose the separation frequency of 800 Hz. tion. In every time frame, only a limited number of the

In our model, there are a total of eight free paramgter;: four most probable pitch state sequences are maintained and
for channel/peak selection and four for bottom-up estimation of  .J<idered in the next frame.

observation probability _(their values_ are given). The paramgters3) The highest computational load comes from searching the
01, 05, 65, and 0, are introduced in channel/peak selection * joh siates corresponding to two pitch periods. In order to
method and they are chosen by examining the statistics from reduce the search effort, we only check the pitch periods

sample utterances mixed with interferences. The true pitch the neighborhood of the local peaks of bottom-up ob-
tracks are known for these mixtures. In every channel, the servation probabilities.

closest correlogram peak relative to the true pitch period 'SBy using the above efficient implementation technigues, we

identified. If this peak is off from the true pitch period by more. . : ) .
than 7 lag steps, we label this channel “noisy.” Otherwise, tﬁlgd that the computational load of our algorithm is drastically

. P N . réduced. Meanwhile, our experiments show that the results from
channel is labeled “clean.” Paramet@r is selected so that o . . L
. . the original formulation and that derived for efficientimplemen-
more than half of the noisy channels in low-frequency chann

are rejected. Parameteis andd; are chosen so that majority ation have negligible differences.
of the noisy channels are rejected while minimizing the chance
that a clean channel is rejected. Finally, paramgfes chosen
so that, for almost all selected channels in high-frequencyA corpus of 100 mixtures of speech and interference [5],
channels, the multiple peaks are removed. commonly used for CASA research [2], [8], [39], has been used
Parameterg, o, as, andb are employed for bottom-up esti-for system evaluation and model parameter estimation. The
mation of observation probability. Parameftas used to specify mixtures are obtained by mixing ten voiced utterances with ten
the criterion for identifying the channels that belong to the donmterference signals representing a variety of acoustic sounds.
inant pitch period. It is chosen so that, in clean speech samplas,shown in Table I, the interferences are further classified
almost all selected channels belong to the true pitch periods. iPde three categories: 1) those with no pitch, 2) those with some
rametersy, anda, are employed to tune the relative strengths gfitch qualities, and 3) other speech. Five speech utterances
the hypotheses of zero, one or two pitch periods. The smoothisugd their mixtures, which represent approximately half of the

V. RESULTS AND COMPARISONS
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TABLE 1lI 5000
CATEGORIZATION OF INTERFERENCESIGNALS

Interference signals

Category 1 White noise and noise bursts

Category 2 1 kHz tone, “cocktail party” noise, rock music, siren, and
trill telephone

Category 3 Female utterance 1, male utterance and female utterance 2

2741

1457

corpus, have been employed for model parameter estimati
The other half of the corpus is used for performance evaluatic

To evaluate our algorithm (or any algorithm for that matter
requires a reference pitch contour corresponding to true p|t(
However, such a reference is probably impossible to obtain [1: ©
even with instrument support [18]. Therefore, our method of ol

729

Channel center frequency (Hz)

315

taining reference pitch contours starts from pitch tracks cor 0 02 04 06 08 1 1.2 14
puted from clean speech and is followed by a manual corre Time (sec)

tion as mentioned before. Reference pitch contours obtained t (@)

way are far more accurate than those without manual correctis 12F j ' " 4 i j

or those obtained from noisy speech.

To measure progress, it is important to provide a quantitati
assessment of PDA performance. The guidelines for the perf
mance evaluation of PDAs with single pitch track were estal -
lished by Rabineet al. [31]. However, there are no generally &
accepted guidelines for multiple pitch periods that are S|mult°
neously present. Extending the classical guidelines, we meas cu 6r
pitch determination errors separately for the three mterferen-f:
categories documented in Table Il because of their distinct pit'E af
properties. We denot&,,_,, as the error rate of time frames %M

wherez pitch points are misclassified aspitch points. The 2l 1
pitch frequency deviation\ f is calculated by
Af = [PDAoutput — fol % 100% (13) % 02 0.4 06 08 1 12 14
fo Time (sec)
where PD A,.1put IS the closest pitch frequency estimated b, (®)

the PDA to be evaluated arfg is the reference pitch frequency. Fig. 7. (a) Time-frequency energy plot for a mixture of two simultaneous

Note thatPDAoutput may y|e|d more than one pItCh pomt forutterances of a male and a female speaker. The utterances are “Why are you all

a particular time frame. The gross detection error #atg,ss weary” and “Don't ask me to carry an oily rag like that.” The brightness in a

is defined as the percentage of time frames thfe> 20% time-frequency cell indicates the energy of the corresponding gammatone filter
output in the corresponding time frame. For better display, energy is plotted as

and the fine detection errdfr;,. is defined as the average fre, “the square of the logarithm. (b) Result of tracklng the mixture. The solid lines

guency deviation from the reference pitch contour for those tinilicate the true pitch tracks. Thec® and “o” tracks represent the pitch tracks

frames without gross detection errors. estimated by our algorithm.

For speech signals mixed with Category 1 interferences, a

total gross error is indicated by Our results show that the proposed algorithm reliably tracks

Erorar = Fot + Eomss + F10 + Eciross (14) ptih poi_nts in various si_tuations, such as one speaker, spe_ech
mixed with other acoustic sources, and two speakers. For in-

Since the main interest in many contexts is to detect the pitstance, Fig. 7(a) shows the time-frequency energy plot for a
contours of speech utterances, for Category 2 mixtures omhyxture of two simultaneous utterances (a male speaker and a
E,_,o is measured and the total gross erFar,;,; is indicated female speaker with signal-to-signal energy ratid® dB) and
by the sum ofF; .y and Eg,..ss. Category 3 interferences areFig. 7(b) shows the result of tracking the mixture. As another ex-
also speech utterances and therefore all possible decision eraonple, Fig. 8(a) shows the time-frequency energy plot for a mix-
should be considered. For time frames with a single referericee of a male utterance and white noise (signal-to-noise atio
pitch, gross and fine determination errors are defined as earlie2 dB). Note here that the white noise is very strong. Fig. 8(b)
For time frames with two reference pitches, a gross error occutsows the result of tracking the signal. In both cases, our algo-
if either one exceeds the 20% limit, and a fine error is the sumidthm robustly tracks either one or two pitches. Systemic per-
the two for two reference pitch periods. For many applicationfgrmance of our algorithm for the three interference categories
the accuracy with which the dominating pitch is determined is &f given in Tables IV-VI respectively. As can be seen, our algo-
primary interest. Therefore, the total gross edigt°™, and the rithm achieves total gross errors of 7.17% and 3.50% for Cat-

TOSS

fine errorE2°™ for dominating pitch periods are also measureggory 1 and 2 mixtures, respectively. For Category 3 interfer-
Fine
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TABLE IV
ERRORRATES (IN PERCENTAGE) FOR CATEGORY 1 INTERFERENCE

ED-—‘I EO—.Z EIAO E E

Proposed PDA 0.36 Nil 681 Nil Nil 7.17 043
TK PDA 196 005 233 9.10 238 27.66 1.76
GB PDA 026 Nil 495 Nil 036 50.10 1.06
R-GB PDA 1.56 Nil 10.81 Nil 2.13 14.50 0.78

E,

Gross

E,

‘Fne.

2741

1457

TABLE V
ERRORRATES (IN PERCENTAGE FOR CATEGORY 2 INTERFERENCE

729

Channel center frequency (Hz)

El»o E Gross ETaml E Fine
NS Proposed PDA 3.18 032 3.50 044
TK PDA 770 453 1223 141
GB PDA 22.10 2.10 2421 2.20
- o v oy e : Tz T4 R-GB PDA 594 448 10.04 0.70
Time (sec)
(a) : ,
i . . _ . . . Gu and van Bokhoven’s multpitch PDA is chosen for com-
12 . parison because it is an HMM-based algorithm, and an HMM
is also used in our system. The algorithm can be separated into
10} 1 two parts. The first part is a pseudo-perceptual estimator [10]

that provides coarse pitch candidates by analyzing the envelopes
and carrier frequencies from the responses of a multichannel
front-end. Such pitch candidates are then fed into an HMM-
based pitch contour estimator [10] for forming continuous pitch
tracks. Two HMMs are trained for female and male speech ut-
terances separately and are capable of tracking a single pitch
track without voiced/unvoiced decisions at a time. In order to
have voicing decisions, we add one more state representing un-
2F 1 voiced time frames to their original three-state HMM. Knowing
the number and types of the speech utterances presented in a
L . L 1 . 2 4 mixture in advance (e.g., a mixture of a male and a female ut-
0 0.2 0.4 06 08 1 12 14 . . .
Time (sec) terance) we can find the two pitch tracks by applying the male
(b) and female HMM separately. For a mixture of two male utter-
ances, after the first male pitch track is obtained, the pitch track
Fig. 8. (a) Time-frequency energy plot for a mixture of a male utterands subtracted from the pitch candidates and the second track is

and vahite noise. 'I;Ihe gtterancehis “Why aref ygu wary.” Thedbrightness injdentified by app|y|ng the male HMM again_ We refer to this
time-frequency cell indicates the energy of the corresponding gammat
PDA as the GB PDA.

filter output in the corresponding time frame. For better display, energy ) . .
plotted as the square of logarithm. (b) Result of tracking the mixture. The solid Our experiments show that sometimes the GB PDA provides

lines indicate the true pitch tracks. The™ tracks represent the pitch tracks poor results, especially for speech mixed with a significant
estimated by our algorithm. amount of white noise. Part of the problem is caused by
its bottom-up pitch estimator, which is not as good as ours.
ences, a total gross error rate of 0.93% for the dominating pit€h directly compare our HMM-based pitch track estimator
is obtained. with their HMM method, we substitute our bottom-up pitch
To put the above performance in perspective, we compastimator for theirs but still use their HMM model for forming
with two recent multpitch detection algorithms proposed bgontinuous pitch tracks. The revised algorithm is referred as
Tolonen and Karjalainen [37] and Gu and van Bokhovethe R-GB PDA.
[11]. In the Tolonen and Karjalainen model, the signal is first Fig. 9 shows the multipitch tracking results using the TK, the
passed through a pre-whitening filter and then divided int8B, and the R-GB PDASs, respectively, from the same mixture
two channels, below and above 1000 Hz. Generalized autocofFig. 7. As can been seen, our algorithm performs significantly
relations are computed in the low-frequency channel directhetter than all those algorithms. Fig. 10(a)—(c) give the results
and those of the envelope are computed in the high-frequeryextracting pitch tracks from the same mixture of Fig. 8 using
channel. Then, enhanced summary autocorrelation functighe TK, the GB, and the R-GB PDAs, respectively. As can be
are generated and the decisions on the number of pitch pointsasn, our algorithm has much less detection error.
well as their pitch periods are based on the most prominent andQuantitative comparisons are shown in Tables IV-VI. For
the second most prominent peaks of such functions. We cho@sgegory 1 interferences, our algorithm has a total gross error of
this study for comparison because it is a recent time-frequeneyl 7% while others have errors varying from 14.50% to 50.10%.
domain algorithm based on a similar correlogram represeniidie total gross error for Category 2 mixtures is 3.50% for ours,
tion. We refer to this PDA as the TK PDA. and for others it ranges from 10.04% to 24.21%. Our algorithm

(]
T

Pitch period (ms)
[+)]
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TABLE VI
ERROR RATES (IN PERCENTAGE) FOR CATEGORY 3 INTERFERENCE

Ey E, . E E_, E,n E, 4 Eg. Eg,, E[,’,:: E p’-),::"
Proposed PDA 068 Nil 0.88 0.16 Nil 27.08 021 033 093 0.21
TKPDA 047 0.10 264 455 1.19 2684 233 099 4.28 0.69
GB PDA 041 Nil 265 420 420 3454 389 204 7.70 1.34

R-GB PDA 0.57 Nil 228 278 057 11.80 9.09 2:11 3.63  0.53

yields the total gross error rate of 0.93% for the dominating 12}
pitch. The corresponding error rates for the others range from
3.63% to 7.70%. 1o}

Note in Table VI that the error rat8,_,; of the R-GB PDA is
considerably lower than ours. This, however, does not imply the
R-GB PDA outperforms our algorithm. As shown in Fig. 9(c),
the R-GB PDA tends to mistake harmonics of the first pitch pe-
riod as the second pitch period. As a result, the overall perfor-
mance is much worse.

Finally, we compare our algorithm with a single-pitch deter-

Pitch period (ms)
(-]

mination algorithm for noisy speech proposed by Raatel. 2}
[32].t Fig. 10(d) shows the result of tracking the same mixture
as in Fig. 8. As can be seen, our algorithm yields less error. We 0 v 2 1 2 ; 4
do not compare with this PDA quantitatively because it is de- °o 02 o4 08 (a) 08 1 1214
signed as a single-pitch tracker and cannot be applied to Cate-
gory 2 and 3 interferences. 12} ) ) ) ) i
In summary, these results show that our algorithm outper- x
forms the other algorithms significantly in almost all the error 10f
measures. L

VI. DIScussiION ANDCONCLUSION

A common problem in PDAs is harmonic and subharmonic
errors, in which the harmonics or subharmonics of a pitch are
detected instead of the real pitch itself. Several technigues have

Pitch period (ms)
o)

been proposed to alleviate this problem. For example, a number 2l

of algorithms check submultiples of the time lag for the highest

peak of the summary autocorrelations to ensure the detection of o . . . .

the real pitch period (for example, see [19]). Shimamura and o 02 04 08 ® 08 1 12 14
Kobayashi [34] proposed a weighted autocorrelation method

discounting the periodicity score of the multiples of a poten- 12} i

tial pitch period. The system by Rouat al. [32] checks the

submultiples of the two largest peaks in normalized summary 10} 1
autocorrelations and further utilizes the continuity constraint of

pitch tracks to reduce these errors. Liu and Lin [24] compen- 8t "ﬁ

sate two pitch measures to reduce the scores of harmonic and
subharmonic pitch periods. Meda al. [25] disqualify such
candidates by checking the normalized autocorrelation using a
larger time window and pick the pitch candidate that exceeds a
certain threshold and has the smallest pitch period.

Pitch period (ms)
N

| ‘:"‘"7""\.-/’-

In our time-frequency domain PDA, several measures con- 2
tribute to alleviate these errors. First, the probabilities of sub-
harmonlc_p|tch periods are significantly reduced by selectm_g % 02 04 06 0B 3 T2 14
only the first correlogram peaks calculated from envelopes in Time (sec)
high-frequency channels. Second, noisy channels tend to have ©)

random peak positions, which can reinforce harmonics or sub-
harmonics of the real pitch. By eliminating these channels using
Fig. 9. Results of tracking the same signal as in Fig. 7 using (a) the TK PDA,
(b) the GB PDA, and (c) the R-GB PDA. The solid lines indicate the true pitch
1Results provided by J. Rouat. tracks. The %” and “o” tracks represent the estimated pitch tracks.
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Fig. 10. Result of tracking the same signal as in Fig. 8 using (a) the TK PDA, (b) the GB PDA, (c) the R-GB PDA, and (d) the PDA proposeddhaR82ht
The solid lines indicate the true pitch tracks. The™and “o” tracks represent the estimated pitch tracks. In subplot (d), time frames with negative pitch period
estimates indicate the decision of voiced with unknown period.

channel selection, harmonic and subharmonic errors are greatlivlany models estimate multiple pitch periods by directly ex-
reduced. Third, the HMM for forming continuous pitch tracksending single-pitch detection methods, and they are called the
contributes to decrease these errors. one-dimensional paradigm. A common one-dimensional repre-
The HMM in our model plays a similar role (utilizing pitch sentation is a summary autocorrelation. Multiple pitch periods
track continuity) as post-processing in many PDAs. Sontan be extracted by identifying the largest peak, the second
algorithms, such as [32], employ a number of post-processilaggest peak, and so on. However, this approach is not very
rules. These ad-hoc rules introduce new free parametagffective in a noisy environment, because harmonic structures
Although there are parameters in our HMM, they are learnedten interact with each other. Cheveigné and Kawahara [7]
from training samples. Also, in many algorithms (for exampldyave pointed out that a multistep “estimate-cancel-estimate” ap-
see [38]), pitch tracking only considers several candidatpsoach is more effective. Their pitch perception model cancels
proposed by the bottom-up algorithm and composed of peaks first harmonic structure using an initial estimate of the pitch,
in bottom-up pitch scores. Our tracking mechanism consideasd the second pitch is estimated from the comb-filtered residue.
all possible pitch hypotheses and therefore performs in a widdlso, Meddis and Hewitt's [26] model of concurrent vowel sep-
range of conditions. aration uses a similar paradigm. A multidimensional paradigm
There are several major differences in forming continuouis used in our model, where the scores of single and combined
pitch tracks between our HMM model and that of Gu and vapitch periods are explicitly given. Interactions among the har-
Bokhoven [11]. Their approach is essentially for single pitcimonic structures are formulated explicitly, and our results show
tracking while ours is for multipitch tracking. Theirs uses twadhat this multidimensional paradigm is effective for dealing with
different HMMs for modeling male and female speech whilaoise intrusions and mutual interference among multiple har-
ours uses the same model. Their model needs to know thenic structures.
number and types of speech utterances in advance, and hass stated previously, approximately half of the mixture
difficulty tracking a mixture of two utterances of the same typdatabase is employed for estimating (learning) relative time
(e.g., two male utterances). Our model does not have théag distributions in a channel (see Fig. 4) and pitch dynamics
difficulties. (see Fig. 6), while the other half is utilized for evaluation. It
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is worth emphasizing that such statistical estimations reflect[7] A. de Cheveigné and H. Kawahara, “Multiple period estimation and

general speech characteristics, not specific to either speaker or
utterance. Hence, estimated distributions and parameters ar[g]
expected to generalize broadly, and this is confirmed by our

results. We have also tested our system on different kinds of®]
utterance and different speakers, including digit strings frorqlo]

TIDigit [22], after the system is trained, and we observe equally
good performance.

The proposed model can be extended to track more thq@l]

two pitch periods. To do so, the union space described in
Section IV-B would be augmented to include more than thre

pitch spaces. The conditional probability for the hypotheses oil z
more than two pitch periods may be formulated using the samj3]

principles as for formulating up to two pitch periods.

There are two aspects of our proposed algorithm: multipitc
tracking and robustness. Rather than considering these two g$5]
pects separately, we treat them as a single problem. As men-
tioned in the Introduction, the ability to track multiple pitch pe- (1¢;
riods increases the robustness of an algorithm by allowing it to
deal with other voiced interferences. Conversely, the ability td7]
operate robustly improves the reliability of detecting the pitchg
periods of weaker sources. More specifically, the channel/peak

selection method mainly contributes to the robustness of th
system. The cross-channel integration method and the HM
for pitch tracking are formulated for detecting multiple pitch pe-

riods, although considerations are also given to the robustne
of our system.

In summary, we have shown that our algorithm performs re-

liably for tracking single and double pitch tracks in a noisy [21]
acoustic environment. A combination of several novel ideas en-

ables the algorithm to perform well. First, an improved channel22]
and peak selection method effectively removes corrupted chargs]

nels and invalid peaks. Second, a statistical integration metho[

utilizes the periodicity information across different channels. Fi{24]

nally, an HMM realizes the pitch continuity constraint.

26
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