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Abstract 

An effective multi-pitch tracking algorithm for  noisy 
speech is critical for  auditory processing. However, the 
performance of existing algorithms is not satisfactory. We 
have developed a robust algorithm for  multi-pitch tracking 
of noisy speech based on statistical anticipation. By 
combining an improved channel and peak selection method, 
a new integration method for  extracting periodicity 
information across the different channels, and a hidden 
Markov model (HMM) for  forming continuous pitch tracks, 
our algorithm can reliably track single and double pitch 
tracks in a noisy environment. 

1. Introduction 

Determination of pitch is a fundamental problem in 
auditory processing. A reliable algorithm for multi-pitch 
contour tracking is critical for many tasks such as 
computational auditory scene analysis (CASA), prosody 
analysis, speech enhancement and recognition. However, 
due to the difficulty of dealing with the interference from 
noise intrusions and mutual interference among multiple 
harmonic structures, the design of such an algorithm is very 
challenging and most existing pitch determination 
algorithms (PDA) are limited to clean speech or a single 
pitch track in modest noise. 

Among the numerous PDAs proposed, some have been 
specifically designed for detecting a single pitch track with 
voicedunvoiced decisions in noisy speech. The majority of 
these algorithms (for example, see 171) were tested on clean 
speech and speech mixed with different levels of white 
noise. Some systems also have been tested in other speech 
and noise conditions. For example, the system designed by 
Rouat et al. [ l l ]  was tested on telephone speech, vehicle 
speech, and speech mixed with white noise. Takagi et al. 
[12] also tested their single pitch track PDA on speech 
mixed with pink noise, music, and a male voice. In their 
study, however, the multi-pitch nature of the signals is 
ignored and a single pitch decision is given. 

An ideal PDA for engineering applications should 
perform robustly in a variety of acoustic environments. 
However, the restriction to a single pitch track puts 
limitations on the background noise in which the PDAs are 
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able to perform well. For example, if the noise background 
contains harmonic structures such as background music or 
voiced speech, a multi-pitch tracker is required for 
providing meaningful pitch tracks. 

The tracking of multiple pitches also has been 
investigated. For examples, Gu and van Bokhoven [3] 
proposed an algorithm for detecting up to two pitch periods 
for co-channel speech separation. A model by Tolonen and 
Karjalainen [14] was tested on musical chords and a 
mixture of two vowels. Kwon et al. [SI tested their system 
on mixtures of two single pitch signals. Pernhdez-Cid and 
Casajus-Quiros [lo] tested their system on polyphonic 
musical signals. However, these multi-pitch trackers were 
designed for and tested on clean music signals or mixtures 
of single-pitch signals with little or no background noise 
interference. Their performance on tracking speech mixed 
with broadband interference such as white noise is not 
clear. 

In this paper, we propose a robust algorithm for multi- 
pitch tracking of noisy speech based on statistical 
anticipation. By using a statistical approach, the algorithm 
can maintain multiple hypotheses with different 
probabilities, making the model more robust in the presence 
of acoustic noise. Moreover, the modeling process 
incorporates the statistics extracted from a corpus of natural 
sound sources. Finally, a hidden Markov model (HMM) is 
incorporated for detecting continuous pitch tracks. 

2. Model description 

In this section, we first give an overview of the 
algorithm and stages of processing. The proposed algorithm 
consists of four stages. In the first stage - the front-end - the 
signals are filtered into channels and the envelopes in high- 
frequency channels are extracted. Then, the normalized 
correlograms [l]  are computed for every channel at every 
10-ms interval. Section 2.1 gives the detail of this stage. 

Channel and peak selection comprises the second 
stage. 'In noisy speech, some channels are significantly 
corrupted by the noise. By only selecting the less corrupted 
channels, the robustness of the system is improved. Hunt 
and Lef6bvre [5] first suggested this idea, and it was 
implemented on mid- and high-frequency channels 
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(channels with center frequencies greater then 1400 Hz) by 
Rouat et al. [ll].  We extend the channel selection idea to 
low-frequency channels and propose an improved method 
applying to all channels. Furthermore, we broaden the idea 
to peak selection. Generally speaking, peaks in normalized 
correlograms suggest periodicity of the signals. However, 
some peaks give misleading periodicity information and 
should be removed. Section 2.2 gives the detail of this 
stage. 

The third stage is a statistical integration method for 
periodicity information across all channels. In the multi- 
band autocorrelation method, the conventional approach for 
integrating the periodicity information in a time frame is to 
summarize the autocorrelations or normalized auto- 
correlations across all channels. Though simple, the 
periodicity information contained in each channel is under- 
utilized. By studying the statistical relationship between the 
ideal pitch periods and the time lags of selected peaks 
obtained from the last stage, we propose a statistical 
integration method for producing the conditional 
probability of observing the signal in a time frame given a 
hypothesized pitch period. The relationship between ideal 
pitch periods and time lags of selected peaks is obtained in 
Section 2.3 and the integration method is described in 
Section 2.4. 

The last stage of the algorithm is to form continuous 
pitch tracks using an HMM. In several studies, HMMs have 
been employed to model pitch track continuity. Weintraub 
[16] utilized a Markov model to determine whether zero, 
one or two pitches were present. Gu and van Bokhoven [3] 
used an HMM to group pitch candidates proposed by a 
bottom-up PDA and form continuous pitch tracks. Tokuda 
et al. [ 131 modeled pitch patterns using an HMM based on a 
multi-space probability distribution. In both of the studies, 
pitch is treated as the observation and the HMM has to be 
trained. In our formulation, the pitch is explicitly modeled 
as the hidden states and there is no training needed. Finally, 
the optimal pitch tracks are obtained by using the Viterbi 
algorithm. This stage is described in Section 2.5. 

2.1. Multi-channel front-end 

The input signals are sampled at 16 kHz and then 
passed through a bank of fourth-order “gammatone” filters 
[9] modeling cochlear filtering. The bandwidth of each 
filter is set according to its equivalent rectangular 
bandwidth (ERB) and we use a bank of 128 gammatone 
filters with center frequencies equally distributed on the 
ERB scale between 80 Hz to 5 kHz. After the filtering, the 
signals are re-aligned according to the delay of each filter. 

The rest of the front-end is similar to that described by 
Rouat et al. [ll].  The channels are classified into two 
categories. Channels with center frequencies lower then 
800 Hz (channels 1-55) are called low-frequency channels. 
Others are called high-frequency channels (channels 56- 
128). The Teager energy operator [6] and a low-pass filter 

are used to extract the envelopes in high-frequency 
channels. The Teager energy operator is defined 
as E, = sf - -sn+,sn-,  for a digital signal s,. Then, the 
signals are low-pass filtered at 800 Hz using the 3d order 
Butterworth filter. 

In order to remove the distortion due to very low 
frequencies, the outputs of all channels were further high- 
pass filtered to 64 Hz (FIR, window length of 16 ms). Then, 
at a given time step j, the normalized correlogram S(c,  j , ~ )  
for channel c with a time lag z is computed by running the 
following normalized autocorrelation: 

N I 2  
x(c, j + n)x(c,  j + n + z) 

where x is the filter output. 

normalized correlograms are computed for z = 1,. . . ,200 . 
Here, the window size is 16 ms ( N = 256 ) and the 

2.2. Channel and peak selection 

Different methods are employed for channel and peak 
selection in low- and high-frequency channels since the 
envelopes are used in high-frequency channels. 

Low frequency channels 

Normalized correlograms are range limited 
( -1 I S(c, j, z) I 1 ) and set to 1 at zero time lag. A value of 
1 at a non-zero time lag implies a perfect repetition of the 
signal with a certain scale factor. For a quasi-periodic signal 
with period T, the greater the normalized correlogram is at 
time lag T, the stronger the periodicity of the signal. 
Therefore, the maximum value of all peaks at non-zero lags 
measures the noise level of this channel. If the maximum 
value is greater than the threshold 0, = 0.945 , the channel 
is relatively “clean” and thus selected. Only the time lags of 
peaks in selected channels are included in the set of selected 
peaks denoted as Cp. 

High frequency channels 

As suggested by Rouat et al. [ll], if a channel is less 
corrupted by noise, the original normalized correlogram 
computed using a window size of 16 ms and the normalized 
correlogram S’(c, j , z )  using a longer window size of 
30ms should have similar shapes. For every local peak 
of S(c , j , z ) ,  we search for the closest local peak 
in S’(c, j , z )  . If the difference between the two time lags is 
greater then 125 ps (or 2 delay steps), the channel is 
removed. 
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Two methods are employed to select peaks in a 
selected channel. First, for a peak suggesting true 
periodicity in the signal, a peak around double the time lag 
of the first one should be found. The second peak will be 
checked and if it is outside +5 lag steps around the 
predicted double time lag of the first peak, the first peak is 
removed. 

A high-frequency channel responds to multiple 
harmonics, and the nature of beats and combination tones 
dictates that the response envelope fluctuates at the 
fundamental frequency [4]. Therefore, the Occurrence of 
strong peaks at time lag T and its multiples in a high- 
frequency channel suggests a fundamental period of T. For 
the second method of peak selection, if the value of the 
peak at the least non-zero time lag is greater than e2 = 0.6 , 
all the multiple peaks are removed. 

This second method for peak selection is critical for 
eliminating multiple and submultiple pitch extraction error. 
In this type of errors, the multiples of period d are detected 
instead of detecting the real pitch period d. It is particularly 
a problem for autocorrelation based PDAs. 

The selected peaks in all high frequency channels are 
added to 0. 

2.3. Pitch period and time lags of selected peaks 

The alignment of peaks in the normalized correlograms 
across the channels signals a pitch period. By studying the 
difference between the ideal pitch period and the time lag 
from the closest selected peaks, we can derive the evidence 
of the normalized correlogram in a particular channel 
supporting a hypothesis of a pitch delay. 

More specifically, consider channel c. We denote the 
ideal pitch period d and the relative time lag A is defined as 

A = l - d ,  (2) 

where I denotes the time lag of the closest peak. 
The statistics of the relative time lag A are extracted 

from a corpus of 13 utterances of male and female speech, 
which is part of the sound database previously used by 
Cooke [2]. An “ideal” pitch track is obtained by running a 
correlogram-based PDA on clean speech before mixing and 
correction by hand. The speech signals are passed through 
the front-end and the channevpeak selection method 
described in Section 2.1 and 2.2 respectively. The statistics 
are collected from the selected channels across all voiced 
frame for every channel separately. 

As an example, the histogram of relative time lags for 
channel 22 is shown in Fig. 1. As can be seen, the 
distribution is centered at zero. A mixture of a Laplacian 
and a uniform distribution is employed for modeling the 
distribution. The Laplacian represents the majority of 
channels “supporting” the pitch period and the uniform 
distribution represents the “background noise” channels, 

9w 1 

Figure 1: Histogram and estimated distribution of relative time 
lags for single pitch in channel 22. The bar graph represents the 
histogram and the solid line represents the estimated 
distribution. 

whose peaks distribute uniformly in the background. The 
distribution in channel c is defined as 

(3) 

where O < q < l  is a partition coefficient of the mixture. 
The Laplacian distribution with parameter A, has the 
formula 

p ,  ( A )  = (1 - 4 ) U A ;  A, 1 + q u ( A ;  7, ) 

The uniform distribution U ( A ; v , )  with range 7, is fixed 
in a channel according to the possible range of the peak. In 
a low frequency channel, we set the length of the range as 
the wavelength of the center frequency, therefore 
7, = (- F, /(2F,), F, / ( 2 F c ) ) ,  where F, is the sampling 
frequency and F, is the center frequency of channel c. In 
high-frequency channels, however, U (A; 7,) is the uniform 
distribution over all possible pitch periods (between 2 ms to 
12.5 ms, that is, 32 to 200 lag steps, in our system). 

We also assume a linear relationship between the 
frequency channel index and the Laplacian distribution 
parameter Ac , 

A, = a , + a , c .  (4) 

The maximum likelihood method was utilized to 
estimate the three parameters a,, a , ,  and q . Due to the 
different properties for low- and high-&equency channels, 
the parameters were estimated on each set of channels 
separately and the resulting parameters are shown in the 
upper half of Table 1. The estimated distribution of channel 
22 is illustrated in Fig. 1. As can be seen, the distribution 
fits the histogram very well. 

Likewise, similar statistics are extracted for time 
frames with two pitch periods. For a selected channel with 
signals coming from two different harmonic sources, we 
assumed that the energy from one of the sources is 
dominant. This assumption holds because otherwise, the 
channel is likely to be “noisy” and rejected by the selection 
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Table 1: Four sets of estimated model parameters. LF = low- 
frequency channels, HF = high-frequency channels. 

Model uarameters 
a, a,  9 

One pitch (LF) 1.13 -0.011 0.01 
One pitch (HF) 3.17 -0.017 0.10 
Two pitches (LF) 1.35 -0.013, 0.03 
Two pitches (HF) 4.17 -0.026 0.06 

method in Section 2.2. We redefine the relative time lags as 
relative to the pitch period of the dominant source. The 
statistics are extracted from the mixtures of the 13 
utterances of speech mentioned earlier. For a particular time 
frame and channel, the dominant source is decided by 
comparing the twd energy values of the corresponding time 
frame and channel from the two speech utterances before 
mixing. The probability distribution of relative time lags 
with two pitch periods is denoted as p:(A) and has the 
same formulation as in Equations 3-4. Likewise, the 
parameters are estimated for low- and high-frequency 
channels separately and shown in the lower half of Table 1. 

2.4. Integration of periodicity information 

As noted in Tokuda et al. [13], the state space of pitch 
is not a discrete or continuous state space in a conventional 
sense. Rather, it is a union-space Q consisting of three 
spaces: 

Q=Q,uQ, UQ,, (5)  

where Q,, Q,, Q, are zero, one, and two dimensional 
spaces representing zero, one, and two pitches, respectively. 
A state in the union-space is represented as a 
pair x = (y, Y) , where Y E  R r  and Y is the space index. 
This section derives the conditional probability p ( @  I x) 
given a pitch state x observing the set of selected peaks. 

The hypothesis of a single pitch period d is considered 
first. For a selected channel, the closest peak relative to the 
period d was identified and the relative time lag denoted 
as A ( Q r , d ) ,  where is the set of selected peaks in 
channel c. 

The channel conditional probability is derived as 

p ,  (A(@c , d ) ) ,  
91 (W(Q 77, ), otherwise 

if channel c selected 
3 (6) P P .  I x,) = 

where x,  = (d,l)E 52, and q , ( c )  is the parameter q of 
channel c estimated from one-pitch frames as shown in 
Table 1. Note here that, if a channel has not been selected, 
the probability of background noise would be assigned. 

The channel conditional probability can be easily 
combined into the frame conditional probability if the 

mutual independence of the signals of all channels is 
assumed. However, the signals are usually correlated due to 
the wide band nature of speech signals and the assumption 
of independence produces very “spiky” distributions. 
Hence, the following formula is proposed to combine the 
information across the channels: 

P(@ I X I )  OC @zL 9 (7) 

where C=128 is the number of all channels and the 
parameter r = 12 is the smoothing factor. 

Then we consider the hypothesis of two pitch periods, 
d ,  and d , ,  corresponding to two different harmonic 
sources. We further assume that d ,  corresponds to the 
stronger source. The channels are labeled as the source of 
d ,  if the relative time lags are small. More specifically, 

channel c belongs to d ,  if lA(@r,d,)l</3A,, where 

/3 =5.0 and Ar denotes the Laplacian parameter for 
channel c calculated from Equation 4. The combined 
probability is defined as 

where 

P: (mC 9 4  9 d ,  ) = 

q 2  ( C ) U ( Q  77,) 
P: (A(@. 9 d,  I), 

i f  channel c not selected 
if channel c belongs to d ,  , (9) 1 max(p:(A(@c,d,)), p:(A(@,,d,))), orherwise 

with q2 ( c )  denotes the parameter q of channel c estimated 
from two-pitch frames. 

The conditional probability for the time frame is the 
larger of assuming either d ,  or d ,  to be the stronger 
source: 

(10) P(@ I x2) OC ff, max[P*(@,d,,d,),P,(@,d,,d,)I, 

where x2 = ( (d ,  , d , ) , 2 ) ~  Q, and a, = 0.29 . 
Finally, we fix the probability of zero pitch, 

P(@ I xo)= ff, 9 

where x,, E Q, and a, = 2 . 3 ~ 1 0 - ~ ’ .  

2.5. Pitch tracking using an HMM 

Our approach utilizes a hidden Markov model for 
approximating the generation process of harmonic structure 
in natural environments. The hidden nodes represent 
possible pitch states in every time frame. The observation 
nodes represent the set of selected peaks in each time 
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Table 2: Transition probabilities between state spaces of pitch. 

-+Qn +Q, +Q, 
Go 0.8 0.2 0.0 

52, 0.05 0.75 0.2 

Q, 0.0 0.2 0.8 

frame. The temporal links in the Markov model represent 
the probabilistic pitch dynamics. The links between a 
hidden node and an observation node are called observation 
probabilities, which have been formulated in the last section 
representing bottom-up pitch estimation. 

There are two parts of probabilistic pitch dynamics. 
The first part is the dynamics of a continuous pitch track. 
The pitch period of time frame t + l  was modeled as a 
normal distribution centered at the pitch period of time 
frame t with the standard deviation of Q = 7.0. 

The second part is the probabilities of jumping between 
the state spaces of zero pitch, one pitch, and two pitch. The 
values of these probabilities are given in Table 2. 

Finally, the state spaces of one and two pitch are 
discretized and the Viterbi algorithm is employed for 
finding the optimal sequence of states. Note here, the 
sequence can be a mixture of zero, one, and two pitch 
states. 

3. Results 

The algorithm has been evaluated using a corpus of 
100 mixtures of speech and noise [2] commonly used for 
CASA research. The mixtures are obtained by mixing 10 
voiced speech samples with 10 noise samples (1kHz tone, 
white noise, noise burst, “cocktail party” noise, rock music, 
siren, trill telephone, two utterances of female speech, and 
one utterance of male speech). 

Our results show that the proposed algorithm reliably 
tracks pitch points in various situations, such as one 
speaker, speech mixed with other acoustic sources, and 
simultaneous multiple speakers. As examples, Fig. 2 shows 
our result of tracking two simultaneous utterances of a male 
speaker and a female speaker (signal-to-signal ratio = 
9dB). As a comparison, Fig. 3 shows the result from an 
existing bottom-up pitch estimation method [15]. By 
analyzing peak patterns of the summary autocorrelation, the 
bottom-up PDA detects the first pitch if there are repeating 
peaks of pitch period multiples on the summary 
autocorrelation. The second pitch is detected by using the 
same analysis on the residue summary autocorrelation 
obtained by subtracting the peaks responsible for the first 
pitch. Fig. 4 shows our result of tracking a mixture of a 
male utterance and white noise (signal-to-noise ratio = 
-2 dB). Note here that the white noise is very strong. As a 
comparison, Fig. 5 shows the result of the bottom-up pitch 

2L ‘0 0 2  04 06 08 1 1 2  1 4  

1me (5.) 

Figure 2: Result of tracking two simultaneous utterances of a 
male and a female speaker. The solid lines represent the hand- 
labeled pitch tracks estimated using one utterance before it is 
mixed with the other one. The ‘x’ and ‘0’ tracks represent the 
pitch tracks estimated by our algorithm. 

10 
l2 t Y ‘ 1  

0 2  0 4  0 6  0 8  ; 1’2 1’4 ’ 
T” (5) 

Figure 3: Result of tracking the same signal as in Fig. 2 using 
a bottom-up PDA. The solid lines represent the hand-labeled 
pitch tracks. The ‘x’ and ‘0’ tracks represent the pitch tracks 
estimated by the bottom-up algorithm. 

estimation method described above. As can be seen, the 
tracking of the pitch tracks in both examples has been 
significantly improved. 

The results in a more systematic evaluation 
demonstrate that our algorithm recovers pitch tracks that 
match closely ideal pitch tracks. 

We have also divided the 13 utterances of speech in the 
corpus into two separate sets, estimated the model 
parameters from the first set and tested our algorithm on the 
second set. The results show that the performance during 
the testing phase is very similar. 

4. Discussion 

Our algorithm has been shown to perform reliably for 
tracking single and double pitch tracks in a noisy acoustic 
environment. A combination of several novel ideas enables 
our algorithm to perform robustly. First, an improved 
channel and peak selection method effectively removes the 
corrupted channels and invalid peaks. Second, a statistical 
integration method utilizes the periodicity information 
across different channels. Finally, an HMM is employed for 
realizing the pitch continuity constraint. 
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T i m  (5) 

Figure 4: Result of tracking the mixture of a male utterance 
and white noise. The solid lines represent the hand-labeled 
pitch tracks estimated using the clean utterance. The ‘x’ tracks 
represent the pitch tracks estimated by our algorithm. 

J 

I 
0 0 2  0 4  0 6  0 8  1 1 2  1 4  

Time (5) 

Figure 5: Result of tracking the same signal as in Fig. 4 using 
a bottom-up PDA. The solid lines represent the hand-labeled 
pitch tracks. The ‘x’ and ‘0’ tracks represent the pitch tracks 
estimated by the bottom-up algorithm. 

The probabilistic pitch dynamics defined in Section 2.5 
are currently specified in our model explicitly. However, 
the dynamics can also be learned from natural pitch tracks 
and the total number of parameters hence can be 
significantly reduced. This will be addressed in future 
research. Moreover, our model can be extended to  tracking 
more than two pitch tracks by augmenting the union-space 
of pitch and formulating the conditional probability of the 
multi-pitch states. 

In CASA research, a reliable algorithm for multi-pitch 
tracking is critical for segregating harmonic structures, such 
as speech, from noise intrusions. Our system can thus 
provide a much needed front-end to  general CASA systems, 
including the multistage neural model of Wang and Brown 

A neural network model for multi-pitch tracking could 
also be formed using our model as a foundation. Part of the 
model can already be implemented in a biologically 
plausible way. For examples, normalized correlograms, the 
rest of the front-end and the channevpeak selection method, 
are biologically plausible. Also, our  model for bottom-up 
pitch estimation can be implemented as a neural network. 
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