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Abstract

Most existing binaural approaches to speech segregation rely
on spatial filtering. In environments with minimal reverbera-
tion and when sources are well separated in space, spatial filter-
ing can achieve excellent results. However, in everyday envi-
ronments performance degrades substantially. To address these
limitations, we incorporate monaural analysis within a binaural
segregation system. We use monaural cues to perform both lo-
cal and across frequency grouping of mixture components, al-
lowing for a more robust application of spatial filtering. We
propose a novel framework in which we combine monaural
grouping evidence and binaural localization evidence in a linear
model for the estimation of the ideal binary mask. Results indi-
cate that with appropriately designed features that capture both
monaural and binaural evidence, an extremely simple model
achieves a signal-to-noise ratio improvement of up to 3.6 dB
relative to using spatial filtering alone.

Index Terms: Speech segregation, binaural localization,
monaural grouping, linear model

1. Introduction
Binaural speech segregation systems typically use spatial fil-
tering to enhance the signal from a specific direction of arrival
[1, 2]. Beamforming is a ubiquitous approach to spatial filtering
but has well known limitations, such as substantial performance
degradation in reverberant environments. Recent approaches to
spatial filtering have incorporated time-frequency (T-F) mask-
ing. Although some effort has been made to overcome the per-
formance degradation caused by reverberation [3, 4, 5], such
systems are fundamentally limited by the decreased discrimina-
tive capacity of directional cues in reverberant environments.

To address such limitations, we complement spatial filter-
ing with monaural analysis. Monaural cues are potentially more
robust to reverberation than binaural cues, and provide a pow-
erful mechanism for both local and across frequency grouping
of speech energy. If a partial grouping of signal components
can be obtained using monaural cues, then binaural cues can be
integrated over the grouped components and can be used more
effectively in reverberant conditions.

Prior work exploring the integration of monaural and bin-
aural cues for speech segregation or enhancement is limited. In
[6], localization cues are used to perform initial segregation in
reverberant conditions. Initial segregation provides a favorable
starting point for estimating the pitch track of the target voice,
which is then used to further enhance the target signal. Our prior
work showed that pitch-based monaural grouping can be used

to improve segregation of voiced speech over binaural analysis
alone [7].

The segregation framework presented here can be consid-
ered a computational auditory scene analysis (CASA) approach
[2]. However, in CASA-based speech segregation systems, one
typically performs segmentation followed by grouping, where
fixed T-F segments are formed using one or more features, and
then each segment is labeled as target or interference dominant
using a set of grouping features. As an alternative to such an
approach we previously argued for the use of a random field
formalism for incorporating multiple cues for binary T-F mask
estimation [8]. Here we use a computationally simpler approach
based on the perceptron algorithm [9] while maintaining the
structure of a random field. An attractive aspect of the pro-
posed framework is its ability to integrate multiple sources of
evidence by capturing the interaction between different types of
features jointly in a linear model. Further, it allows the use of
multiple approaches to segmentation or feature generation and
avoids the need for heuristic parameter tuning.

In the following section we present a linear model for bi-
nary time-frequency mask estimation. Section 3 describes the
monaural and binaural processing used, and the specifics of how
we generate features that combine binaural and monaural cues.
We present segregation results using different variations of the
proposed system and a comparison system in Section 4, and
conclude with a discussion in Section 5.

2. Time-frequency mask estimation using
linear models

In this study, we assume a binaural recording of two speech
sources. We convert the binaural mixture to a T-F representa-
tion using a bank of 128 gammatone filters with center frequen-
cies from 50 to 8000 Hz spaced on the equivalent rectangular
bandwidth scale. Each filtered signal is divided into 20 ms time
frames with a frame shift of 10 ms to create a cochleagram [2]
of T-F units. For notational convenience, we index T-F units by
a single variable, i, although it is important to keep in mind that
each T-F unit has an associated frequency channel, c, and time
frame, m.

We perform segregation by estimating a binary T-F mask,
y, using the observed mixture data, x. We seek to estimate
the ideal binary mask (IBM), which has been proposed as a
main computational goal of CASA systems [2]. We consider
two approaches for calculating a binary mask. In the first ap-
proach, we use a perceptron to independently assign labels, yi,
to individual T-F units based on a vector of L local features,
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ψ(x, i) = [ψ1(x, i), ψ2(x, i), · · · , ψL(x, i)]T . Explicitly,

yi =

{
1 if ϕ(wTψ(x, i)) > 0

0 otherwise
(1)

where w is a set of linear weights and the function ϕ(·) is the
hyperbolic tangent sigmoid transfer function. Given a set of
training examples, the parameters w are determined using the
standard perceptron training algorithm.

As an alternative, we consider a model that attempts to es-
timate the T-F mask as a whole by treating T-F units as vertices
in a graph G,

ŷ = arg max
y

∑
i

w1
Tφ1(x, yi) +

∑
i

j∈N (i)

w2
Tφ2(x, yi, yj)

(2)
where,N (i) is the set of neighbors of T-F unit i inG, φ1(x, yi)
and φ2(x, yi, yj) are vectors of association and interaction fea-
ture functions, respectively, and w1 and w2 are linear weights
learned through training.

The association feature vector associates the L local fea-
tures for T-F unit i, ψ(x, i), with the two possible label assign-
ments,

φ1(x, yi) =
[· · · , ψl(x, i)δ(yi=0), ψl(x, i)δ(yi=1), · · ·

]T

(3)
where, δ(·) is an indicator function that is 1 if the associated
condition is true and 0 otherwise.

Similarly, given a set of K features corresponding to an
edge (i, j) between T-F units, ξ(x, i, j), the interaction feature
vector is constructed using,

φ2(x, yi, yj) =[· · · , ξk(x, i, j)δ(yi=yj), ξk(x, i, j)δ(yi �=yj), · · ·
]T

(4)

Intuitively, the weights w1, associated with the associa-
tion features are intended to model local dependencies between
the features and the label assigned to a particular T-F unit; the
weights w2, associated with the interaction features are in-
tended to model whether pairs of connected T-F units should
be assigned same or different labels. Note that the form of the
interaction feature functions used in this work are essentially
the same as those used in our previous work [8]. The parame-
ters w1 and w2 in Equation (2) are learned using the averaged
perceptron algorithm for structured inputs proposed by Collins
[9].

2.1. Determining the optimal T-F mask

At test time or during the execution of the perceptron algorithm,
given a data example x, we need to compute the most likely T-F
mask, ŷ, according to Equation (2). The optimal T-F mask can
be determined using the graph-cut algorithms that have been
previously used for inference in Markov random fields [10]. We
use the graph-cut solution as a seed-labeling for a number of it-
erations the QPBO-Improve algorithm proposed by Rother et.
al. [11] to find the minimum energy configuration. In our ex-
periments, we used the software implementations of the graph
cut algorithms described in [12] and the implementation of QP-
BOI described in [11].

3. Feature functions for combining
monaural and binaural cues

To estimate the IBM using the methods discussed above, we
must design a set of data-dependent feature functions. We first
describe the nature of the binaural and monaural cues them-
selves, before discussing how these cues are used to generate
both association features and interaction features.

3.1. Azimuth-dependent binaural cues

As in existing spatial filtering systems, we use binaural analysis
as a means of indicating whether sound energy is more likely
due to the target source or interference source, working under
the assumption that sources impinge on the microphones from
distinct azimuth angles. We calculate the interaural time dif-
ference (ITD), τi, and interaural level difference (ILD), λi, be-
tween the left and right mixture signals, and map ITD-ILD cues
to azimuth-dependent cues using non-parametric ITD-ILD like-
lihood functions, Pc(τi, λi|θ), where θ denotes azimuth. Note
that we include the frequency channel subscript on the like-
lihood function, as we train a separate function for each fre-
quency channel and azimuth considered. The likelihood func-
tions are described in more detail in [7].

3.2. Monaural grouping cues

In existing CASA systems, monaural analysis has been used
for segmentation (local grouping of T-F units) and simultane-
ous grouping (across frequency grouping within a continuous
time interval) [2]. We use monaural cues in the same functional
role, but whereas existing CASA systems generate a fixed set of
T-F regions that are then labeled, we generate multiple types of
T-F regions using different methods, and encode these regions
as features in the model used for mask estimation. The linear
weights learned through training can then be interpreted as bal-
ancing the evidence provided by different region hypotheses.

We focus on three types of monaural processing: local
grouping in time, local grouping in frequency, and non-local
grouping across frequency. To capture local grouping in time
we use both an energy-based analysis and a correlation analysis
of correlogram responses between T-F units in neighboring time
frames. To capture local grouping across frequency, we again
incorporate an energy-based analysis and a correlation analy-
sis of correlogram responses between T-F units in neighboring
frequency channels. To generate features that capture non-local
relationships across frequency, we use pitch-based cues gener-
ated by the systems presented in [13, 14]. The pitch-based cues
can be used to relate T-F units at an arbitrary distance in fre-
quency.

In Figure 1, we show three examples of T-F regions formed
using monaural analysis, one for each type of grouping de-
scribed. In total, we incorporate 11 different methods to gen-
erate T-F regions. It is important to note that these regions are
used to generate features for our model rather than treated as
fixed.

3.3. Association features

The association features used in the model are fundamentally
binaural, as we use source azimuth as the mechanism to deter-
mine whether the target or interference source is dominant. In
this study, we assume the azimuth of each source is known, and
we use the azimuth-dependent likelihood functions described in
Section 3.1 to generate an exclusively binaural association fea-
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(d) Non-local grouping

Figure 1: We show the cochleagram (a) of a two-talker mixture with reverberation time of 0.4 s, and three different sets of hypothesized
T-F regions. We show hypothesized local grouping in time (b), local grouping in frequency (c) and non-local grouping (d).

ture for each T-F unit,

ψ1(x, i) = log

(
Pc(τi, λi|θ0)
Pc(τi, λi|θ1)

)
. (5)

where θ0 and θ1 denote the azimuth of the target and interfer-
ence signals, respectively. In Section 4.3, we include a subscript
‘B’ for systems that use this association feature.

We can incorporate the monaural grouping cues into addi-
tional association features by generating context-sensitive bin-
aural features. For example, given a set of T-F regions, Sl, we
generate a feature for each T-F unit using,

ψSl(x, i) =
1

|sk|
∑
j∈sk

log

(
Pc(τj , λj |θ0)
Pc(τj , λj |θ1)

)
, (6)

where i is a member of T-F region sk, which is a member of the
set Sl and |sk| denotes the number of T-F units contained in T-
F region sk. The feature ψSl(x, i) thus integrates information
from a region hypothesis and is shared by all T-F units con-
tained in the region. Given a number of different hypothesized
sets of T-F regions, {S1, S2, . . . , SL}, where each Sl is itself a
collection of T-F regions sk, we can generate the set of features
[1, ψ1(x, i), ψS1(x, i), · · · , ψSL(x, i)] for each T-F unit i. In
this study L = 11. When combined with ψ1(x, i) and a bias
feature we have a total of 13 association features. In Section
4.3, we include a subscript ‘A’ for systems that use this entire
vector of association features.

3.4. Interaction features

Using interaction features to encode the monaural cues is a nat-
ural fit since the monaural cues capture relatedness between dif-
ferent T-F units. In generating interaction features, we treat
edges between two neighboring T-F units in time within the
same frequency channel (time edges) and between T-F units
in different frequency channels but the same time frame (fre-
quency edges) separately, by using different interaction features
for each edge type. We generate binary interaction features for
time edges using the T-F regions for local grouping in time.
Similarly, we generate binary interaction features for frequency
edges using the T-F regions for both local and non-local fre-
quency grouping. The binary features take a value of 1 when
two connected T-F units are both contained in the same T-F re-
gion.

In addition to these binary features, we generate two real-
valued features for both time and frequency edges using the
pitch-related cues discussed in Section 3.2. We also include
a separate bias feature for time and frequency edges, giving us
9 features over time edges and 6 features over frequency edges,
for a total of 15 interaction features. In Section 4.3, we include

a subscript ‘I’ for systems that incorporate the interaction fea-
tures.

4. Evaluation
4.1. Database

We use the ROOMSIM package [15] to generate impulse re-
sponses that simulate binaural input at human ears. We generate
a library of binaural impulse responses for direct sound azimuth
angles between−90◦ and 90◦ spaced by 5◦, and 3 reverberation
conditions: T60 = 0.2, 0.4, 0.6 s. We generate 200 two-talker
mixtures where sources are set to have equal energy using the
monaural utterances prior to mixing. Sources are spaced ran-
domly, but are constrained to be between 10◦ and 120◦ apart.
We use 100 of the mixtures with T60 = 0.4 s for training and 25
for development. To analyze generalization of the models, we
test on the remaining 75 mixtures and on 75 mixtures for T60 =
0.2 and 0.6 s.

4.2. Graph structure

For the systems in which we incorporate interaction features
and decode the mask as a whole, we use a neighborhood struc-
ture that connects each T-F unit to its neighbors in time, and to
T-F units at logarithmic jumps in frequency. Specifically, each
T-F unit is connected to T-F units in the same time frame at
jumps of 1, 2, 4, 8, 16 and 32 frequency channels, both up and
down. Thus, each T-F unit can have up to 14 neighbors.

4.3. Segregation performance

To assess segregation performance of the proposed systems, we
measure the signal-to-noise (SNR) of the estimated signals rel-
ative to the signal generated by the IBM. We compare our pro-
posed framework to the recent, binaural only “MESSL” system
[5]. We also compare a number of alternative systems using
the models described in Section 2. We consider two local sys-
tems that estimate a T-F mask independently in each T-F unit
using Equation (1). For one local system, LocalB, we use only a
bias and the binaural association feature. The second local sys-
tem, LocalA, uses the full set of association features and thus
captures the monaural grouping through the context-sensitive
binaural features. We also consider two global systems, which
generate an entire T-F mask using Equation (2). The neighbor-
hood structure of these graph-based systems is described above
in Section 4.2. The first global system, GlobalBI, uses only the
binaural feature and a bias for the association features, and in-
corporates the monaural cues by using the full set of interac-
tion features. The second global system, GlobalAI, uses the
full set of association and interaction features, thereby capturing
monaural grouping in both ways.

408



Table 1: Average SNR (in dB) for five alternative segregation

systems as a function of T60 in s. Subscript ‘B’ denotes use of

the single, binaural association feature. Subscript ‘A’ denotes

use of the full vector of association features. Subscript ‘I’ de-

notes use of the full vector of interaction features.

T60 MESSL LocalB LocalA GlobalBI GlobalAI

0.2 8.9 11.3 13.6 11.7 12.8

0.4 5.6 6.6 10.2 7.7 9.2

0.6 4.4 4.9 7.7 5.5 6.8

In Table 1 we show the SNR averaged over 75 mixtures in
each of 3 T60 times for each of the 5 alternative systems. Our
first observation is that each system that incorporates monaural
analysis, either in the association or interaction features, outper-
forms both exclusively binaural systems in all 3 T60 times. We
should note that while the MESSL system is a recent binaural
system, Mandel et al. define the segregation goal as estimat-
ing the anechoic target signal, whereas we desire an estimate
of the reverberant target signal. With our goal in mind, we see
the comparison to both MESSL and the LocalB system as infor-
mative because one can see the ability to discriminate between
target or interference dominant T-F units is severely degraded
by reverberation.

Comparing the two local systems, we can see that encoding
monaural cues in a set of association features improves SNR by
between 2.3 and 3.6 dB, depending on the reverberation time.
Comparing the LocalA system to the GlobalBI system, we can
see that encoding the monaural information in the interaction
features does not appear to be as successful in terms of SNR. In
listening to the output signals, this appears to be due to less ef-
fective suppression of the interference source. The performance
of the globally estimated masks is improved when encoding the
monaural cues in both association and interaction features, as in
the GlobalAI system.

Visual inspection of the masks generated by the global sys-
tems shows that the estimated masks are much smoother (neigh-
boring T-F units are more likely to have the same label) than
either of the local systems. In highly reverberant conditions,
or for mixtures in which sources are closely spaced, the global
systems have a tendency to group too many T-F units across fre-
quency together. This is potentially due to the fact that we treat
all frequency neighbors the same in the interaction features, so
the weights learned over the features are shared for frequency
edges whether the T-F units are in neighboring channels or are
32 channels away.

5. Concluding remarks
Our results indicate that integrating monaural and binaural cues
improves segregation performance relative to using binaural
cues alone. We have shown an increase of up to 3.6 dB in
terms of SNR. We have proposed a novel method for learning
to weight multiple sources of monaural grouping evidence, and
shown that using a simple linear combination in the context-
sensitive feature space can achieve good performance.

The global systems which seek to estimate the T-F mask as
a whole produce very different time-frequency masks. These
masks are much smoother in that neighboring T-F units across
frequency are much more likely to receive the same label. This
seems to reduce the amount of artifacts present in the signal, and

in some cases produces a more natural sounding output. In fu-
ture work we will consider treating across frequency edges dif-
ferently, so that weights are not tied for each type of frequency
connection. Future work should also consider alternative graph
structures and explore how across frequency connectivity af-
fects performance. One could also consider a more sophisti-
cated training approach or alternative methods for monaural or
binaural analysis.
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