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Abstract—Simple recurrent networks ( Elman networks) have been widely used in temporal processing applications.
In this study we investigate temporal generalization of simple recurrent networks, drawing comparisons between
network capabilities and human performance. Elman networks are trained to generate temporal trajectories sampled
at different rates. The networks are then tested with trajectories at the trained rates and other sampling rates,
including trajectories representing mixtures of different sampling rates. It is found that for simple irajectories the
networks show interval invariance, but not rate invariance. However, for complex trajectories which require greater
contextural information, these networks do not seem to show any temporal generalization. Similar results are also
obtained using measured speech data. These results suggest that this class of recurrent networks exhibits severe
limitations in temporal generalization. Discussions are provided regarding rate invariance and possible ways to
achieve it in neural networks. Copyright © 1996 Elsevier Science Ltd

Keywords—Neural networks, Temporal generalization, Recurrent networks, Elman networks, Speech processing,
Rate invariance, Interval invariance, Simple sequence, Complex sequence.

1. INTRODUCTION

Time plays a fundamental role in almost all kinds of
cognitive behavior, including perception, memory,
and motor pattern generation. A considerable
amount of work has been done in neural networks
to address various aspects of temporal processing,
ranging from recognition to production of temporal
patterns, such as abstract sequences, speech, time
series, and grammatical structures (sece Wang, 1995).
There are two ways that time is embedded in a
temporal pattern: temporal order and time duration.
Temporal order refers to the ordering of components
in a temporal sequence, and time duration describes
how long each component lasts.
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1.1. Psychological Background on Temporal
Generalization

Time duration plays a critical role in temporal
processing. In speech recognition, for example, the
relative durations of vowels (e.g., /i:/ in “‘sheep” and
/i/ in “ship”) are important. In motor control, the
timing of limb motions often characterizes different
gaits. More interestingly, humans seem to pay more
attention to the relative timing among components of
a temporal pattern than the absolute durations of
components. For example, when listening to a song
or a piece of music we can readily adjust to rate
changes and can recognize the piece when it is played
at a different speed (tempo). It is well known that
subjects can reproduce an acquired temporal pattern
with different rates, provided that relative timing is
not changed. This holds for both speech production
and music generation (Klatt, 1976; Sloboda, 1985;
Port et al, 1987, 1996). A substantial body of
psychological evidence demonstrates that, to a
certain extent, human subjects exhibit rate invar-
iance in recognizing temporal patterns (Klatt, 1976;
Bartlett & Dowling, 1980; Watson & Foyle, 1985,
Espinoza-Varas & Watson, 1986; Port et al., 1987,
Kidd & Watson, 1988, 1992). Bartlett and Dowling
(1980) found little effect of presentation rate in
learning and recognizing transposed melodies. In
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speech perception, listeners appear to be capable of
adjusting their perception according to perceived
speaking rates without affecting perceptual outcome
(Klatt, 1976). Port and Dalby (1982) found overall
speaking tempo does not have a large influence on the
voicing of a consonant, provided that the ratio of the
consonant to the preceding vowel is kept constant.
Port et al. (1987) examined mora timing in Japanese,
which asserts that Japanese speech is composed of
timing units—moras—with roughly equal intervals,
and they found little effect of speaking rate on such
mora timing. Watson and his colleagues have
conducted extensive studies on human temporal
generalization capabilities in the perception of tonal
sequences. In the experiments of Watson and Foyle
(1985), subjects were asked to discriminate variations
in serial positions and frequencies of the components.
For instance, subjects listened to a sequence with
different durations (corresponding to different pre-
sentation rates). Their results show that subjects’
performance in discrimination tasks is affected by the
number of freely varying components in the
sequences, but not by the presentation rate—at least
over a limited range of rates. When human subjects
listen to acoustic patterns, adjustment for rate
variation is obtained naturally (Kidd & Watson,
1988).

On the other hand, human subjects seem to be
sensitive to relative durational variations. Relative
durations characterize music scores. The experimen-
tal results of Bartlett and Dowling (1980) suggest that
both experienced and inexperienced subjects store
relative durations of a melody in their long-term
memory after they have learned the melody, and use
the relative durations in recognition tasks. Varying
the relative rate of musical notes makes a piece of
music much harder to recognize. The threshold of the
just noticeable change of the duration of a
component was found to be about 10-20% of the
duration of that component (Espinoza-Varas &
Watson, 1986). Jones and Ralson (1991) have
studied human performance on melody recognition
with respect to rhythmic changes, which corresponds
to relative durational changes of a temporal
sequence. After being trained to recognize melodies,
the subjects were tested on durational variations of
the learned melodies. It was found that changes in
relative durations significantly lower a listener’s
ability to distinguish target melodies from decoys.
This was further confirmed by the study of Kidd and
Watson (1992) that emphasized the critical impor-
tance of relative duration of a component with
respect to the total duration of a temporal pattern
(they termed their observation the proportion-of-the-
total-duration rule).

In speech perception, relative durations also play
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durations sometimes play critical roles in recogni-
tion—it is more important in some languages than
others. Klatt (1976) reviewed at different levels many
effects of relative durational structures of an English
sentence, such as semantic emphasis, word-final
lengthening, and linguistic stress. It has been argued
that a rhythmic structure (durational structure) is
important for speech perception in general (Jones &
Boltz, 1989; Levelt, 1989). Port and Dalby (1982)

proposed that the durational ratio of _consopa}nt)
vowel s a primary acoustic cue for Enplich vosemg.

The principle of isochrony asserts the existence of the
regular structure of relative onset-to-onset durations
of stressed syllables in a continuous speech, and this
principle has been argued to exist in some languages
[see Port et al. (1996), for a review on the dispute
surrounding the isochrony principle]. In French and
Spanish, each syllable in a continuous speech seems
to have roughly the same duration (Levelt, 1989, p-
392). Particularly in Japanese, mora timing has been
established as a governing rule of speech (Port et al.,
1987; Han, 1994). On the other hand, we realize that
speech perception is a highly complex process
involving many dimensions, and that it is sometimes
difficult to put temporal boundaries on continuous
speech. Variations to the rate of speech are not
equally distributed across all phonemes and spaces
between syllables. Some components, such as vowels
with steady-state formants (primary resonant fre-
quencies of the vocal track), are varied in proportion
to the rate of an overall speech, while other
components, such as consonant phonemes preceding
or following vowels, maintain relatively constant
durations (Handel, 1989). In sum, although probably
not as definitively important as for the perception of
music and nonspeech signals, relative durations are
undeniably very important aspects of speech percep-
tion.

The following subsection reviews neural network
research that addresses the problem of temporal
learning.

1.2. Neural Network Studies

Multilayer perceptrons have been extended to include
recurrent connections in order to perform temporal
processing (Jordan, 1986; Pineda, 1987; Williams &
Zipser, 1989; Elman, 1990). An advantage of these
recurrent networks is that time is represented
implicitly in the architecture by incorporating a
form of short-term memory (STM) that is implemen-
ted through feedback connections. This type of
recurrent network was first studied by Jordan
(1986), whereby part of the input layer receives
external input, and the rest of the input layer consists
of state or context units that retain contextual
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one-to-one projections from the output layer and
feedback from themselves. Elman (1990) later
proposed another architecture in which part of the
input layer (context layer) simply holds a copy of the
activation of the hidden layer from the previous time
step. In these two recurrent architectures, the context
units function as STM. Following Cleeremans et al.
(1989), Elman networks are also referred to as simple
recurrent networks in this paper, and such recurrent
networks are among the most popular of recurrent
architectures. Simple recurrent networks can be
extended to fully recurrent networks in which each
unit has connections with all the other units of the
network (Williams & Zipser, 1989).

This type of recurrent network has been widely
used for temporal processing tasks. Sequence
recognition tasks have been carried out by these
recurrent networks. For example, Watrous et al.
(1990) described a recurrent network for speech
processing. The network was trained to discriminate
/b/, /d/, and /g/ in the consonant—vowel syllables.
Port (1990) used a form of the Elman network for
recognizing melodies, and described that the system
exhibits a chain of associations between various
stable states. Pollack (1991) demonstrated that a
similar recurrent network can recognize high-level
temporal structures. Cleeremans and collaborators
have used simple recurrent networks extensively for
learning abstract sequential structures of temporal
patterns, and reported successful comparisons with
some psychological data of human sequential
learning (Cleeremans, 1993). Hanes et al. (1994)
used simple recurrent networks to map acoustic data
to phonetic representations. In this experiment, which
we shall refer to later, networks were trained to
recognize phonemes in consonant-vowel-consonant
syllables. They used formant data as input, and each
output unit represented the probability of the
presence of a particular phoneme.

Recurrent networks have also been used for
temporal sequence generation. For example, Pearl-
mutter (1989) trained recurrent networks to learn
state space trajectories using continuous recurrent
networks which evolve through time according to a
set of differential equations. Massone and Bizzi
(1989) applied Jordan’s network to generate artificial
limb trajectories for robot control. The network was
trained to translate a sensory stimulus directly into a
temporal sequence of muscular activation which
corresponds to minimum jerk trajectories.

In addition to recurrent networks which are based
on multilayer perceptrons, several other recurrent
architectures have been proposed for temporal
sequence processing. One such architecture is based
on the dynamics of the Hopfield model of associative
memory (Tank & Hopfield, 1987), where various time
delays were used as STM. This network recognizes
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sequences through attractor dynamics, and an input
sequence controls the process of dynamic evolution
so that the most similar temporal template will be
recalled when the equilibrium is reached. This model
was later used for spoken digit recognition (Un-
nikrishnan et al., 1992). Another architecture uses
temporal template matching for recognition and
recurrent connections from the recognition layer to
an STM layer to generate complex temporal
sequences (Wang & Arbib, 1990, 1993). STM can
be encoded either as activity decay, or interference
among components of a sequence. With the help of
self-organization which is implemented by recurrent
connections within the recognition layer, Wang and
Yuwono (1995) proposed a network that learns
temporal patterns based on anticipation and match
between the network’s anticipation and the actual
input in the next time step. The network was shown
to be capable of generating any complex sequence
and learning temporal patterns incrementally.

While the importance of temporal generalization is
well established in human performance, only limited
research has been conducted to assess temporal
generalization capabilities of recurrent networks.
Tank and Hopfield (1987) incorporated limited
distortions in component intervals. Wang and Arbib
(1993) showed that their network can recognize
learned sequences when the time courses of these
sequences are varied, and produce learned sequences
with different rates. For simple recurrent networks,
Port (1990) reported that their network did not
generalize well when the tempo of a learned sequence
was slowed by a factor of two. He further reported
that a fully recurrent network was able to generalize
appropriately in this situation. Abu-Bakar and
Chater (1993) investigated rate-dependent factors in
sequence recognition, and reported that the recogni-
tion of their network is not affected by the durations
of sequence components. They considered only
simple sequences (definition given below). The
recurrent networks used by Hanes et al. (1994) were
able to recognize syllables spoken at both normal and
slow speeds after the networks were trained with
syllables at both rates. Although all of the above
studies show one way or another that neural
networks can perform successfully recognition at
different rates, these studies have not addressed the
critical question of how sensitive the networks are
with respect to variations of relative durations.

Because of their widespread use, research investi-
gating temporal generalization of simple recurrent
networks is of particular importance. In this paper,
we report our results of studying temporal general-
ization capabilities of simple recurrent networks. We
train this type of network to generate temporal
trajectories which are sampled at different rates, and
investigate the generalization ability of these net-
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works to rate and interval changes of acquired
temporal patterns.

The remainder of this paper is organized into the
following sections. In Section 2, some basic defini-
tions and the network architecture are specified. In
Section 3, we describe our experiments performed on
simple sequences. In Section 4, similar experiments
with complex sequences are reported. In Section 5, we
use measured speech data to verify our basic findings.
Finally in Section 6, we conclude the paper with
further discussion and suggestions.

2. CONCEPTS AND NETWORK
ARCHITECTURE

We represent a sampled trajectory as a temporal
sequence. Our definitions concerning temporal
sequences follow those of Wang and Arbib (1990).
A sequence consists of ordered components. The
context of each component is the shortest subse-
quence prior to the component that associates with
the component unambiguously. The degree of a
component is the length of its context, and the
degree of a sequence is the maximum degree of all of
its components. A simple sequence is a sequence with
degree one, i.e., in a simple sequence each component
is different from every other component (see, for
example, 4-B-C-D). A sequence is complex if its
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degree is greater than one (see, for example, A-B-C-
C-B-A).

We use the term rate invariance to mean that
sequence recognition is not affected by varying
presentation speeds of a sequence, but is affected by
varying the relative durations of components. In
contrast to rate invariance, we use the term interval
invariance to mean that sequence recognition is not
affected by varying presentation durations for
individual components of a sequence (Wang &
Arbib, 1993; see also Wang, 1995). It is clear from
the description of Section 1.1 that human subjects
exhibit rate invariance, but not interval invariance. It
is also clear that rate invariance is more specific than
interval invariance, because the latter encompasses all
durational variations while the former includes only a
specific subset of all possible durational variations.

To illustrate this point, three sequences are shown
in Figure 1. Each sequence is composed of three
components 4, B, and C, and the duration of each
component is different in each sequence. Suppose a
network is successfully trained to recognize sequence
1. The network is subsequently tested on sequences 11
and I11. Notice that sequence II, but not sequence III,
has the same relative durations as sequence L. If both
sequence II and sequence III are recognized without
further training, the network exhibits interval
invariance because the network cannot discriminate

A 2 ms
g
g B 2 ms
=%
E
S C 4 ms
Sequence I Time
A 3 ms
2
§ B 3 ms
5]
[=%
E ,
8 c 6 ms
Time
Sequence II
A ‘1 msl
|5
g B 3 ms
u
g
(=]
Q C 2 ms
Time
Sequence III

FIGURE 1. Rate invariance vs interval invariance. All three sequences consist of the same components arranged in the same temporal
order: A-B-C, but with different variations of component durations.
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Output Units
Hidden Units
Input Units Context Units

FIGURE 2. The architecture of the Eilman network. An arrow
represents weight connections in a certain direction.

on the basis of relative durational differences. On the
other hand, if only sequence II is recognized and
sequence III is not recognized, the network exhibits
rate invariance because the network has distinguished
between sequences with the same ordering, but
differing relative component durations. Thus, inter-
val invariance differs from rate invariance in that only
event order is considered in an interval invariant
system, and time durations of the events are totally
ignored. But rate invariant networks are sensitive to
both event order and relative event durations.

In light of the distinction made above, we
investigate in this paper both interval invariance
and rate invariance of recurrent networks. Our
following study will focus on simple recurrent
networks (Elman, 1990), because they are well
defined and the target of many studies and
applications. Figure 2 shows the structure of the
simple recurrent network we use for the present
investigation. The network has one input layer, one
output layer, and one hidden layer, as well as one
context layer “appended” to the input layer. There
are one-to-one, fixed connections from the hidden
layer to the context layer. The context layer feeds
forward to the hidden layer in all-to-all correspon-
dence by adjustable weights, thereby providing
contextural information (STM) to the network.
During both training and testing, input units receive
samples of the input sequence, while output units are
compared with the desired response of the network
sampled at a specific rate. This type of recurrent
network can be generally described in vector format
as follows. Let the output, y{z), be generated by f,,
and let the activation of the hidden units, h(¢), be
generated by f;. Then with the input x(¢),

h(1) = £, (Wix(s) + Wch(r — 1))

and
y(#) = £,(Whh(2))

where W;, W;, and W}, are the matrices of adjustable
weights from the input, the context, and the hidden
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units, respectively, f, and f;, are nonlinear but
differentiable, and thus permit training via gradient-
descent methods such as backpropagation. Here, f,
and f;, are taken to be the sigmoid function. The
architecture of the Elman network will be extended in
Section 4 where the context layer is expanded to a
number of sublayers, each of which holds a copy of
the hidden layer.

The network is trained using the standard back-
propagation algorithm for recurrent networks (El-
man, 1990). This learning algorithm is derived in a
similar way as for multilayer feedforward networks.
That is, gradient descent is used to minimize an error
criterion that is computed as the summation of the
squared difference between the actual and the desired
output trajectories. Weights are updated at each time
step. The training procedure used here can be viewed
as a special case of the training algorithm given by
Williams and Zipser (1989) for fully recurrent
networks.

To investigate temporal generalization, we train
the network to produce temporal trajectories of
various complexities. In order to correctly produce
a sampling point on a trajectory, however, the
network must be able to recognize the context which
consists of the current input and the activity held in
the context units (Figure 2). We vary the presentation
rate of a trajectory by sampling the trajectory with
different densities, which we call sampling rates. A
high sampling rate corresponds to a high-density
sampling, and a low sampling rate to a low-density
sampling. Since an input signal produces an output
signal at each step during sequence generation,
different sampling rates also correspond to different
rates of presenting the same sequence. Figure 3
illustrates this point with the trajectory of a sine wave
with one period. Figure 3a shows the original
trajectory. Figures 3b-3d show the same trajectory
sampled at the base rate, the double rate, and the
triple rate, respectively. In this figure, the step size is
held constant, and different rates of sampling are
directly converted to different rates of presenting the
original trajectory. Thus, to examine temporal
generalization of a network, we can train the
network with a sampling rate, and test the
performance of the network with a different
sampling rate.

3. SIMPLE SEQUENCES

We begin our experiments with simple sequences.
Since temporal dependence spans only one time step
in a simple sequence, very limited contextual
information is needed to recognize/generate the
sequence. Since an STM model is used to realize
temporal dependencies, only modest STM require-
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FIGURE 3. Sine wave trajectory with three rates of sampling. (a) Original continuous trajectory. (b) Base rate sampling with the sampling
interval T = 2x/20 and sampling points t, =nT,n =0,...,20. (c) Double rate sampling with the sampling interval T = 2u/ 40 and
sampling points t, =nT,n=0,...,40. (d) Triple rate sampling with the sampling interval T=2w/60 and sampling points
t,=nT,n=0,...,60.

ments are imposed on the networks by simple which is shown in Figure 4. As described earlier, the
sequences. continuous trajectory is sampled into a set of discrete
sample points, forming a temporal sequence. Each
sample point has a pair of values: an input and an

3.1. Input/Qutput Representation output, and the output is used as the desired output

The network is trained to produce the contour during learning. The order of the input samples is
trajectory of a “folded” double-period sine wave, indicated in the figure by arrowheads. Therefore, the
1 T T T T T L

Output

Input

FIGURE 4. Trajectory of a folded sine wave. Arrows indicate time flow directions. Simple sequences are obtained by sampling this
trajectory at different rates.
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training process for a sequence consists of sequen-
tially presenting to the network the input signal and
the (desired) output signal. The main purpose of
using the folded sine wave is to create repetitive input
sequences so that the context of an input signal is
important to determine the correct output signal.
Three sampling rates are used in this experiment.
For the base rate, 40 sample points are used to
represent the input and output sequences. The input
is a sequence of values going from 0 to 27 and then
from 2x to 0, corresponding to the axis of the sine
function. In order to form a closed output contour,
the desired output sequence is the sine of the input
when the input goes from 0 to 27, and the negative
sine of the input when the input goes from 27 to 0. At
the double and triple sampling rates, the same input
trajectory is represented by 80 and 120 sample points,
and the lengths of the two resulting sequences are 80
and 120, respectively. We note that (1) this sequence
is simple since the output is determined uniquely by
the state of the network at the last time step, and (2)
the base rate satisfies the Nyquist sampling theorem.

3.2. Experiments and Results

The network was first trained with the base sampling
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rate. After training, the network was able to produce
the sequence of the sampled sine trajectory at the base
sampling rate correctly (Figure 5a). Only four hidden
units were needed for the Elman network to learn this
sequence. The network was then tested at the double
sampling rate. From the results shown in Figure 5b, it
can be seen that the output trajectory for the double
rate differs dramatically from the desired trajectory.
This demonstrates that the network with the training
method cannot automatically generalize to a sam-
pling rate at which it has not been trained, even for
simple sequence production. This result is consistent
with that obtained by Port (1990), who reported
experiments on simple recurrent networks too, and
noted that a change in the presentation rate results in
poor network performance. These experimental
results suggest that temporal generalization capabil-
ity is not an intrinsic property of simple recurrent
networks.

To investigate the Elman network further, another
network was trained alternately at the base rate and
the triple rate so that it could perform production
successfully at both sampling rates. After training,
the network was tested on the double sampling rate
which had not been used in training. The results are
shown in Figure 6. From Figure 6, it can be seen that

base rate

T T T
double rate .

- - desired trajectory; — test trajectory; » sample point

FIGURE 5. Training and test results with a simple sequence sampled at the base and the double rates. The abscissa indicates input
which goes from 0 to 27 and then from 27 to 0. (a) Test trajectory at the base rate is used during training. (b) Test trajectory at the double
rate which was not used during training. The network size is 1 x 4 x 1, i.e., one input unit, four hidden units, and one output unit. Training
took 20 000 iterations. The sigmoid function used has a slope of 1 and a magnitude of 2 (from —1to 1). The learning rate was 0.1. Weights

were randomly Initialized between —2.5 and 2.5.
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double rate

0.5

(b)

(d

- - desired trajectory; — test trajectory; * sample point

FIGURE 6. Training and test results with a simple sequence sampled at the base, double, triple, and random rates. (a) Test trajectory at
the base rate as used during training. (b) Test trajectory at the double rate which was not used during training. (c) Test trajectory at the
triple rate as used during training. (d) Test trajectory at the random rate which was not used during training. The random rate is
composed of a random mixture of the base, double, and triple sampling rates. The network size is 1 x 10 x 1. Training took 120 000
iterations. The learning rate was 0.1 for the first 60 000 iterations, 0.05 for the next 40 000 iterations, and 0.01 for the last 20 000
iterations. To improve training performance, we started by training a network with six hidden units (100 000 iterations) and later
expanded the trained network to include four more hidden units for further training (20 000 iterations). The weights involving the first six
hidden units were randomly initialized between —2.5 and 2.5, and those involving the last four hidden units were initialized to 0. Other

parameters are the same as used in Figure 5.

the network was able to produce the sequences at
both the base and the triple rates on which it was
trained (Figures 6a and 6c). Note that training the
network to produce two sequences with different
sampling rates is more difficult than the training
required to produce either one of the two separately.
Thus, in our experiments, the network was first
trained with six hidden units, but later tests indicated
that six hidden wunits were insufficient to yield
successful training. The network was subsequently
expanded to 10 hidden units with the newly added
connections initialized to zero and the old connec-
tions (from the six hidden units previously trained)
remaining unchanged. After further training, the
expanded network successfully learned to produce
both sequences. This way of increasing from six
hidden units to 10 is merely a technique for speeding
up the training process. The test results displayed in
Figure 6b show that not only did the network
correctly produce the base and triple rate trajec-
tories, it also correctly produced a double rate
trajectory on which it had not been trained. This
indicates that the network can generalize to a new

sampling rate that is between the two rates on which
it was trained.

To address the question of whether the temporal
generalization shown in Figure 6b is the desired rate
invariance, the same network was then tested on a
sequence generated from a random mixture of
normal, double, and triple rates. As explained in
Section 2, this is equivalent to randomly varying the
interval durations of the components of the sequence.
To our surprise (and dismay!), as shown in Figure 6d,
the output trajectory of the network was not
significantly degraded by randomly varying the
intervals of the input sequence. Thus we were led to
the conclusion that temporal generalization as
exhibited in Figure 6 is interval invariance, and not
rate invariance. From a different perspective, we may
say that the network over-generalized in time because
it generalizes to treat all of the durational changes in
the same way (or to ignore the relative durational
information which is embedded in the training
sequences). The network’s ability to generalize to a
new sampling rate, in this case the double sampling
rate, is therefore an example of over-generalization,
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T T

four times the base rate

- - desired trajectory; — test trajectory; » sample point

FIGURE 7. Generalization to sampling rates outside the range of training samples. Test irajeclory at four times the base rate. The

network used for testing is the same as in Figure 6.

or interval invariance. To further confirm our
observation, we tested the same network on a
sampling rate which was outside the scope of the
two sampling rates used in training, that is, four times
the base sampling rate. The result is shown in Figure
7. Consistent with the results in Figure 6, the network
performed well on the sampling rate that is four times
the base rate.

4. COMPLEX SEQUENCES

The results discussed so far were for simple
sequences. In the real world, however, simple
sequences are rare and most natural sequences are
complex sequences. To uniquely specify a component
of such complex sequences, more information is
needed than just the state of the network at the last
time step. To process complex sequences correctly, a
recurrent network must develop extended STM to
keep track of the network states earlier than just the
previous time step. We conducted the following
experiments to see how the difference in STM
requirements affects the temporal generalization
capability of simple recurrent networks.

4.1. Network Structure and Training Method

When training sequences are complex sequences,
more powerful STM is needed to successfully

recognize/produce the input sequences. A straightfor-
ward way to increase the STM capability of an Elman
network is to increase the number of hidden units.
When the number of hidden units becomes large,
there are many connection weights and training the
network takes a very long time and becomes more
sensitive to initial conditions. When training simple
recurrent networks on complex sequences, we find
that training becomes more difficult as temporal
dependence among sequence components increases.
To learn to generate the complex sequence to be
described later in this section, we needed 40 hidden
layer units. In a typical experiment, it took an HP 715
workstation about 7 h to complete 10 000 iterations.
Because of the complexity of the problem, tens of
thousands of iterations are usually needed for each
trial. In short, the training becomes very time
consuming. This difficulty has also been discussed
by other researchers. For example, Bengio et al.
(1994) proved that gradient-descent based learning
algorithms face increasing difficulties as the length of
the dependencies to be captured increases. Elman
(1993) suggested an incremental input method to
improve training. The basic idea of his method is to
gradually increase the complexity of the training
samples. This method usually involves training on a
large number of different training samples. In our
experiment, however, we trained with at most two
sequences (of equivalent complexity) at the same
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Output Units

Hidden Units

Input Units Context n

- - - - Context 2 |=e Context 1

FIGURE 8. The architecture of the modified Eiman network. See the caption of Figure 2 for explanations. The dotted arrow indicates

omitted context sublayers from 3 to n — 1.

time, therefore the complexity of the sequences could
not be increased gradually and incremental training
could not offer much help.

To facilitate training, a new network structure, a
modified Elman network, is used in our experiment.
This new structure is shown in Figure 8. The context
layer is expanded to a number of sublayers, and each
context sublayers holds one copy of the hidden layer.
Thus, several copies of the hidden layer are
maintained in the network. At each time step, the
contents of a context sublayer are shifted to its right
sublayer. The contents of the rightmost sublayer are
discarded, and the leftmost sublayer directly receives
input from the hidden layer. In the original Elman
network, the trace of entire STM is blended into a
single context layer. As pointed out by Wang and
Arbib (1993), because of this blending and compres-
sing, the content of each component in a complex
sequence becomes difficult to represent in STM. In
the modified architecture, short-term memory is
spread over multiple context sublayers so that the
necessary information for sequence processing can be
held for a longer time. Since more information about
the past is available at the time of sequence
production, these networks should acquire complex
sequences more easily than that of the original Elman
network. This is confirmed by the following
experiments.

To compare training effects of the modified Elman
network with those of the original Elman network,
both networks were trained to perform the same task.
The total number of connections required in the
modified architecture was found to be much less than
that required for the original Elman network and
training time was decreased dramatically in our
modified network. For example, in order to learn
the complex sequences used in this experiment, the
Elman network required 40 hidden units, and thus
about 1600 weights. In contrast, only about 200

weights were needed using the modified Elman
network with three context sublayers and with each
sublayer having eight units. Instead of 7h to
complete 10 000 iterations for successful training,
less than an hour was needed with the modified
architecture. As before, the training algorithm was
based on back propagation.

4.2. Input/Output Representation

The complex trajectory used for the following
experiments is shown in Figure 9. This trajectory is
composed of two passes. The input trace for the
second pass is exactly the same as for the first
pass. For each pass, the input is a sequence of
values that varies gradually from O to 2 and then
from 2 to O (see Figure 9). The output trace of
the first pass is a diamond-shaped curve, that of
the second pass is a hexagon-shaped curve. The
two passes of the entire trajectory have substantial
overlaps. As in Section 3, this complex trajectory
was sampled with three rates, i.e., the base rate,
the double rate, and the triple rate. The three
sequences thus obtained contain 17, 33, and 49
samples, respectively. It is the overlaps of the
trajectory that make these sequences complex. For
the base sampling rate, each overlapping part of
the trajectory has three sample points. Therefore,
to separate the two passes of the trajectory, the
network must keep track of its previous states
for at least four time steps in order to generate next
components at branching points correctly. The
number of prior sample points which needs to be
remembered, i.e., the degree of the sequences, for
the double and triple sampling rates are six and
eight, respectively. Hence, the sequences at higher
sampling rates demand more extensive STM.
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FIGURE 9. A complex trajectory. Arrows represent time flow directions. Complex sequences are obtained by sampling this trajectory at

different rates.

4.3. Experiments and Results

The following training procedure is similar to that
described in Section 3.2. An Elman network with 40
hidden units was trained alternately with the two
sequences that were generated by sampling the
trajectory of Figure 9 at the base rate and triple
rate. After the network learned both training
sequences, it was tested on the sequence sampled at
the double rate that had not been used during
previous training. The results are shown in Figure
10. As displayed in Figures 10a and 10c, the network
learned to generate the base and the triple rate
sequences correctly. However, in contrast to the
simple sequence case, the network did not correctly
generalize to produce the sequence at the double
sampling rate. Although the sequence generation was
not good, a closer inspection reveals some interesting
aspects of the generated trajectory. A reminiscence of
the target trajectory was exhibited. We further tested
the network with a random mixture of sequences
obtained at all of the three sampling rates. As shown
in Figure 10d, the network did not generalize well to
these durational variations either. Similar to Figure
10b, the network seems to have obtained some
elements of the target trajectory. All the above
results indicate that the temporal generalization
capability is impaired when the temporal sequence
being processed becomes more complex. The fact that
generalization in Figures 10b and 10d matches some
elements of the target sequences suggests that the
network exhibits some interval invariance. On the
other hand, because the network performance in
Figure 10d is not worse than that in Figure 10b, we

can clearly rule out any rate invariance in these
experiments with complex sequences.

We find by probing the activities of hidden units
that, although 40 hidden units are needed to
successfully learn the sequences at both the base
and the triple rates, only a handful of these units
actually exhibit significant activities during test trials.
In addition, the same set of units is involved in
generating sequences despite all durational varia-
tions. During training with different rates of
sampling, the same set of hidden units has developed
significant representations, and this same set is
involved in all subsequent tests. The same phenom-
ena occurred when we conducted the training with
simple sequences (see Figure 6). This observation
suggests that small differences of hidden layer
activation may be responsible for yielding the
responses to different durational variations.

As described in Section 4.1, a modified Elman
network with eight hidden units and three context
sublayers was trained on the same task. The trained
network was tested on the complex trajectory of
Figure 9 sampled at the base, the double, and the
triple rates, as well as a random mixture of the three
sampling rates. The results are displayed in Figure 11.
It can be seen from the figure that the results with the
modified architecture are quite similar to those
obtained using the original Elman network. As
shown in Figures 1la and 1lc, the network
successfully learned the two training sequences, but
failed to generalize properly to interval variations.
Thus, the modification to the network structure did
not significantly change the temporal generalization
capability of the network. The performances in
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FIGURE 10. Training and test results using the Eiman network with a complex sequence at the base, double, triple, and random rates. (a)
Test trajectory at the base rate as used during training. (b) Test trajectory at the double rate which was not used during training. (c) Test
trajectory at the triple rate as used during training. (d) Test trajectory at the random rate which was not used during training. The random
rate is composed of a random mixture of the base, double, and triple sampling rates. The network size is 1 x 40 x 1. Training took 60 000
iterations. The learning rate was 0.1 for the first 10 000 iterations, 0.05 for the next 35 000 iterations, and 0.02 for the last 15 000
iterations. The weights were randomly initialized between —0.2 and 0.2. Other parameters are the same as used in Figure 6.

Figures 11b and 11d are comparable to those of
Figures 10b and 10d. Though the latter exhibits a
better production of the diamond, the former seems
to have picked up the horizontal trajectories better.
Although three context sublayers are used instead of
a single context layer, temporal generalization is not
improved. In other words, an expanded STM does
not seem to help temporal generalization of simple
recurrent networks. To further verify our observa-
tions, we conducted another experiment where the
number of hidden units was expanded to 16, double
that shown in Figure 11. The network again was able
to learn to generate the trajectories both at the base
rate and at the triple rate. But the generalization to
the double rate and the random rate yielded very
similar results as shown in Figures 11b and 11d. This
suggests that the failure to generalize to different rates
is not caused by insufficient hidden units. It appears
that the failure has to do with the way this class of
recurrent networks generalizes from input data. As
discussed in Section 2, rate invariance imposes a
global constraint on temporal generalization, which
does not seem to be captured by simple recurrent
networks.

We note that a number of studies have reported

improved generalization when the number of
parameters was reduced rather than increased. This
is a way to reduce overfitting the data, which limits
generalization. We did not observe this phenomenon
in our study. Indeed, only by increasing the number
of hidden units were we able to train the networks on
more than one sampling rate, as noted in Section 3.2
and also observed in the experiments reported in this
section.

5. ACOUSTIC TO PHONETIC MAPPING

After investigating the temporal generalization of
simple recurrent networks on synthetic trajec-
tories, we performed an experiment on a more
realistic set of data. We selected speech data for our
following study because speech processing is one
of the primary areas of potential applications of
recurrent networks, and earlier research on speech
processing suggests that the Elman network can
be effectively used in such applications. Neural
networks have been used in a number of speech
processing tasks (see Lippmann, 1989; Bourlard &
Morgan, 1994, for reviews). More specifically, the
problem of mapping acoustic waveforms to pho-
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FIGURE 11. Training and test results using the modified Elman network with a complex sequence at the base, double, triple, and random
rates. (a) Test trajectory at the base rate as used during training. (b) Test trajectory at the double rate which was not used during
training. (c) Test trajectory at the triple rate as used during training. (d) Test trajectory at the random rate which was not used during
training. The random rate is composed of a random mixture of the base, double, and triple sampling rates. The network size is 1 x 8 x 1.
Training took 34 000 iterations. The learning rate was 0.05. The weights were randomly initialized between —0.5 and 0.5. Other

parameters are the same as used in Figure 6.

netic representations has been studied recently by
Watrous et al. (1990) and Hanes et al. (1994)
(see Section 1.2). Their work has focused on
mapping the contours of the first three formants to
output values that indicate the presence of con-
sonants and vowels in CV or CVC (consonant—
vowel—consonant) syllables.

Our experiment is based on an earlier study
by Hanes et al. (1994), who successfully used the
Elman network to recognize CVC syllables spoken
at different rates. In their experiment, a speaker
was asked to utter CVC syllables at both normal
and slow rates. The initial and final consonants
were from the phoneme set {/b/, /d/, /g/} and the
vowels were from the phoneme set {/a/, /e/, /i/}.
They reported that once trained with one set of
syllables spoken at different rates, the network
can readily identify phonemes in another set of
syllables spoken at different rates. The main
purpose of our experiment is to examine general-
ization of simple recurrent networks on more
realistic temporal trajectories; in particular, we want
to examine the type of temporal generalization
reported by Hanes et al. (1994), since their study

seems to imply that the Elman network can per-
form proper rate generalization.

5.1. Input/Output Representation

In the work reported here, samples of the first three
formant trajectories were used as the inputs to the
Elman networks, and these samples were estimated
from the closed glottal portion of the pitch period.
The formant frequencies were estimated using a high-
order linear prediction analysis followed by a singular
value decomposition. Since the formants are esti-
mated pitch-synchronously, the formant contours are
not sampled uniformly. Cubic spline functions were
fit to each formant contour, which was then sampled
every 10 ms to get a uniformly sampled formant
contour. The formant contour was laid out on a
wideband spectrogram of the utterance and inspected
visually for accuracy.

We adopt an input/output representation similar
to that used in Hanes et al. (1994). Three separate
networks were used to recognize the initial con-
sonant, the vowel, and the final consonant, respec-
tively. The network for recognizing the initial
consonant is 3 x 9 x 3, where three input units
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represent three formants in the utterance. Formant
frequencies are normalized to the range between 0
and 1, with 1 corresponding to 3 kHz. Three output
units represent three possible consonants from the set
{/v/, /d/, /g/}. Each output unit has a desired
trajectory formed on the basis of input formant
trajectories. As suggested by Watrous et al. (1990),
the desired output trajectories were chosen so that the
outputs could be interpreted as the a posteriori
probabilities of the presence of the individual
phonemes. The details of creating output trajectories
were given in Hanes et al. (1994), including sample
target trajectories for a complete CVC syllable. As
argued by Watrous et al. (1990) and Hanes et al.
(1994), this method of forming output trajectories
produces reasonable outcomes while avoiding en-
tirely arbitrary solutions. During testing, the output
unit whose desired output trajectory matches the
actual output trajectory most closely is selected as the
recognized consonant. The mapping for the vowel
and for the final consonant is done in the same
manner, except that the network for vowel recogni-
tion is 3 x 3 x 3 and for final consonant recognition
is 3 x 5 x 3. For vowel recognition, the three output
units represent the three vowels {/a/, Je/, [i/},
respectively. For final consonant recognition, the
three output units represent three possible conso-
nants from the set {/b/, /d/, /g/}, as for initial
consonant recognition.
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5.2. Training and Results

The training data consist of 50 utterances of 25 CVC
syllables spoken at both normal and slow rates. These
25 syllables are shown in Table 1. There are 27
possible combinations of syllables from the three
consonants and the three vowels. Two of them were
not used because the corresponding utterance data
are not available. In Hanes et al. (1994), the networks
were trained with a set of utterances that contain
both siow and normal rates, and tested with another
set of utterances not used during training. Since we
are primarily interested in investigating temporal
generalization of these networks to different interval
variations, we use all of the 50 utterances as training
samples. After training, the networks were able to
recognize the initial consonants with a correct rate of
96%, the vowels with 100%, and the final consonants
with 98%. Notice that recognition rates are
computed using both normal and slow utterances.
These results are consistent with those reported in
Hanes et al. (1994). During testing, the desired
(output) trajectory for an utterance of a different
rate is formed by linearly shortening or lengthening
the desired trajectory used during training.

After training, the networks are tested on input
trajectories which were synthetically generated from
the original speech data. During -testing, an input
trajectory consists of two parts: the first half is

Input trajectory for /dig/ (slow)

08f T Timi— s ~
~
06} — — — = — - = - — -7
0.4
0.2
_—
0
0 10 20 30

Time step

(b)

Input trajectory for /dig/ (normal-sliow)

08~ = — =~ T =
06 _ _ _ _ P
0.4
0.2
_
0
0 10 20 30
Time step
(d)

FIGURE 12. Input trajectories with different spoken rates for the utterance /dig/. Only the first three formants are shown. (a) The normal
rate utterance. (b) The siow rate utterance. (c) The mixed trajectory with the first half at the slow rate and the second half at the normal
rate (slow-normal). (d) The mixed trajectory with the first half at the normal rate and the second half at the slow rate (normal-slow).
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TABLE 1

Phonemes Used in the Experiment
bab dab gab
bad dad gad
bag dag gag
beb ded geb
bed deb ged
beg deg geg
bib dib gib
bid dig gid
big

Desired trajectories of the final consonant
/dig/ (normal)

b 0 e
(a)

Desired trajectories of the final consonant
/dig/ (slow—normal)

Desired trajectories of the final consonant
/dig/ (normai-slow)

p O [ene
(e)
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composed of the formant data of a syllable spoken at
one rate (normal or slow) and the second half is
composed of the formant data of the same syllable
spoken at a different rate. Figure 12 shows an
example with /dig/, where all of the four possible
input trajectories are illustrated. The desired (target)
output trajectories are constructed similarly. The
recognition is achieved by selecting a consonant or
vowel whose desired output trajectory is most similar
[see Hanes et al. (1994), for detailed description] to

Desired trajectories of the final consonant
/dig/ (slow)

-y

b 0 He

()

Actual trajectories of the final consonant
/dig/ (slow—normal)

Actual trajectories of the final consonant
/dig/ (normal-slow)

FIGURE 13. Desired and actual output trajectories for the output layer of the final consonant recagnition network. These trajectories are
for the utterance /dig/. (a) The desired output trajectory for the normal rate utterance. (b) The desired output trajectory for the slow rate
utterance. (c) The desired irajectory for the mixture of the slow-normal rate. (d) The actual trajectory for the mixture of the slow—normal
rate. (e) The desired trajectory for the mixture of the normal-slow rate. {f) The actual trajectory for the mixture of the normal-slow rate.
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TABLE 2
Summary of Network Classification Accuracy

Test Accuracy (%) Test Accuracy (%)

Phoneme Network Size Training Accuracy (%) (Normal-Slow) (Slow—Normal)
Initial 3x9x3 96 100 92
Vowel 3x3x3 100 100 100
Final 3x5x3 98 96 100

the actual output trajectory of the corresponding
output unit. The test results of the three networks,
corresponding to the initial consonant, the vowel,
and the final consonant, are summarized in Table 2.
Figure 13 shows the four desired output trajectories
of different durational variations for the final
consonant of the utterance /dig/. Also shown are
the two actual output trajectories of the output layer
(with three units) of the final consonant recognition
network. In both cases, consonant identification is
correct.

As is evident from Table 2, the classification
accuracy of the phonemes is not degraded by
disproportional interval variations in the test
sequences. Note that, in Table 2, the improvement
in classification accuracy observed when testing with
initial and final consonants occurred predominantly
for testing tasks with normal presentation rates in the
corresponding phoneme positions (e.g., the case
involving initial consonant and normal-slow pre-
sentation). The slight degradation/improvement
during testing is not statistically significant, given
that only 50 utterances were used for testing. What is
significant from Table 2 is that the networks not only
generalize to recognize the trajectories collected at
different rates (Hanes et al., 1994), but also generalize
to local interval variations. In other words, the
temporal generalization demonstrated by these net-
works is not rate invariance, but interval invariance.
We do not claim that our method of varying the input
and desired trajectories of an utterance necessarily
corresponds to that of well-formed speech, but only
that it is a reasonable way of producing durational
changes. Still, it suffices to demonstrate that the
recurrent networks used in these experiments do not
warrant the temporal generalization of rate invar-
iance, as seemingly suggested in the experimental
results of Hanes et al. (1994).

The above task of mapping acoustic waveforms to
phonemes is similar to the tasks of producing
temporal trajectories investigated in Sections 3 and
4. Both involve transforming from an input trajectory
(or trajectories) to an output trajectory, and both
involve variations to rate and relative rate. One may
argue that speech utterances should have longer
temporal dependencies, and thus should show
behavior similar to complex temporal sequences
(Section 4), not to simple sequences (Section 3). But

it is not clear whether the task dealt with here, i.e.,
recognizing phonemes from the first three formant
trajectories, necessarily involves long temporal
dependencies. Also, it is not difficult to see that
recognition tests both in the experiments of Hanes et
al. (1994) and in our experiments have limitations.
One major limitation is that there are only three
possible outputs for all of the recognition networks,
as opposed to many possible outputs studied in
Sections 3 and 4. Because of this, no accurate
generalization is needed for performing reasonably
well in this context of speech recognition.

6. CONCLUDING REMARKS

As described in Section 1.1, many psychological
studies conclude that human subjects show rate
invariance in recognizing various kinds of temporal
patterns. Qur study on temporal generalization was
motivated by the psychological observation, and we
chose simple recurrent networks because they have
been widely used and have been shown to exhibit the
ability to process temporal information. To examine
temporal generalization capabilities of simple recur-
rent networks, we have conducted a set of computer
experiments. From the results of the experiments,
several conclusions can be drawn.

First, it is clear that temporal generalization
capabilities are not inherent in simple recurrent
networks. Simple recurrent networks do not general-
ize to produce a trajectory at another sampling rate if
they are trained with only one sampling rate. Because
no explicit mechanism for rate adaptation is present,
this should be expected from the learning scheme of
these networks, which in essence follows examples (or
example-based learning). Simple recurrent networks
are different from the networks proposed by Tank
and Hopfield (1987) and Wang and Arbib (1993)
where some degree of temporal generalization is
incorporated into the network design. This conclu-
sion does not imply a limitation on the recurrent
networks.

Second, temporal generalization to rate changes is
limited for simple recurrent networks after they are
trained with example trajectories with rate variations.
It appears that these networks show different
qualitative behavior when dealing with simple
sequences and with complex sequences. With simple
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sequences, these networks exhibit interval invariance
in recognition. For complex sequences, however, the
networks do not even secem to exhibit interval
invariance (at least not conclusively). What is most
conclusive is that simple recurrent networks do not
exhibit any form of rate invariance. In other words,
they are incapable of recognizing relative durational
variations. This conclusion is consistent with all of
our experiments, including our investigation using
real speech data.

We have conducted our experiments using both
the standard architecture of simple recurrent net-
works (Elman, 1990) with various sizes, and
extensions to the standard architecture (Figure 8) to
incorporate more extended short-term memory. Thus
we believe that our conclusions about temporal
generalization of simple recurrent networks are not
specific to the particular networks we have used in
this paper, but reflect the general characteristics of
simple recurrent networks. Our findings are consis-
tent with earlier studies of simple recurrent networks
with respect to interval invariance, such as those
obtained by Port (1990) and Hanes et al. (1994). On
the other hand, we note that our experiments, no
matter how extensive they are, cannot decisively
conclude that simple recurrent networks are incap-
able of proper temporal generalization. After all, our
conclusions are reached through experiments, not
theoretical analyses (for this matter, all positive
conclusions about these networks are also not
decisive). What we have shown is that some
fundamental changes, either with respect to the
architecture, the learning algorithm, or the way
STM is maintained, must be introduced in order to
make this class of recurrent networks perform
properly with respect to rate changes.

Rate invariance requires invariance to overall rate
changes, but maintains sensitivity to relative dura-
tional changes among sequence components. Unlike
interval invariance which can be dealt with locally
(paying no attention to durations is one way), rate
invariance is a global property, thus posing a
significant challenge to neural networks as a whole.
To our knowledge, no proposed network architecture
is able to achieve rate invariance (see also Wang,
1995). The network of Tank and Hopfield (1987) can
deal with limited interval variations, but does not
seem capable of adjusting to overall rate changes.
While the model described by Port (1990) successfully
generalizes to different rates, it appears that the
network is insensttive to changes in relative compo-
nent durations. Wang and Arbib (1993) demon-
strated that their networks are capable of only
interval invariance. In a recent study, Bersini et al.
(1994) show that a fully recurrent network based on
continuous dynamics of the Hopfield net can
recognize temporal trajectories, including a trajec-
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tory that is very similar to the folded sine wave of
Figure 4. Their results show that the network is
capable of recognizing scaled trajectories. Unfortu-
nately, it is unclear whether their network is sensitive
to relative durations, a critical question from our
perspective. From their design, it does not seem that
their network should show sensitivity to relative
timing.

Another way of looking at rate invariance is to
make an analog between duration in time and size in
space. From this analog, rate variations to a temporal
pattern correspond to size variations to a spatial
pattern, and rate invariance in temporal pattern
recognition corresponds to size invariance, albeit one-
dimensional, in spatial pattern recognition. Existing
techniques to achieve size invariance in pattern
recognition may provide useful insights to the
problem of rate invariance. One idea to achieve size
(scale) invariance is based on a log-polar transforma-
tion from a preprocessing layer to the input layer.
Under log-polar mapping, scale transformation is
converted into translation (Reitboeck & Altmann,
1984), and the same input with different scales
activates the same graph at different positions.
Translation invariance is relatively easier to handle.
A more straightforward idea, as used in Lades et al.
(1993), is based on scaling: before an input object is
applied to a recognition system, it is scaled by a
factor within a certain range, keeping its center fixed.
This is the idea behind elastic nets (Durbin &
Willshaw, 1987), which can be used to achieve other
forms of invariance. By modifying the scale factor
within a reasonable range, the stored pattern in the
memory layer is identified that shows the highest
matching among all possible scales. A similar idea is
proposed by Simard et al. (1993) which incorporates
invariance directly in the distance measure between a
template and an input pattern. Perantonis and Lisboa
(1992) used high-order networks to achieve size
invariance. In their networks, scale invariance is
encoded by forming equivalence classes, each of
which consists of similar triangles. Similar triangles
are then encoded by a third-order network, where
each weight involves three input units and one output
unit. It is possible that some of these techniques can
be adapted to address rate invariance in temporal
processing. For example, temporal patterns can be
stored as templates, and in recognition, these
templates are allowed to stretch in the time axis
within a reasonable range. The template that exhibits
the best matching with the input pattern is chosen as
the recognition. Whether and to what extent these
techniques for size invariant object recognition can be
adapted to rate invariance remain to be a topic of
future research.

The above techniques for handling size invariance
handle scale invariance regardless of the range of
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scale variations. Of course, an explicit range can
always be included a priori, say a factor of 10 of the
stored template, but the techniques in essence are
insensitive to the range of scale variations. This
insensitivity to scale range may suit size invariance,
since the range of legitimate size variations in spatial
patterns is very large. However, natural rate
variations occur only in a limited range, mostly
within a factor of two (Klatt, 1976; Watson & Foyle,
1985; Port, 1990). So a blind treatment of rate
invariance would entail undesired over-generalization
of rate. For auditory patterns, there appear to be
natural markers that can be used to detect the rate of
the input flow. In speech, as described in Section 1.1,
languages have been argued to exhibit a rhythmic
structure, whether it be mora timing in Japanese or
stress rhythms in English and other languages. In
addition, models have recently been devised to detect
rate changes in an input flow. The Tau net (Cottrell et
al., 1993; see also Nguyen, 1995) uses a recurrent
network to learn a template pattern, and then adapts
the time constant of the network to match the
template pattern with rate variations in the input
flow. This is essentially similar to the size scaling
method in Lades et al. (1993). This approach is
computationally intensive when dealing with a large
number of templates. Large and Kolen (1994) have
proposed the idea of entraining oscillators with input
rhythms of music meter (see also Large, 1994). A
similar model of adaptive oscillators has been
proposed by McAuley (1995) to account for human
rate discrimination of a tone series. These adaptive
oscillator models can quickly estimate the rate of a
rhythmic flow, which is allowed to vary in real time.

Based on the above observations, we suggest the
following approach for rate invariant recognition:
explicitly estimate the rate of a temporal flow and
then adapt recognition to the estimated rate. This
approach does not exhibit the problem of rate over-
generalization—the accepted range of variation is
derived from the input itself, not imposed a priori.
More specifically, the current rate estimated by an
adaptive oscillator can be fed to a recognition model
in real time to cue the recognition process to the
current rate. One way to incorporate rate information
is to adapt the time constant of a recurrent network
to the period of an adaptive oscillator. This proposal
builds on both adaptive oscillator models and the
Tau net, and its main advantage lies in eliminating
the need to search through all possible rate
variations, which is computationally intensive. Note
that this approach does not have to couple with
simple recurrent networks, and may apply to other
models of temporal pattern recognition.

It is interesting to look at rate invariance from the
perspective of complexity of formal languages. If we
discretize a component with a certain duration into
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multiple occurrences of that component with each
component having a constant interval, then the
duration corresponds to the number of the con-
secutive and repeated components. Thus, the
sequence S: A-A-A-B-B-C-C-C-C corresponds to
the sequence that is composed of three components,
i.e., 4, B, and C; the duration of A is three time steps,
B two time steps, and C four time steps. We may use
a superscript to indicate the number of repetitions of
the same component so that the sequence S is
represented as 43B>C*. In this representation, an
arbitrary sequence with arbitrary durations can be
represented as p) —p? —...—ph, where n,i,
iy,..., I, are positive numbers. Coming back to our
notation, all interval varations to a sequence that
contains the sequential components of py,ps,...,pn
constitute  the language L, :{p} —p% -
—pliy >0,i >0,...,i, >0}. It can be easily
shown that L, is a regular language (Hopcroft &
Ullman, 1979). On the other hand, all rate variations
to the sequence p,p»—...—p, constitute the
language Ly :{p\ —p5—...—pili>0}. It is well
known that L, is a context-free language if n =2,
and is a context-sensitive language if n > 3 (Hopcroft
& Ullman, 1979). Theoretical computer science has
shown that to recognize context-sensitive languages
demands computing devices with higher magnitudes
of complexity than those required to recognize
regular languages. The above interpretation shows
from a different perspective the difficulty of recogniz-
ing temporal patterns with rate invariance as opposed
to interval invariance. Our interpretation is consistent
with a recent study of recurrent networks by Kolen
(1994). On the other hand, our previous discussion
regarding the range of rate variations suggests that it
is not to compute the complete language of L, that
we should pursue, but to compute a subset of L,
which fits the plausible range of rate invariance.

To conclude, simple recurrent networks in the
present form do not show proper temporal general-
ization. In particular, they are incapable of rate
invariance in temporal pattern recognition. Our
conclusion is derived by a careful investigation
involving standard and extended architectures and
using both abstract sequences of various complexities
and real speech data. We point out that the inability
to handle rate invariance is not limited to just simple
recurrent networks, but common to all neural
networks that have been proposed to process
temporal patterns (see also Wang, 1995). Theoretical
computer science suggests why this is a difficult
problem: it is difficult to embed linear-bounded
automata in neural networks. A proposal to tackle
rate invariance is provided that combines rate
estimation and recognition at the estimated rate.
Given the fundamental importance of rate invariance
both for explaining psychological data and for
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engineering applications, future neural network
research must address this issue.
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