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For a given mixture of speech and noise, an ideal binary time-frequency mask is constructed by
comparing speech energy and noise energy within local time-frequency units. It is observed that
listeners achieve nearly perfect speech recognition from gated noise with binary gains prescribed by
the ideal binary mask. Only 16 filter channels and a frame rate of 100 Hz are sufficient for high
intelligibility. The results show that, despite a dramatic reduction of speech information, a pattern of
binary gains provides an adequate basis for speech perception.
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I. INTRODUCTION

Human speech recognition shows remarkable robustness
in a variety of listening conditions, including competing talk-
ers, environmental sounds, and background noise. Under-
standing how speech is recognized under these conditions is
important not only for auditory perception but also for auto-
matic speech recognition, where robustness to acoustic inter-
ference remains elusive �Lippmann, 1997; Allen, 2005�. Re-
lated research in computational auditory scene analysis
�CASA� and blind source separation makes use of a binary
time–frequency �T–F� masking technique �Roman et al.,
2003; Hu and Wang, 2004; Yilmaz and Rickard, 2004�.
Time–frequency masking operates on a T–F representation
or decomposition of the input into a two-dimensional matrix
of T–F units. Such a representation can be readily generated
by passing the input signal through a filterbank and then time
windowing the response of each filter. Then binary masking
as a means of separation amounts to identifying a binary
mask where 1 indicates that the acoustic energy in the cor-
responding T–F unit is retained and 0 indicates that the en-
ergy is removed. In other words, binary masking applies a
pattern of binary gains to the mixture signal. It should be
noted that the term “masking” here means weighting the
mixture, which is different from the same term used in psy-
choacoustics where it means blocking the target sound by
acoustic interference.

Among T–F masks, the so-called ideal binary mask
�IBM� has been suggested to be a goal of CASA �Wang,
2005�. The IBM is a matrix where 1 indicates that the signal-
to-noise ratio �SNR� within the corresponding T–F unit ex-
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ceeds a threshold LC �local SNR criterion� and 0 otherwise.
The mask is “ideal” because its construction requires that
speech and noise be available before they are mixed, and the
mask possesses certain optimality in terms of overall SNR
gain when LC is set to 0 dB �Li and Wang, 2008�.

Recent studies in speech perception show that applying
IBM to noisy speech leads to large speech intelligibility im-
provements �Brungart et al., 2006; Anzalone et al., 2006; Li
and Loizou, 2008�. In particular, Brungart et al. �2006� and
Li and Loizou �2008� have shown that, with fixed levels of
input SNR �between −10 and 0 dB�, a range of LC values
produces nearly 100% correct scores. The large intelligibility
gain has been attributed to ideal segregation �or detection�
that directs the listener’s attention to the T–F regions of
noisy speech where the target speech is relatively strong.
This explanation emphasizes the importance of the target sig-
nal contained in the T–F units labeled 1 for intelligibility.
How important is the binary pattern of an ideal mask itself?
This investigation was designed to isolate the intelligibility
contribution of an IBM by removing the target speech signal
from all T–F units.

Specifically, with linear filters, including gammatone fil-
ters �Patterson et al., 1988; Wang and Brown, 2006�, increas-
ing or decreasing the SNR of a mixture while changing LC
by the same amount does not alter the IBM. On the other
hand, although co-reducing input SNR and LC does not
change the IBM, the masked mixture becomes progressively
noisier or contains less target signal. Taking this manipula-
tion to the limit, i.e., setting both mixture SNR and LC to −�
dB, leads to an output that contains only noise with no target
speech at all. This particular output corresponds to turning on
or off the filtered noise according to a pattern prescribed by
the IBM. Our study evaluates speech intelligibility of noise

gated by the IBM obtained in this way.
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II. METHOD

A. Stimuli

Our tests use sentences from the Dantale II data set as
target speech and a speech-shaped noise as interference
�Wagener et al., 2003�. The speech material in the Dantale II
corpus consists of sentences recorded by a female Danish
speaker. Each sentence has five words with a fixed grammar
�name, verb, numeral, adjective and object�, e.g., “Michael
had five new plants” �English translation�. Each position in a
sentence takes a randomly chosen word from ten equally
meaningful words. The speech-shaped noise included in the
Dantale II corpus is produced by adding repeated utterances
of each of the 250 test sentences in the corpus �see Wagener
et al., 2003�. Both speech and noise materials were digitized
at 20 kHz sampling frequency.

A speech utterance and the noise are first processed by a
gammatone filterbank with varying numbers of filter chan-
nels. With 32 filters equally spaced on the equivalent rectan-
gular bandwidth �ERB� rate scale with center frequencies
distributed in the range of 2–33 ERBs �or 55–7743 Hz�, the
frequency response of the filterbank is nearly flat. In addition
to a 32-channel gammatone filterbank, we also tested 16-, 8-,
and 4-channel filterbanks. Each of the filterbanks spans the
same frequency range with filters equally spaced on the
ERB-rate scale, and in all cases each filter has the bandwidth
of 1 ERB. With reduced channels, the frequency response of
a filterbank is no longer flat and information in certain fre-
quency bands is lost in comparison to the 32-channel filter-
bank case. A filter response is then windowed into time
frames using 20 ms rectangular windows and a frame shift of
10 ms. This 100 Hz frame rate is commonly used in speech
processing �Rabiner and Juang, 1993�. The resulting T–F
representation has been called a cochleagram �Wang and
Brown, 2006�. The IBM is constructed from the cochlea-
grams of the target speech and the speech-shaped noise with
both the mixture SNR �calculated during the period of a
sentence� and LC set to 0 dB. The IBM is then applied to the
noise cochleagram alone in a synthesis step to generate a
waveform stimulus �see Wang and Brown �2006� for details
of cochleagram analysis and synthesis�. Figure 1 illustrates
the signal processing scheme using a Dantale II sentence.
Take, for example, the 8-channel filterbank case. Figure 1�G�
shows the IBM for this case, which is produced by compar-
ing the 8-channel cochleagram of the Dantale II sentence and
the 8-channel cochleagram of the speech-shaped noise. Ap-
plying the binary mask in Fig. 1�G� to gate the noise results
in a waveform signal, which is represented in the cochlea-
gram format in Fig. 1�H�. Note that Fig. 1 represents the
waveform signals from different channel numbers using the
same 32-channel cochleagram representation in order to fa-
cilitate comparison. In other words, all the cochleagrams in
Fig. 1 serve the purpose of signal representation and do not
indicate the size of the filterbank used in IBM construction.

B. Subjects

Twelve normal-hearing, native Danish-speaking listen-

ers participated in the experiment. All listeners had normal
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hearing, i.e., their hearing thresholds did not exceed 20 dB
HL, and their ages ranged from 26 to 51 with the average age
of 36.

C. Procedure

In each condition of the experiment, two lists, each with
ten sentences, were randomly selected from the Dantale II
corpus for IBM construction. Speech-shaped noise gated by
the IBM was then presented to a listener. The subjects were
instructed to repeat as many words as they could after listen-
ing to each stimulus corresponding to one sentence, and no
feedback was provided to them regarding whether their re-
sponses were correct or not. A stimulus was presented only
once. Subjects were given a training session by listening to
two lists of clean �or unprocessed� sentences, which were not
included in the subsequent test. Each subject test had four
conditions corresponding to the filterbanks with 4, 8, 16, and
32 channels. The four test conditions plus training took less
than 30 min. The presentation order of the four conditions
was randomized and balanced among the 12 listeners.

Speech and noise were both set to the sound pressure
level of 70 dB initially. To account for level differences
caused by the use of different-sized filterbanks, stimuli were
scaled by factors of two, four, and eight, for the 16-channel,
the 8-channel, and the 4-channel filterbank, respectively.
This level calibration resulted in stimuli with approximately
the same loudness. On each trial, a stimulus was generated
by the built-in sound card �SoundMAX� in a control com-
puter �IBM ThinkCenter S50� and then presented diotically
to a listener through headphones �Sennheiser HD 280 Pro� in
a sound treated hearing test room.

III. RESULTS

Figure 2 shows the word recognition performance for all
four conditions. The mean speech intelligibility scores for
the four conditions are: 7.75%, 54.25%, 92.92%, and
97.08%, with increasing number of filter channels. The re-
sults show that nearly perfect speech recognition is obtained
with 32 channels, and a high recognition rate is obtained
with 16 channels. The subjects recognized more than half of
the words when the number of channels was set to 8, but
were unable to perform the recognition task when the num-
ber of channels was 4. A repeated measures analysis of vari-
ance �ANOVA� was conducted and the effect of number of
channels was significant, F�3,33�=179.05, p�0.00001. The
Tukey honest significant difference �HSD� procedure re-
vealed that all pairwise differences among the means were
significant, p�0.001, except for the difference between 16
and 32 channels, which was not significant. Both ANOVA
and post hoc Tukey HSD tests were conducted on the ratio-
nalized arcsine-transformed percentage scores �Studebaker,
1985�.

The performance variability across different listeners
was small for the 32-channel and the 16-channel cases, sug-
gesting that the acoustic information was sufficient for them
to perform the recognition task. On the other hand, the indi-
vidual variability for the 8-channel case was significantly

larger than the 16-channel case, F�1,11�=5.50, p�0.01, sug-
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FIG. 1. �Color online� Illustration of gated noise by binary gains. �A� 32-channel cochleagram of a Dantale II sentence. �B� 32-channel cochleagram of
speech-shaped noise. �C� IBM with 32 channels, where 1 is indicated by white and 0 by black. �D� 32-channel cochleagram of gated noise by the IBM in �C�.
�E� IBM with 16 channels. �F� 32-channel cochleagram of gated noise by the IBM in �E�. �G� IBM with 8 channels. �H� 32-channel cochleagram of gated
noise by the IBM in �G�. �I� IBM with 4 channels. �J� 32-channel cochleagram of gated noise by the IBM in �I�.
J. Acoust. Soc. Am., Vol. 124, No. 4, October 2008 Wang et al.: Speech perception of noise 2305



gesting that factors such as the ability and tendency to guess,
concentration, and prior experience with corrupted speech,
come into play.

The results in Fig. 2 clearly demonstrate that very high
recognition can be obtained by turning on and off 16 bands
of noise at a rate of 100 Hz following a specific pattern. The
speech signal plays the sole role of determining the IBM.
Such a stimulus contains little speech-specific information.
The spectral shape of speech is drastically reduced to a bi-
nary variation, and so is the temporal envelope. The har-
monic structure of voiced speech is absent, and the temporal
fine structure �the carrier signal underlying the temporal en-
velope� of the stimulus reflects that of noise, not speech.
Despite this dramatic reduction of speech information, listen-
ers are capable of speech perception.

So what cues enable listeners to perceive speech from
IBM-gated noise? The binary pattern encodes a general out-
line of spectrotemporal energy variations of speech relative
to noise. Binary-gated noise crudely reflects the formant
structure of speech; as shown in Fig. 1, IBM-gated noise
appears to “carve out” regions of noise energy that roughly
match the spectrotemporal peaks of speech. Our results indi-
cate that such a pattern of energy variations is sufficient for
recognition purposes.

IV. DISCUSSION AND CONCLUSION

Our study bears resemblance to the well-known study by
Shannon et al. �1995� demonstrating that only a few bands of
noise modulated by the corresponding speech envelopes suf-
fice for speech intelligibility �for a much earlier study using
more bands see Dudley �1939��. There are, however, several
differences between our binary-gated noise and the vocoded
noise of Shannon et al. Perhaps the most important and ob-
vious difference is that, within a frequency channel, noise
modulation uses a binary envelope in our study and a full
envelope in vocoded noise. Second, the IBM is derived by a
comparison between target speech and speech-shaped noise,
while temporal envelopes in vocoded noise are obtained
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FIG. 2. Word intelligibility scores for 12 normal-hearing listeners with re-
spect to different filterbank sizes. Dots denote the mean scores and vertical
bars indicate 95% confidence intervals.
from target speech alone. We note that many speech separa-
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tion algorithms compute a binary mask by implicitly or ex-
plicitly exploiting local SNR �Divenyi, 2005; Wang and
Brown, 2006�, making the ideal mask amenable to computa-
tional estimation. Third, the bandwidths of noise bands in
Shannon et al. change as the number of the bands varies in
order to cover the entire frequency range of interest; in IBM-
gated noise, the bandwidth of each frequency channel is
fixed to 1 ERB regardless of the number of filtbank channels.
It is also worth mentioning that recognizing vocoded noise
takes hours of training, while no training on binary-gated
noise was given in our experiment.

Like vocoded noise, the type of noise used in binary
gating likely has an effect on speech intelligibility. The
speech-shaped noise used in this study is a steady noise with
a long-term spectrum matching that of the utterances in the
Dantale II corpus, and may be particularly effective for IBM
gating, although our informal listening indicates that other
types of steady noise, such as pink noise, can also produce
intelligible speech. Our experiment was conducted using
Danish utterances. Byrne et al. �1994� reported that the long-
term average speech spectra of a group of languages, includ-
ing Danish and English, are quite similar, suggesting that,
though there are likely some language effects, the main ob-
servations of our experiment may hold for English and other
languages. Also, the IBM used in this study is constructed
when input SNR and LC are set to be equal �−� dB�. Fixing
one of them while varying the other produces different
IBMs. For example, when input SNR is set to 0 dB, increas-
ing LC results in ideal masks with fewer and fewer 1’s,
whereas decreasing LC leads to more and more 1’s. Is equat-
ing input SNR and LC most effective for intelligibility of
IBM-gated noise? Further investigation is required to address
the issues regarding noise type, language, and input SNR and
LC levels.

That a pattern of binary gains is apparently sufficient for
human speech recognition, like previous work on vocoded
noise, raises intriguing questions on the nature of human
speech recognition. What speech information is truly indis-
pensable for intelligibility? Could the IBM itself be what is
being recognized? Almost perfect speech recognition from
such drastically reduced speech information has broad impli-
cations for CASA, automatic speech recognition, hearing
prosthesis, and coding and compression in speech communi-
cation.
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