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Abstract

Speech separation can be effectively formulated as a bi-

nary classification problem. A classification based sys-

tem produces a binary mask using acoustic features in

each time-frequency unit. So far, only pitch and am-

plitude modulation spectrogram have been used as unit

level features. In this paper, we study other acoustic fea-

tures and show that they can significantly improve both

voiced and unvoiced speech separation performance. To

further explore complementarity in terms of discrimina-

tive power, we propose a group Lasso approach for fea-

ture combination. The final combined feature set yields

promising results in both matched and unmatched test

conditions.

Index Terms: Speech separation, binary classification,

feature combination, group Lasso

1. Introduction

Speech separation refers to the problem of separating tar-

get speech from its background interference. For monau-

ral mixtures, one can only utilize intrinsic properties of

speech or interference to do the separation, which re-

mains a very challenging problem in signal and speech

processing. In this paper, we consider monaural speech

separation from nonspeech interference.

In the last decade, computational auditory scene anal-

ysis (CASA), which does separation based on perceptual

principles, has shown considerable promise. The estima-

tion of the ideal binary mask (IBM) is suggested as a pri-

mary computational goal of CASA [14]. The IBM is a

time-frequency (T-F) binary mask, constructed from pre-

mixed target and interference. A mask value 1 for a T-F

unit indicates that the signal-to-noise ratio (SNR) within

the unit exceeds a threshold (target-dominant), and 0 oth-

erwise (interference-dominant). In this paper, we use a 0

dB threshold in all the experiments.

It is natural to cast IBM estimation as a binary clas-

sification problem. Recent studies have applied this for-

mulation and achieved good speech separation results in

both anechoic and reverberant environments [12, 7, 9, 3].

In [5, 7], pitch-based features are used and show good

performance, however, they cannot deal with unvoiced

speech which lacks harmonic structure. In [9, 3], am-

plitude modulation spectrogram (AMS) is used, which is

able to separate unvoiced speech as AMS can be extracted

from both voiced and unvoiced speech. However, in [3]

it is shown that the generalization of AMS is not good.

Our previous study [3] suggests that support vector

machines (SVMs) are better than Gaussian mixture mod-

els (GMMs) for T-F unit classification. But on the unit

level feature side, only pitch and AMS have been stud-

ied so far. In this paper, we aim to enlarge the possible

feature repository for better IBM estimation. In order to

explore complementary features in terms of discrimina-

tive power, we also propose a group Lasso [16] approach

to combine features in a principled way.

This paper is organized as follows. In the next sec-

tion, we present an overview of the proposed system.

Section 3 describes the proposed feature combination ap-

proach. The experimental results are reported in Section

4. The last section concludes this paper.

2. System Overview and Feature Extraction

A sound mixture with 16 kHz sampling frequency is first

fed into a 64-channel gammatone filterbank from 50 Hz

to 8000 Hz. The output in each channel is then divided

into 20-ms frames with 10-ms overlapping between con-

secutive frames. This procedure produces a T-F repre-

sentation called a cochleagram. Features are extracted

from each T-F unit in the cochleagram, and we train a

Gaussian-kernel SVM for each subband channel sepa-

rately.

We study existing speaker and speech recognition

features on the task of speech separation, including gam-

matone frequency cepstral coefficients (GFCC), mel-

frequency cepstral coefficients (MFCC), relative spec-

tral transform (RASTA) and perceptual linear prediction

(PLP). These acoustic features are usually derived at the

frame level. To get features for the T-F unit uc,m in chan-

nel c and at frame m, we take the filtered output xc(t)
in channel c. Treating xc(t) as the input, conventional

frame level acoustic feature extraction is carried out and

the feature vector at frame m is taken as the feature rep-

resentation for uc,m. This simple procedure enables us to

extract unit features based on acoustic features originally

derived in a frame-by-frame manner, as well as features
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involving neighboring frames, as done in RASTA.

We follow common practice to extract 15-D AMS,

31-D MFCC, 13-D PLP and 13-D RASTA-PLP features,

and we describe the extraction of 6-D pitch-based fea-

tures and 31-D GFCC as below.

2.1. Pitch-based Features

To get pitch-based features for uc,m, we first calculate

the normalized autocorrelation function at each time lag

τ , denoted byA(c,m, τ). Its value at the pitch period τm
indicates the dominance of voiced speech [5].

The average instantaneous frequency f̄(c,m) esti-

mated from the zero-crossing rate of A(c,m, τ) are used
to derive the second and third features. If the T-F unit

uc,m is target-dominant, the product of f̄(c,m) and τm
gives a harmonic number. Hence, we set the second fea-

ture to be the nearest integer of f̄(c,m)τm and the third

feature to be the distance between the product and its

nearest integer.

The next three features are derived in the same way

except that they are extracted from the envelopes of filter

responses. The resulting 6-D feature vector is:

xc,m =

















A(c,m, τm)
[f̄(c,m)τm]

|f̄(c,m)τm − [f̄(c,m)τm]|
AE(c,m, τm)
[f̄E(c,m)τm]

|f̄E(c,m)τm − [f̄E(c,m)τm]|

















(1)

where [·] denotes the round operation, and subscript E
indicates envelope.

In training, we use ground truth pitch extracted from

clean speech by PRAAT [1]. In testing, we use pitch es-

timated by a recently proposed multipitch tracker [8].

2.2. Gammatone Frequency Cepstral Coefficient

GFCC is an effective speaker feature [13]. To get GFCC,

a signal is decomposed by a 64-channel gammatone fil-

terbank first. Then, we decimate the filter response to an

effective sampling rate of 100 Hz, resulting in a 10-ms

frame shift. The magnitudes of the decimated filter out-

puts are then loudness-compressed by a cubic root oper-

ation. Finally, discrete cosine transform is applied to the

compressed signal and the first 31 coefficients are pre-

served to yield GFCC.

3. Feature Combination

It is shown in speech recognition that complementarity

exists between basic acoustic features [2]. Large per-

formance boosts could be observed even if individual

features do not perform well. Our goal is to select a

set of complementary features in a principled way. The

complementarity should be related to the discrimination

of target-dominance and interference-dominance. Here,

by complementarity, we mean that each feature type

provides complementary information to boost classifica-

tion and thus their combination (concatenation in paper)

should outperform an individual type.

This problem is essentially a group variable selection

problem, which is to find important groups of explana-

tory factors for prediction. Group Lasso [16] approaches

this problem by incorporating a mixed-norm regulariza-

tion over regression coefficients. Since our classification

is binary, we employ the logistic regression extension of

group Lasso [11]. The estimator is

β̂λ =argmin
β

∑

i

log
(

1 + exp(−yi(β
T
xi + a))

)

+ λ

G
∑

g=1

‖β
Ig
‖2 (2)

where xi and yi are the ith training sample and label

scaled to {−1, 1}, respectively. a is a parameter (inter-

cept). ‖·‖2 is the ℓ2 norm. β consists of G predefined

non-overlapping groups and Ig is the index set of the gth
group. The log loss in the minimization concerns dis-

crimination. The second term in the minimization is an

ℓ1/ℓ2 mixed-norm regularization, which imposes an ℓ1
regularization between groups and an ℓ2 regularization

within each group. It is well known that the ℓ1 norm in-

duces sparsity, therefore the ℓ1/ℓ2 regularization results

in group sparsity hence group level feature selection. The

level of sparsity of the resulting model can be adjusted by

varying the regularization parameter λ.
To do feature combination, each feature type is de-

fined as a group and they are concatenated together, e.g.,

AMS (all 15 feature elements) is defined as the first

group, PLP as the second, and so on. Then, for a fixed

λ, we minimize the above objective to obtain β̂λ. Groups

having large regression coefficients shall be included in

the complementary feature set.

The feature combination is conducted on AMS, PLP,

RASTA-PLP, GFCC and MFCC. All features are nor-

malized prior to using group Lasso. With best λ
(determined by cross-validation), we found that AMS,

RASTA-PLP and MFCC have significantly larger regres-

sion coefficients than the others. Hence, AMS+RASTA-

PLP+MFCC is set as our complementary feature set, de-

noted as COMP. Here “+” means concatenation.

4. Evaluation and Comparison

For the training set, we randomly mix 50 IEEE utter-

ances [6] recorded by a female speaker with three types

of noises: N1 – bird chirps, N2 – crow noise, and N3

– cocktail party noise [5], at 0 dB. For the test set, we

choose 20 new IEEE utterances. Two test conditions are

considered. In the matched test condition, the test utter-

ances are mixed with the trained noises N1-N3. In the
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Table 1: Classification performance in the matched test condition. Boldface indicates best

Feature
Overall Voiced Unvoiced

Accuracy
HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA

AMS 70% 6% 64% 76% 8% 68% 49% 4% 45% 84.6%

PLP 79% 9% 70% 83% 10% 73% 65% 6% 59% 86.5%

RASTA-PLP 74% 7% 67% 79% 9% 70% 56% 4% 52% 85.9%

GFCC 87% 8% 79% 89% 9% 80% 77% 6% 71% 90.1%

MFCC 82% 7% 75% 86% 8% 78% 69% 5% 64% 88.8%

PITCH N/A N/A N/A 77% 16% 61% N/A N/A N/A N/A

COMP 86% 5% 81% 89% 6% 83% 75% 3% 72% 91.8%

Table 2: Classification performance in the unmatched test condition

Feature
Overall Voiced Unvoiced

Accuracy
HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA

AMS 60% 23% 37% 64% 22% 42% 44% 25% 19% 72.7%

PLP 71% 30% 41% 73% 30% 43% 65% 32% 33% 70.0%

RASTA-PLP 69% 12% 57% 71% 13% 58% 60% 9% 51% 83.8%

GFCC 77% 33% 44% 76% 32% 44% 77% 34% 43% 69.4%

MFCC 74% 29% 45% 75% 29% 46% 70% 29% 41% 71.7%

PITCH N/A N/A N/A 76% 20% 56% N/A N/A N/A N/A

COMP 80% 20% 60% 80% 21% 59% 80% 20% 60% 80.0%

Table 3: Classification performance in the matched test condition with PITCH combined

Feature
Overall Voiced Unvoiced

Accuracy
HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA

AMS+PITCH 72% 12% 60% 81% 10% 71% 42% 14% 28% 82.1%

PLP+PITCH 77% 10% 67% 83% 9% 74% 57% 12% 45% 85.0%

RASTA-PLP+PITCH 76% 10% 66% 84% 9% 75% 47% 10% 37% 84.6%

GFCC+PITCH 83% 10% 73% 88% 8% 80% 65% 12% 53% 87.2%

MFCC+PITCH 79% 9% 70% 85% 8% 77% 60% 11% 49% 86.1%

COMP+PITCH 82% 7% 75% 87% 7% 80% 70% 9% 61% 89.0%

Table 4: Classification performance in the unmatched test condition with PITCH combined

Feature
Overall Voiced Unvoiced

Accuracy
HIT FA HIT−FA HIT FA HIT−FA HIT FA HIT−FA

AMS+PITCH 65% 12% 53% 73% 12% 61% 31% 11% 20% 82.5%

PLP+PITCH 71% 13% 58% 75% 13% 62% 53% 10% 43% 83.5%

RASTA-PLP+PITCH 72% 9% 63% 77% 11% 66% 51% 7% 44% 86.1%

GFCC+PITCH 77% 22% 55% 80% 20% 60% 66% 25% 41% 77.7%

MFCC+PITCH 72% 12% 60% 76% 13% 63% 56% 12% 44% 83.7%

COMP+PITCH 79% 11% 68% 80% 12% 68% 72% 12% 60% 86.9%

unmatched test condition, the test utterances are mixed

with three unseen noises: N4 – crowd noise at a play-

ground, N5 – traffic noise, and N6 – electric fan noise.

All test mixtures are mixed at 0 dB.

We employ classification accuracy as well as hit mi-

nus false-alarm (HIT−FA) rate as the major evaluation

criteria in this paper. Here, the HIT rate is the percent

of correctly classified target-dominant T-F units (1s) in

the IBM. The FA rate is the percent of wrongly classi-

fied interference-dominant (0s) T-F units in the IBM. The

HIT−FA rate is proposed in [9] and shown to be highly

correlated with human speech intelligibility.

From Table 1, we can see that in the matched test con-

dition all the features perform relatively well in terms of

FA rate. The performance gaps mainly stem from the

HIT rate. AMS clearly underperforms the other features

as its HIT rate is significantly lower. GFCC, on the other

hand, performs very well with 79% overall HIT−FA. Un-

voiced speech is difficult to separate due to weak en-

ergy and the lack of harmonicity. GFCC again is sig-

nificantly better than the other single features, achieving

71% HIT−FA in the unvoiced interval. The good per-

formance of GFCC is probably due to its effectiveness as

a speaker identification feature [13]. While individually

AMS, RASTA-PLP, and MFCC do not perform on par

with GFCC, their combination COMP performs better in

terms of both HIT−FA and classification accuracy.

The unseen noises cause mismatch between training

and test set. Not surprisingly, both accuracy and HIT−FA

rates of all the features significantly degrade in the un-
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Table 5: HIT−FA and SNR comparisons with [9]

System
Overall HIT−FA SNR (dB)

Matched Unmatched Matched Unmatched

Proposed 75% 68% 15.6 10.5

Kim et al. [9] 67% 39% 16.0 8.7

matched test condition. From Table 2 we can see that the

degradation mainly comes from substantially increased

FA rates. Among all the features, PITCH achieves the

minimal performance degradation (5%) as it represents

intrinsic properties of speech. Interestingly, in this test

condition, RASTA-PLP becomes the best one in the sin-

gle feature category. As shown in [4], RASTA-PLP is

essentially a modulation-frequency filter, which retains

slow modulations corresponding to speech. Again, the

complementary feature set COMP performs the best in

this condition in terms of HIT−FA.

Considering the stable performance of PITCH, we

further concatenate PITCH with other features in hope

to create a richer and more robust representation. For un-

voiced frames, we simply set PITCH to be all zeros in

the concatenation. Table 3 and 4 show accuracies and

HIT−FA rates in two test conditions. In the matched

test condition, the combination does not lead to improve-

ment due to pitch estimation error. However, even with

estimated pitch, the performance of all the features gains

large improvements by the combination in the unmatched

test condition. This demonstrates the good generaliza-

tion ability of PITCH. The final combined feature set

COMP+PITCH achieves impressive HIT−FA rates in

both voiced and unvoiced intervals.

Finally, we compare the proposed system, i.e., sub-

band SVMs trained using COMP+PITCH, with a recent

classification based separation system [9]. We report

HIT−FA and SNR results in Table 5. As we can see, the

proposed system significantly outperforms Kim et al.’s

system in terms of HIT−FA and accuracy (not shown) for

both matched and unmatched test conditions. Kim et al.’s

system has been shown to improve speech intelligibility

in noise; hence we expect the proposed system to pro-

vide further improvements due to the significant HIT−FA

improvements. Kim et al.’s system produces marginally

higher SNR in the matched test condition, mainly due to

higher HIT rate. But the FA rate is also much higher than

that of the proposed system, which is more detrimental to

intelligibility [10]. The proposed system produces about

1.8 dB higher SNR in the unmatched test condition.

5. Conclusions

We have shown that by turning frame level speech and

speaker features into unit level features, we can signif-

icantly expand the feature repository for classification

based speech separation. Compared with previously used

AMS feature (e.g. [9, 3]), the newly included features

significantly improve both voiced and unvoiced speech

separation. As single features, GFCC achieves excellent

classification performance in the matched test condition,

and RASTA-PLP in the unmatched test condition.

We have also identified a discriminative comple-

mentary feature set using group Lasso, and showed

that PITCH generalizes very well. The final feature set

COMP+PITCH shows promising separation results in

both matched and unmatched test conditions. We have

also demonstrated the effectiveness of the final feature

set in a variety of other acoustic conditions. Due to

limited space, the interested reader is referred to our

technical report [15].
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