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Abstract

An architecture of locally excitatory, globally inhibitory oscillator networks is proposed and investigated both analytically
and by computer simulation. The model for each oscillator corresponds to a standard relaxation oscillator with two time
scales. Oscillators are locally coupled by a scheme that resembles excitatory synaptic coupling, and each oscillator also
inhibits other oscillators through a common inhibitor. Oscillators are driven to be oscillatory by external stimulation. The
network exhibits a mechanism of selective gating, whereby an oscillator jumping up to its-active phase rapidly recruits the
oscillators stimulated by the same pattern, while preventing the other oscillators from jumping up. We show analytically
that with the selective gating mechanism, the network rapidly achieves both synchronization within blocks of oscillators
that are stimulated by connected regions and desynchronization between different blocks. Computer simulations demonstrate
the model’s promising ability for segmenting multiple input patterns in real time. This model lays a physical foundation
for the oscillatory correlation theory of feature binding and may provide an effective computational framework for scene
segmentation and figure/ground segregation.

Despite the fact that humans perform it with apparent
ease, the general problem of scene segmentation re-
mains unsolved in the engineering of sensory process-

1. Introduction

A basic attribute of perception is its ability to group

elements of a perceived scene or sensory field into co-
herent clusters (objects). This ability underlies per-
ceptual processes such as figure/ground segregation,
identification of objects, and separation of different
objects, and it is generally known as scene segmenta-
tion or perceptual organization. Segmentation can be
either peripheral or central. Peripheral segmentation
is based on the correlation of local qualities within
an input scene, and central segmentation is based on
prior knowledge (memories) about the input scene.

ing, such as computer vision and auditory processing.
As the technology of single-object recognition has be-
come more and more advanced in recent years, the
demand for a solution to scene segmentation is ever
increasing since natural scenes are rarely composed of
a single object.

Fundamental to scene segmentation is the grouping
of similar sensory features and the segregation of dis-
similar ones. Theoretical investigations of brain func-
tions and perceptual organization point to the mech-
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anism of temporal correlation as a representational
framework [48,1,50]. The correlation theory of von
der Malsburg [48] asserts that an object is represented
by the temporal correlation of the firing activities of
the scattered cells coding different features of the ob-
ject. A natural way of encoding temporal correlation
is to use neural oscillations [50], whereby each os-
cillator encodes some feature (maybe just a pixel, or
picture element) of an object. In this scheme, each
segment (object) is represented by a group of oscil-
lators that shows synchrony (phase-locking with zero
phase shift) of the oscillations, and different objects
are represented by different groups whose oscillations
are desynchronized from each other. Let us refer to
this form of temporal correlation as oscillatory corre-
lation. Evidently, the neurobiology of the brain pro-
vides the necessary means for implementing oscilla-
tory correlation in the sense that neurons are spike
generators, and brain waves are widespread in EEG
recordings [23].

More recently, the theory of oscillatory correlation
has received direct experimental support from cell
recordings in the cat visual cortex [9,17]. The main
points of these findings are: (1) Neural oscillations are
triggered by sensory stimulation, known as stimulus-
driven; (2) Global phase locking of neural oscillations
with zero phase shift occurs when the stimulus is a
coherent object (a long visual bar) or strongly corre-
lated (the same location); (3) No phase locking ex-
ists across different stimuli if they are not related with
each other. These basic findings have been confirmed
by later experiments which demonstrated that phase
locking can occur between the striate cortex and the
extrastriate cortex [10], between the two striate cor-
tices of the two brain hemispheres [11], and across
the sensorimotor cortex in the monkey [37].

The discovery of synchronous oscillations in the vi-
sual cortex has triggered much interest from the theo-
retical community in simulating the experimental re-
sults (see among others [22,45,44,26,5,51]) and in
exploring oscillatory correlation to solve the prob-
lems of scene segmentation and figure/ground seg-
regation [55,3,46,18,49,36]. While several demon-
strate synchronization in a group of oscillators us-
ing local (lateral) connections [26,43,51,52], most

of these models rely on long range connections to
achieve phase synchrony. It has been argued that lo-
cal connections in reaching synchrony may play a
fundamental role in scene segmentation since long-
range connections would lead to indiscriminate seg-
mentation [46,53]. More specifically, a network with
long-range connections indiscriminately connects all
the oscillators which are activated simultaneously by
multiple objects, because the network is dimension-
less and loses critical geometrical information about
the objects. This point can be illustrated by Fig. 1
where three objects constitute the input scene. A hu-
man viewer can easily segment the three objects apart.
In fact, when we said ‘three objects’, we already ap-
pealed to the reader’s perceptual ability of segmenting
the input into three connected objects. Yet this elemen-
tary task of scene segmentation cannot be performed
by a network of all-to-all connections, because a unit
representing a pixel in one object connects to the units
representing the pixels of the same object in the same
way as it does to units representing pixels of different
objects. On the other hand, geometry is maintained in
a locally connected oscillator network. A unit repre-
senting a pixel of one pattern does not connect to an-
other unit representing a pixel of a different pattern,
because the patterns are disconnected.

There are two aspects in the theory of oscillatory
correlation: (1) synchronization within the same ob-
Jject and (2) desynchronization between different ob-
Jjects. Despite intensive studies on the subject, the
question of desynchronization has been hardly ad-
dressed. In the simulations of von der Malsburg and
Schneider [50], a global inhibitor was used to desyn-
chronize two segments, each corresponding to a group
of fully connected oscillators. Since their simulations
involved a very small system and no analytic study
was made, it is unclear how general their results are.
It is often hidden in many previous studies that once
synchrony is achieved within one object, desynchro-
nization follows naturally since different objects are
not synchronized. One needs to be more careful about
this point. It is true that two objects are not correlated
with each other if the two groups of oscillators behave
independently. When a group reaches synchrony, it has
a unique phase. But because the two groups are inde-
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Fig. 1. A caricature of a visual image with three objects.

pendent, it is not guaranteed that the two cotrespond-
ing phases are not close to each other so that the sys-
tem would fail to separate them based on their phases.
This problem can be avoided if one repeats segmen-
tation trials so that on the average, the chances of ac-
cidentally aligning the phases of the two groups are
greatly reduced. This is exactly what is used in many
simulations (10 trials in [46,51]; 20 trials in [26]).
Obviously, this proposal has the computational disad-
vantage of much increased overall time to complete
a segmentation task. This concern becomes more se-
vere by the following two factors. First, the synchrony
within each segment is generally not perfect due to
noise and the practical limitations on the time that is
allowed for the system to reach synchrony. Imperfect
synchrony requires certain tolerance of phase discrep-
ancies within each group. This in turn makes the pos-
sibility of wrongly grouping two independent objects
higher. Secondly, as the number of objects to be seg-
mented increases, the chances of wrongly grouping

two objects significantly increase. Another disadvan-
tage of this proposal is that it makes scene segmenta-
tion in real time impossible.

In this article, we propose and analyze a novel
mechanism for an oscillator network to rapidly achieve
both grouping within each object and segmentation
between a number of simultaneously presented ob-
jects. This mechanism is composed of the following
elements: (1) A new model of a basic oscillator; (2)
Local excitatory connections to produce phase syn-
chrony within each group of oscillators representing
the same object; (3) A global inhibitor that receives
input from the entire network and feeds back with
inhibition to produce desynchronization of the oscil-
lator groups representing different objects. In other
words, the mechanism consists of local cooperation
and global competition, thus fully encoding oscilla-
tory correlation. This surprisingly simple neural archi-
tecture may provide an elementary approach to scene
segmentation and a computational foundation for per-
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ceptual organization.

The model is described in the following section.
In Section 3, we introduce the basic geometric ap-
proach to analyzing the solutions to the model. Sim-
ple networks are discussed in order to illustrate the
roles played by excitation and by inhibition. A number
of rigorous results are proved in Section 4. Computer
simulations of a two-dimensional oscillator network
are shown in Section 5, where rapid segmentation of
multiple objects is illustrated. In Section 6, several as-
pects of the model are discussed, including its neural
plausibility and its potential for offering a novel com-
putational framework for scene segmentation. Finally,
Section 7 concludes the paper.

2. Model description

The building block of our oscillator network, a sin-
gle oscillator i, is defined in the simplest form as a
feedback loop between an excitatory unit x; and an
inhibitory unit y;:

(2.1a)
(2.1b)

X =3x— x5 +2—yitp+ L+
yi =€(y(1 + tanh(x:/B)) — yi)

Here, p denotes the amplitude of a Gaussian noise
term, J; represents external stimulation to the oscilla-
tor, and §; denotes the coupling from other oscillators
in the network.

The purpose of introducing the noise term is
twofold. First, it can test the robustness of the system.
The second and perhaps more important purpose is
that it plays an active role in separating different input
patterns. This point will be discussed later.

The parameter € is chosen to be small in both the
numerics and the analysis. Then (2.1), without any
coupling or noise, corresponds to a standard relaxation
oscillator. The x-nullcline of (2.1), C = {(x,y) :
x" =0}, is a cubic curve, while the y-nullcline, H =
{(x,y) : y =0}, is a sigmoid function as shown
in Fig. 2. In Fig. 2a, I > 0. The nuliclines intersect
along the middle branch of the cubic, and (2.1) is
oscillatory. It gives rise to a stable periodic orbit for
all values of € sufficiently small. The periodic solution

alternates between silent and active phases of near
steady state behavior. The parameter 7y is introduced
to control the relative times that the solution spends
in these two phases as shown later. In Fig. 2b, 1 < 0.
The nullclines now intersect at a stable fixed point,
Py, along the left branch of the cubic. In this case the
system does not give rise to any periodic orbits. The
parameter B is used to control the steepness of the
sigmoid function.

The system (2.1) resembles the single neuron
caricature model by FitzHugh [12] and Nagumo et
al. [38]. However, the form of the nonlinearities in
(2.1) and the parameter y provide a dimension of
flexibility missing from the FitzHugh-Nagumo equa-
tions. The system (2.1) also resembles the single cell
conductance-based model of Morris and Lecar [35].
As discussed in Subsection 4.5, our analysis is quite
general and applies to the Morris-Lecar equations.
The main reason for introducing the model (2.1) is its
simplicity. It clearly identifies the mathematical prop-
erties needed in a model for scene segmentation. We
have identified precisely those parameters required
for synchronization of oscillators within a given
group and desynchronization of oscillators not in the
same group. Other models, such as the Morris-Lecar
model, have other parameters which play a similar
role to those in (2.1). Our simulations show, however,
that with everything else the same, this model takes
about only half of the computing time compared to
the Morris-Lecar model to generate similar behavior.
The oscillator model (2.1) may also be interpreted as
a mean field approximation to a network of excitatory
and inhibitory neurons (see [4,16]).

To illustrate the detailed properties of an isolated
single oscillator (S; = 0), Fig. 3 shows its behaviors
with different values for the parameters of external in-
put I and . In Fig. 3a, different amounts of external
input are applied to the oscillator. It can be seen that
the oscillator reached a stable fixed point when I was
chosen to be —0.02, corresponding to the case with-
out external stimulation. The frequency of oscillation
increased a little when I was systematically increased.
Also the higher segment corresponding to the active
phase widened while the lower segment correspond-
ing to the silent phase narrowed as / increased. This
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Fig. 2. Nullclines for a single oscillator. (a) If [ > 0, then the system is oscillatory. The singular periodic orbit is shown with a bold curve.
L and R are the left and right branches of the x-nulicline, respectively. The left and right knees of the cubic are labelled as LK and RK,
respectively. (b) If 7 < 0, then there is no periodic solution. The fixed point P; on the left branch of the cubic is asymptotically stable.

can be easily explained as follows. When [ increases,
the cubic is shifted upwards, and it gets nearer to the
ceiling of the y-nullcline and farther away from the
floor of the y-nullcline. Thus, the time that the periodic
solution spends on the right branch becomes longer,
while the time it spends on the left branch becomes
shorter. For more detailed analysis see Sections 3 and
4. Fig. 3b shows the effects of varying y. While the
width of the lower segment changed little, the width
of the higher segment was reduced substantially as
v increased. Again, this should be expected from the
analysis since a larger 7 raises the ceiling of the y-
nullcline (see Fig. 2), which leads to a shorter time
that the solution spends on the right branch of the cu-
bic.

The architecture of the network that we study con-
sists of a two dimensional matrix of oscillators plus a
global inhibitor. Each oscillator in the network is con-
nected to only its four neighboring oscillators, thus
forming a 2D grid. This is the simplest form of local
connections. As will be discussed later, lateral con-
nections beyond immediate neighbors can enhance

(a)

Activity

{b)

Activity

Time

Fig. 3. (a) Effects of varying external input. Different curves are
for different values of / respectively: Solid thick, I = —0.02; solid
thin, I = 0.4; dashed thick, 7 = 0.8; dashed thin, / = 1.6. Parameter
v =4.0. (b) Effect of varying y. Solid thick, y = 3.0; solid thin,
y = 6.0; dashed thick, ¥ = 9.0; dashed thin, v = 12.0. Parameter
I = 0.8. The other parameters are: p = 0.02,¢ = 0.04,8 = 0.1.
The simulation took 2,000 integration steps for each case.
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Fig. 4. Architecture of a two dimensional oscillator network with
nearest-neighbor coupling. The global inhibitor receives an exci-
tatory input from each oscillator of the network, and it in turn
inhibits each oscillator. An oscillator is indicated by an empty
circle, and the global inhibitor is indicated by the black circle.

the network’s performance. The global inhibitor re-
ceives excitation from each oscillator of the grid and
this, in turn, inhibits each oscillator. This architec-
ture is shown in Fig. 4. The intuitive reason why this
model gives rise to scene segmentation is the follow-
ing. When multiple connected objects are mapped onto
the grid, the local connectivity groups together the os-
cillators covered by each object. This grouping is re-
flected by phase synchrony within the oscillator group.
The global inhibitor serves to desynchronize the os-
cillatory responses to different objects.

We assume that the coupling term S; in (2.1) is
given by

Si= Y WaSoo (x4, 02) — WoSeo(2,6)  (22)
kEN(D)

where

1
I +exp{—k(zx—6)}

In (2.2), Wy is a connection (synaptic) weight from
oscillator k to oscillator i, and N (i) is the set of neigh-
boring oscillators that connect to oscillator i. In this
model, N(i) is the four immediate neighbors on the
2D grid, except on the boundaries where N(i) may
be either the two or three immediate neighbors. The
parameter #, is a threshold above which an oscillator
can effect its neighbors, and W, is the weight of inhi-
bition from the global inhibitor which we denote by
z. The activity of the global inhibitor, also denoted by
z, is given by

Soo (x,0) = (2.3)

' =¢(000 —2) (2.4)

where oo, = 0 if x; < 8, for every oscillator i,
and 0. = 1 if x; > 6, for at least one oscillator
i. Hence, 8., represents a threshold. If the activity of
every oscillator is below this threshold, then the global
inhibitor will not receive any input. In this case z — 0,
and the oscillators will not receive any inhibition. If,
on the other hand, the activity of at least one oscillator
is above the threshold 8., then the global inhibitor will
receive input. In this case z — 1, and each oscillator
feels inhibition when z is above the threshold ,.. The
parameter ¢ determines the rate at which the inhibitor
reacts to such stimulation.

In summary, once an oscillator jumps to the active
phase, it triggers the global inhibitor. This then inhibits
the entire network as described in (2.2). On the other
hand, an active oscillator spreads its activation to its
nearest neighbors, again through (2.2), and from them
to its further neighbors. Thus, the entire dynamics of
the oscillator grid is a combination of local coopera-
tion through excitatory coupling among neighboring
oscillators and global competition via the global in-
hibitor. In Section 4, we prove a number of properties
of this system.

3. Geometric description of solutions
3.1. Singular solutions

We take a very geometric approach to analyzing the
solutions of (2.1)-(2.4). The solutions are viewed
as trajectories in phase space, and € is treated as a
singular perturbation parameter. Much of the analysis
is formal in the sense that we set € = 0 and then
construct singular solutions of (2.1)-(2.4). The case
€ > 0 is considered in Subsection 4.5.

The singular solutions consist of two primary por-
tions; these are the inner and outer solutions. An outer
solution corresponds to when the solution exhibits near
steady-state behavior. Outer solutions evolve on a slow
time scale, and we derive a reduced system of equa-
tions from (2.1)-(2.4) which determines this slow
evolution. Geometrically, an outer solution lies on an
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invariant manifold of this reduced slow system.

Inner solutions correspond to rapid transitions be-
tween the near steady-state behavior. This portion of
the singular solution evolves on a faster time scale than
the outer solution, and we derive another reduced sys-
tem of equations which determines this fast evolution.
Geometrically, an inner solution corresponds to a tra-
Jjectory in phase space which connects two invariant
manifolds of the slow system.

In order to motivate the definition of a singular so-
lution, we briefly discuss a single oscillator without
any coupling or noise. That is, we consider the relax-
ation oscillator

x=fle,y)+1

y =€g(x,y) (3.1.1)

where f(x,y) =3x—x*4+2—y and g(x,y) =
y(1 +tanh(x/B)) — y.

If the nullclines, C and H, intersect at a unique fixed
point along the middle branch of C, then there exists a
stable periodic solution of (3.1.1) for all € > 0. This
will be the case if / > 0 and B is sufficiently small.
The singular solution of (3.1.1) with I > 0 is shown
in Fig. 2a, and it consists of four pieces. The pieces
that lie on £ and R correspond to the silent and active
phases, respectively. The slow system is obtained by
introducing the slow time scale 7 = €r in (3.1.1) and
then setting € = 0 in the resulting equations. The inner
solutions correspond to trajectories which connect £
and R. These are solutions of the fast system which is
obtained by simply setting € = 0in (3.1.1). One piece
of the inner solution is when the oscillator ‘jumps up’;
this is a solution of the fast system which connects LK
to R. The other piece of the inner solution is when the
oscillator ‘jumps down’; this is a solution of the fast
system which connects RK to L.

In what follows, we assume that the parameter /
takes one of two values. If the oscillator i (denoted by
e;) is stimulated, then I; = It > 0, while if ¢; is not
stimulated, then I; = I~ < 0. Hence, the stimulated
oscillators, without noise or coupling, are oscillatory,
while the unstimulated oscillators do not oscillate.

We now define what is meant by a singular solution
in the general case when there is coupling. We assume

that all of the oscillators are identical, and the differen-
tial equations corresponding to a particular oscillator,
say e;, are (cf. (2.2))

xlf:f(xi,yi)+lg+ Z WikSoo (xk, 0x)
kEN (i)

_WzSoo(Zs sz)

yi = €g(xi, i) (3.12)
To simplify the discussion, we assume that the func-
tion S, (x,8#) assumes the values O or 1. That is,
So(x,80) =0if x < 0, and S (x,8) = 1if x > 6.
There is no problem in extending the analysis to the
case when S, is defined by (2.3) if the parameter «
is sufficiently large.

We do not include noise in (3.1.2), because this
simplifies the analysis that follows. However our nu-
merical studies clearly indicate that some degree of
noise not only does not disrupt the behavior but also
enhances the segmentation process. This point will be
discussed later in Subsection 4.4 (see Remark 4.4b).

As before, the slow system is obtained by introduc-
ing the slow time scale 7 = €t in (3.1.2) and then
setting € = 0 in the resulting system. This yields the
system

0 =f(xiy) + i+ > WiSoo Xk, )
keN(i)

'_Wz Soo(z’ 0xz)
i =g(xi, i) (SS)

Note that the solution of the first equation in (SS) is
a vertical translate of the cubic C.

The parameters 8, 8.y, and 8,, are chosen so that
f, < 8, and 6,, € (0,1). We also assume that if e;
is in its silent phase, then x; < 8, so that S (x;,0x) =
0, while if ¢; is in its active phase, then 6,; < x;, so
that S, (x;,0,) =1.

The slow equation for the inhibitor is z = 0.
Hence, if all of the oscillators are in their silent phases,
then z = 0o = 0 and So (2, 0;x;) = 0. If at least one
oscillator is active, then z = o = 1.

The fast system is obtained by simply setting € = 0
in (3.1.2). This yields the following system for e;:
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x=fiy) + it Y WieSoo (X 6)
kEN(i)

~W;800(2,60x;)
=0 (FS)

The fast equation for the inhibitor is

2 =00 —2) (FS;)

The cubics correspond to fixed points of (FS). The
left and right branches of these cubics are the stable
fixed points of (FS). Note that during an inner solu-
tion, when the oscillators jump between branches, the
variables Soo ( Xk, 05 ), Soo (2, €5, ) and oo, may switch
between O and 1.

We now define precisely what is meant by a singu-
lar solution. It is a continuous curve in phase space
which is the union of smooth pieces. We parameterize
this curve by the variable 5. Suppose that there are N
oscillators and let e; = (x;(n),yi(n)),i=1,...,N.
Then ¢(n) = (e1(n),e2(n),....en(n),z(n)) is a
singular solution of (2.1)-(2.4) if it defines a contin-
uous curve in phase space, and there exist 0 = 7y <
m < ...such that

(1) if m2; < m < M1, j=0,1,..., then each
e;(m) corresponds to a solution of (SS). More-
over, if x;(n) < @,, foreach i, then z(7n) =0.
If x;(n) > 6,, forsome i, then z(n) =1.

(ii) Suppose that 721 <7 < mj, j=1,2,...
Then each e; corresponds to a solution of (FS)
and z corresponds to a solution of (FS;).

(iii) If n =x2;_1, j=1,2,.., then at least one of
the oscillators is at one of the knees.

We conclude this section with some further notation.
For W, > 0 and W, > 0, let C(W,, W) = {(x,y) :
fl,y) +1+W,—W,=0}. Let

C=C(0,0) and Cz=C(0,W,)
Denote the left branches of C and Cz by
L={(x,y) :x=h(y)} and
Lz={(x,y) :x=hz(y)},

respectively, where 4 and hz are smooth, decreasing
functions. Denote the left knee of C by LK = (x., yr)
and the right knee of Cz by RKz; = (Xz,Yz).

It follows that the slow system on L is given by

x =h(y)

¥ =g(h(y),y) = G() (S8.)

This determines the slow evolution of each oscillator
when every oscillator is in its silent phase. The slow
system on Lz is given by

x =hz(y)

y'=g(hz(y),y) = Gz(¥) (SSz)

This determines the slow evolution of an oscillator in
the silent phase when some other oscillator is in its
active phase.

Choose W,, and Wy, so that W, < W, < W,y for
every weight Wy, Note that
Wu < 3 Wi < 4Wy (3.1.3)
kEN(i)

for each oscillator e; and all time. Denote the cubics
C(W,,W,) and C(4Wy, W) by C,, and Cy, respec-
tively. Assume that the right knees of these cubics are
at RK,, = (X,.,Y,) and RKy = (Xum,Ys), respec-
tively, and the left knee of C,, is at LK, = (X, Ym)-
We assume that W, < W,. This implies that C,,
lies above C. These cubics, together with their left and
right branches and knees are shown in Fig. 5.

For W > 0, denote the right branch of the cubic
C(W,W,) by Rw = {(x,y) : x = Hy(y)}, where
Hy is a smooth, decreasing function. Then the slow
system on Ry is given by

x =Hw(y)

Y =g(Hw(y),y) = Gw(y) (SSw)

Let ¢, (v, t) be the solution of the second equation
in (8S;) which satisfies ¥y (y,0) = y. If yi < ys,
define 7,.(y1,y2) by ¢(y2,70(y1,y2)) = y. That
is, 7. (y1, y2) is the time of excursion from y; to y;.
Define ¢z (y,t) and 7z(y1,y2) in a similar manner.
Let Wy (y,t) be the solution of the second equation
in (SSw) which satisfies ¥ (y,0) = y. If y; < yy,
define 7w (y1,y2) by Yw(y1, 7w(y1,y2)) = y2.
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Fig. 5. Nullclines of the system (SS). If all the oscillators are
silent, then they lie on £. If an oscillator is silent, but another is
active, then it lies on £z. During its active phase, an oscillator

which receives input lies on the right branch of a cubic between
Cp and Cy.

3.2. Simple networks

We now consider two simple networks in order to
illustrate the role played by excitation in synchroniz-
ing oscillators representing the same pattern, and the
role played by inhibition in desynchronizing oscilla-
tors representing different patterns. We assume here
that each oscillator is stimulated. Hence, each oscilla-
tor, without coupling or noise, is oscillatory with /; =
It

We first consider the following network in which
we do not include inhibition:

€] — ey

We assume that Wi, = W5;. The discussion here is
similar to that given in Somers and Kopell [43] who
introduced the notion of fast threshold modulation.
Assume that ¢; = (x1,y;) and e; = (x2,y;) be-
gin, when ¢ = 0, along £. The singular solution is
then shown in Fig. 6 for the case in which e is suffi-
ciently close to ey. As in the case for one oscillator, the
singular solution consists of several pieces. The first
piece is when both oscillators move along £ and sat-

Fig. 6. Two oscillators coupled through mutual excitation. When
€] jumps up at time ¢ = ¢, the cubic corresponding to e; raises
from C to Cg. This allows e, to jump up. When e; jumps down
at ¢ = f, the cubic corresponding to e; lowers from Cg to C. This
allows e; to jump down.

isfy (SS.). This corresponds to the silent phase and
lasts until one of the oscillators, say e, reaches the
left knee LK. Suppose that e reaches the left knee at
t = t;. Here, we consider the slow time scale. Note
that with respect to the slow time variable, the jumps
between the silent and active phases are instantaneous.

The second piece of the singular solution be-
gins when e; jumps up. During the first part of
this transition, e; satisfies (FS) with S (x2,8;) =
Soo (2, 85,) = 0 together with the boundary condition
lim,_, _ oo (x1(2),y1(t)) = LK. When x;(¢) crosses
05, Soo (X1, 8;) switches from O to 1. This ‘raises’ the
cubic corresponding to e; from C to another cubic
which we denote by Cg. Let LKz and RKg denote the
left and right knees of Cg. If |y; — y, is sufficiently
small, then e; lies below LKg, and e jumps up.

The third piece of the singular solution is when both
oscillators lie on R g, the right branch of Cg, and evolve
according to (SS) with So(x1,8x) = Sec(x2,60,) =
1 and So(z,6,;) = 0. Note that, in some sense,
the ordering in which the oscillators track along the
slow manifolds is now reversed. While the oscillators
moved ‘down’ L, e; was ahead of e;. When the oscil-
lators move ‘up’ Rg, e, leads the way. The oscillators
remain on Rg until one of the oscillators, in this case
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ey, reaches RKg. In Fig. 6, we show this to be at the
slow time t = t,.

The next piece of the singular solution is when
the oscillators jump down to the silent phase. At first
e2 jumps down. When x; () crosses 0y, So (X2, 6,)
switches from 1 to 0. This lowers the cubic corre-
sponding to e; from Cg to C. If, at this time, e; lies
above RK, then e; jumps down to the silent phase.
Once both oscillators lie on £ again, the entire process
repeats itself.

We next consider the network:

€] — 2 = e

Here, e and e; are oscillators without direct excitatory
coupling and z is the global inhibitor. Hence, e; and
e; correspond to separate patterns. We assume that
e and e both begin in their silent phases with y; #
y2. When one of the oscillators, say e;, jumps up,
then the inhibition has the effect of lowering the cubic
corresponding to e;. This prevents e, from firing at
least until e; returns to the silent phase.

The singular solution is shown in Fig. 7. Both os-
cillators begin on £ with y; < y,. They track along £
according to (SS,) until e; reaches LK. Suppose that
this is at t = 1, where, as before, we consider the slow
time scale. When both oscillators lie on £, z = 0. The
second piece of the singular solution corresponds to
when ¢; jumps up. When x; crosses 6,,, o, switches
from O to 1. Hence, z satisfies (FSz) and z — 1 on
the fast time scale. When z crosses ,;, Soo(Z,0x;)
swilches from O to 1. Hence, the cubic corresponding
to ez switches from C to Cz. Since Cz lies below C,
e2(t) approaches Lz during this inner solution.

The third piece of the singular solution is when e; is
inits active phase, while e; is in its silent phase. During
this time, z = 1. We need to choose the parameters so
that e reaches the right knee of Cz before e, reaches
the left knee. We do not want e; to jump up while e is
in its active phase. One way to do this is to choose the
parameters so that the y-nullcline H intersects Cz at a
fixed point p? = (x%,y?) along L, as shown in Fig.
7. This will guarantee that e; — pZ, and e, cannot
Jjump up as long as e is in its active phase. In Fig. 7,
we show that e; reaches the right knee of Cz at ¢ = ¢,.

A0)
e,(0) R,

t)j

e(t)

Fig. 7. Two oscillators coupled through global inhibition. When
e1 jumps up at time t = t;, the cubic corresponding to e lowers
from C to Cz. e is not able to jump up until ¢; jumps down at
t =t and releases e, from the inhibition.

The fourth piece of the singular solution is when ¢;
jumps down to the silent phase. When x; crosses 6y,
O« switches from 1 to 0. Hence, z returns to O on
the fast time scale. When z crosses €y;, Soo (2, 0y;)
switches from 1 to 0. The cubic corresponding to e;
then switches from Cz to C. There are now two cases
to consider. If e, lies below LK, as shown in Fig. 7,
then e, jumps up immediately. The other case is if e;
lies above LK. This results with ¢; and e, both lying
on £ and with e, below e;. This new silent -phase
terminates when e, reaches LK and e; jumps up..

This example demonstrates the role of inhibition in
desynchronizing the two oscillators. Even if ¢; and e;
start very close to each other, once e; jumps up, e; is
not able to jump up until e; returns to its silent phase.
The threshold @, acts as a gate in the sense that once
€| crosses 8., the inhibition is activated, or ‘the gate
is shut’. This lowers the cubic corresponding to e; on
the fast time scale, thus preventing e, from jumping
up. We demonstrate in the next section how to choose
the parameters so that in the case of larger networks,
oscillators within a given group representing the same
pattern can ‘pass through the gate’, while oscillators
not in the group are prevented from passing through.
For this reason, we refer to this mechanism as selective
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gating. In the next section, we show that once the
two oscillators are separated in this way, they remain
separated for all future time. The analysis generalizes
to arbitrarily large populations of oscillators connected
by a global inhibitor.

4, Analysis
4.1. Foreword

In this section, we prove a number of results con-
cerning synchronization and desynchronization within
the oscillator network. The first result is concerned
with the synchronization of the oscillators within a
given block. By a block, we mean the subset of oscil-
lators whose input corresponds to some given pattern.
In this model, a pattern will be a connected region. We
prove that if the oscillators within a block begin suffi-
ciently close to each other, then they will synchronize
when jumping up to their active phases. The second
main result is that there exists a singular solution of
(2.1)-(2.4) in which different blocks remain sepa-
rated. We show that if the blocks begin sufficiently
far apart from each other, then they remain separated
for all time. Moreover, at most one block can be in
its active phase at any given time. Our final result is
concerned with how blocks separate. For this result it
will be necessary to make further assumptions on the
connection weights. We prove that if all of the oscil-
lators begin sufficiently close to each other, then after
a fixed number of cycles the blocks will be separated.
The analysis shows that if € is sufficiently small, then
the number of cycles required to reach full segmenta-
tion is no greater than the number of blocks.

We ignore all unstimulated oscillators in our analy-
sis and assume that every oscillator is stimulated. The
reason that we can do this without loss of generality,
is the following. Recall that if e; is an unstimulated
oscillator, then I; = I~ < 0. We choose the amplitude
of the noise p and the weights Wy, k € N(i), so that

I“+p+ > Wa<0
kEN(D)

From our discussion of the single oscillator in the pre-
ceding section, it follows that there will always be a
stable fixed point on the left branch of the cubic cor-
responding to ¢;. Note that this cubic may change de-
pending on the input that ¢; receives. For example, e;
may sometimes receive input from the global inhibitor
and sometimes it may not. In any case, e; can never
jump up to the right branch of a cubic, and it will not
be able to oscillate. Hence, the unstimulated oscilla-
tors have no effect on the other oscillators.

In the following theorems, we consider the slow
time scale. In particular, the inner solutions, during
which times some oscillators make a rapid transition
between the silent and active phases, are assumed to
be instantaneous.

4.2. Synchronization of oscillators within a block

We now prove a result concerning the synchroniza-
tion of the oscillators within one given block. This re-
sult states that the parameters in (2.1)-(2.4) can be
chosen so that if all of the oscillators within a given
block lie close enough to each other on the left branch
of some cubic, then they will always jump up together,
on the slow time scale. In this case, we refer to these
oscillators as synchronized (cf. Subsection 4.4 for a
more rigorous form of synchronization).

We assume throughout this section that B is a given
block; it need not be the only block of oscillators. For
convenience, we assume that when ¢ = 0, all of the
oscillators in B lie on either £ or £7. We also assume,
without loss of generality, that e; € B, and if ¢; € B,
then y1(0) < y;(0). Then ¢, is the first oscillator in
B to jump up. Assume that this is at time #y. Note that

1 (%) < yr.

Proposition 4.2.1. Fix My > 0 and A > 0. The pa-
rameters in (2.1)-(2.4) can be chosen so that if e;
is any oscillator in B such that 77(y1(0),y;(0)) <
My, then 0 <y;(f0) — y1(to) <A.

Proof. Note that if e; and e; lie on the same left
branch, say £, for 0 < ¢ < to, then 7. (y1(t0), y;(t0))
=7.(y1(0),y;(0)) < M. However, e, and e; may
jump back and forth between the left branches. This
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is the case if there are other blocks besides B. Since
(SS) does not depend on the choice of left branch in
the limit 8 — 0, we can choose B sufficiently small
so that if @ € {L, Z}, then

Ta(¥1(t0),yj(t0)) < 2My (42.1)

We conclude the proof of the proposition by showing
that given A, it is possible to choose the parameter I*
so that if (4.1.1) is satisfied with y,(#y) < y, then
yi(to) — yi(fo) <A.

Choose 7* so that when I = I*, the y-nullcline
‘H intersects C at the left knee LK. For this value of
I, 71(yL.y;) = oo for every y; > y.. Moreover,
we can make 7z(yr,y;) as large as we please by
choosing B small. It follows that for « € {L,Z},
T (¥1 (o). y1 (fo) + A) can be made arbitrarily large
by choosing (I — I*) and B sufficiently small.
In particular, we choose these parameters so that
To(¥1(t0), y1(te) + A) > 2M,. It follows that if
Ta(V1 (to), yj(t())) < 2My, then yj(to) <W» (tp) +A,
and this completes the proof. ol

Theorem 4.2.2. Fix M > 0. The parameters in (2.1)~
(2.4) can be chosen so thatif 7, (y;, y«) < M for each
ej,ex € B with y; < y;, then all of the oscillators in
B always jump up together, on the slow time scale.

Remark 4.2a. The theorem implies that if the oscilla-
tors in B begin sufficiently close to each other, then
they always jump up at the same time. By ‘sufficiently
close’ we mean that the time of excursion between any
two oscillators is bounded. This bound can be made
arbitrarily large by choosing the parameters appropri-
ately. As we shall see, the ‘time metric’ is more natu-
ral for the statements and proofs of the theorems than
the usual Euclidean metric. One reason for this is that
as long as two oscillators remain on the same branch,
the time metric between them remains invariant ! .

Proof. Let Ay, = Yy — Yz, M| = 7.(Yy —
3A1,Yy), My=max{M, M}, and assume that A <
¥m — Y. Choose the parameters so that Proposition
4.2.1 holds for this choice of My and A. Then

! We are grateful to N. Kopell for pointing out the advantages of
the time metric.

yi(to) < yi(to) +A < yo+ (Ym—YL) = Y

Hence, when e; jumps up at ¢ = t, it causes its neigh-
bors to jump up by fast threshold modulation. After a
finite number of steps, every oscillator in B jumps up
at t = fy.

The oscillators in B move up their respective right
branches until one of them reaches a right knee. Sup-
pose that this happens when ¢ = #,. The rate at which
each oscillator evolves during its active phase is de-
termined by (SSw) and depends on the particular cu-
bic that the oscillator lies on. However, (2.1b) implies
that Gw(y) — —y as 8 — 0. Hence, the rates are in-
dependent of the cubic in the limit 8 — 0. It follows
that we can choose 8 and A sufficiently small so that
when ¢ = 1), max{|y; — | : ¢j, ex € B} <Ay.

Once one oscillator in B jumps down to the silent
phase, it causes the other oscillators in B to either
jump down to the silent phase or fall down to the
right branches of other cubics. In the latter case, the
oscillators move up their new right branches before
eventually jumping down. This causes the maximal
distance between the oscillators to increase. However,
the parameter y controls the relative rates between
when the oscillators evolve in the active phase and
when they evolve in the silent phase. Choose # so
that the last oscillator in B jumps down to the silent
phase at time f,. If y is sufficiently large, then we can
guarantee that when ¢ = f, y; > Yy — 3A, for each
e]' c B R

We now have that each oscillator in B lies on either
L or Lz with Yy — 3A; < y;(#2) < Yy. Hence, if ¢;
and ¢; belong to B with y;(#2) < yx(#2) then

(¥ (t2), yi(12)) <7p(Yy — 341, Yy)
=M; < My

By Proposition 4.2.1, when the oscillators in B jump
up again,

max{|y; — | 1 ej,ex € B} <A <y, —yL

Hence, the oscillators in B all lie below LK}, and they
jump up together. We can keep repeating this argument
to show that the oscillators in B always jump up at the
same time. a
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Remark 4.2b. Suppose that M > 4M,. The proof of
this theorem shows that if 7.(y;, yx) < M for each
ej,ex € B withy; < yg, then, when the oscillators fall
down after the first cycle, 7.(y;(f2), yx(t2)) < M,
for each such e; and e;. Moreover, if 8 is sufficiently
small, then 77 (y;(), (1)) < 2M; < M/2 when-
ever t > t and B lies in the silent phase. This gives
some contraction on the dynamics which will be use-
ful in Subsection 4.5.

4.3. Desynchronous solutions

For the following theorem, we assume that the
blocks are initially separated. The theorem then im-
plies that the blocks remain separated for all future
time. That is, all of the oscillators within a given block
jump up at the same (slow) time, the order in which
the blocks jump up is fixed, and there is at most one
block in the active phase at any given time. In the next
section, we consider the case when all of the oscilla-
tors begin very close to each other. We prove that the
blocks desynchronize (separate) after a fixed number
of cycles. As before, we work on the slow time scale.
Note that a block may consist of a single oscillator.

Theorem 4.3.1. We can choose the parameters in
2.1)-(24), M > 0, and a constant T* so that
the following holds. Assume that when t = 0, each
oscillator lies on £, and the hypotheses of Theo-
rem 4.2.2 are satisfied for each block B. If e; and
ey belong to different blocks with y; <y, assume
that 77 (y;, y¢) > T*. Then there exists Ty > O such
that the singular solution of (2.1)-(2.4) satisfies the
following:
(i) all of the oscillators within the same block jump
up at the same (slow) time;
(ii) the ordering in which the blocks jump up is de-
termined by their ordering on L;
(iii) at least one block is in its active phase for some
t€(0,Ty);
(iv) at most one block is in its active phase for any
given t € (0,Tp);
(v) when t = Ty, all of the oscillators lie on £, and
the hypotheses of Theorem 4.2.2 are satisfied for
each block B. Moreover, if ¢; and e belong to

different blocks with y; < y, then 7.(y;, vi) >
T*.

Remark 4.3a. The hypotheses of the theorem are still
satisfied after time Tp. Hence, we may keep repeating
the result to conclude that the blocks remain separated
for all time.

Remark 4.3b. There is a natural ordering of the blocks
on L at ¢t = 0. This is because £ is a one-dimensional
curve, oscillators within a block begin very close to
each other, and oscillators not in the same block be-
gin bounded away from each other. The theorem then
states that this natural ordering is preserved for all fu-
ture time if the parameters are chosen appropriately.
In particular, each block jumps up before any other
block jumps twice. This may not remain true as the
parameters are varied. In particular, we have numeri-
cally observed examples in which the ordering is not
preserved if, for fixed values of the parameters, the
number of blocks is too large.

Remark 4.3c. This theorem gives a global stability re-
sult. It implies that for a large class of initial data -
namely, that given by the assumptions of the theorem
~ the corresponding solutions display the desired fir-
ing patterns in which the oscillators within a given
block are synchronized and different blocks are sep-
arated from each other. This theorem is not a local
result. It does not necessarily imply that there is a
unique stable periodic solution of (2.1)-(2.4) whose
basin of attraction is that given by the assumptions of
the theorem. It is possible that the exact structure of
stable periodic solutions, or even chaotic solutions, of
(2.1)-(2.4) is quite complicated.

We begin the proof of Theorem 4.3.1 with two im-
portant technical results. For these results, we assume
that ¢, and e; are any two oscillators in the network
which both lie on £ with y; < y;. Choose ¢y so that

Yz (y1.t0) =yL.

Proposition 4.3.2. If 0 < t < tg, then ¢z (y1,1) <
YL (y1,t). Moreover,
(l) TZ()’I’)’2) < TL(}’I,)’Z);
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(1) 72 (y1,1), ¥ (y2,¢)) is a decreasing func-
tion of ¢;

(iiit) 7o(¥z(y1,1), ¥z (y2,1)) is an increasing func-
tion of z.

Proof. This is a restatement of [27, Proposition 2.3].

According to that result, the Proposition will follow

once we show:

(a) dg/dx > 0 and dg/dy < O in the region between
L:Z and ﬁ,

(b) (d/dy)[g(h(y),y) — g(hz(y),y)] < 0 along
ﬁz and L.

It is a simple matter to verify that these two conditions

are satisfied for the nonlinearities defined in (3.1.1).0J

Proposition 4.3.3. Given A € (0,1), the param-
eters in (2.1)-(2.4) can be chosen so that A <
Tz, y2) /7L(y1,¥2) < 1 for all y;,y, such that
yL <y <y

Proof. 1t follows from the previous proposition that
htz(y1,v2)/7.({y1,y2) < 1. Moreover, as 8 —
0,g(x,y) - —y. Therefore, in the limit 8 —
0,7z(y1,y2) = 7.(y1,y2). The result now follows if
we assume that 8 is sufficiently small. (]

In what follows, we assume that the conclusion of
Proposition 4.3.3 is satisfied. The constant A is chosen
later.

We now return to the proof of Theorem 4.3.1. It
is clear that each oscillator must jump up at some
time. Moreover, by Theorem 4.2.2, all of the oscilla-
tors within a given block jump up at the same time.
Recall that these oscillators need not jump down at
the same time.

Denote the blocks by By, B;,..., By, where Np
is the number of blocks. We assume, without loss of
generality, that if j < k, e¢; € B; and e; € B,
then y;(0) < y;(0). We denote the subscripts for the
blocks with capital letters, and a typical oscillator in
that block with the corresponding lower case subscript.
For example, we assume that e, € Bg. Choose tx so
that each oscillator in Bg jumps up for the first time
at t = tg. Choose tX and TX so that during the first
cycle, the first oscillator in Bk to jump down does so

at ¢t = t¥ while the last oscillator in By to jump down
during this cycle does so at ¢t = TX. Hence, if ex € By
then e, € LU Lz for 0 < t < tg, e lies on a right
branch for tx < t < tX, and e;(t) jumps down to the
silent phase for some r € [tX,TX].

It is possible that 7z = T7 for K # J; that is, the
oscillators in Bg jump up when an oscillator in B,
jumps down for the last time. In this case, there exists
er € Bx, such that ex(T7) € Lz with y(T?) < y;.
In the proof that follows, we prove that there must
exist some time when the last oscillator within some
block jumps down, but no other oscillator jumps up.
Define Ty to be the first time at which this happens.

Let Tg = 7w, (yL,Yn). We claim that given § >
0, we can choose the parameters so that for each X,

Tr—8<TK -ty <Tr+8 (4.3.1)

Recall that there is a fixed point of (SSz) at p? =
(x%,y%) € L. If an oscillator e; jumps up at tg
and jumps down at TX € [tX,TX], then the proof of
Theorem 4.2.2 demonstrates that

yZ < y(tg) <y, +A and
|)’k(Tk) - Ym| < A1

where we can make A as small as is necessary by
choosing the parameters appropriately. Note that we
can make A; small by choosing the parameter Wy
small. This gives a restriction on the connection
weights. We choose the parameters so that

l7w(e(tk),yL)| < 8/3 and
lrw e (T, Ya) | < 8/3

for each W € [0,4W,,]. Moreover, the rates at which
the oscillators evolve along the right branches are in-
dependent of which right branches the oscillators lie
onin the limit 8 — 0. Hence, if B is sufficiently small,
then |7w(yL, ¥n) —Tr| < 8/3 foreach W € [0,4Wy].
From this, (4.3.1) follows. The constant é is chosen
later (see the sentence following (4.3.6)). Let

0 =77z (Y — 3A1,Yy) and
T =Tfg —6—90p. (4.3.2)

The proof of Theorem 4.3.1 is now split into a num-
ber of lemmas. For each of these lemmas, we con-
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sider singular solutions of (2.1)~(2.4). The results are
shown to be true if the parameters are chosen appro-
priately. The first lemma is concerned with whether it
is possible for more than one block to jump up when
another block jumps down. The result implies that,
under certain conditions, this is impossible.

Lemma 4.3.4. Suppose that there exists an integer J €
[1,Np — 2] such that for 1 < K < J, tg41 = TX.
Then txy, >TK for 1 < K < J.

Remark 4.3d. Fix K € [1,J]. It is clear that the or-
dering of the blocks in the silent phase is preserved for
0 < t < TX. Hence, the result implies that no blocks,
except Bg.1, jump up when the last oscillator in Bg
jumps down.

Proof. Fix K € [1,J]. Since txy; = TX, there must
exist g1 € Byy1 with yi 1 (TX) < y.. We need to
prove that if ez € Biya, then ye2(TX) > y,.

Let T° = ¢,. Then some oscillator is active for
each t € (79 7X). Hence, ex2(t) € Lz ift €
(T°,TX). We prove that y;.2(TX) > y, by showing
that 72 (yz, Ye+2(TX)) > 0. Note that

772 (YL, Yes2 (TE)) = 72 (e t (TF) , i 2 (T
121 (T, y1)  (433)

We estimate each term on the right-hand-side of
(4.3.3). Since e, and ey both lie on £ for 0 <
t < T% and both lie on £z for T° < t < T, it fol-
lows from Proposition 4.3.3 and the assumptions of
the theorem that

72 (ki1 (T5), Y2 (TX))
=72 (¥r1 (T°), yig2(T°))
=71 (W1 (T%), yesa (T°))
o 72 (Y1 (T°), yi2(T%))
7L(Yrs1(T0), yes2(T9))
721 (T°), 2 (T9))

7L (Vi1 (T0), Y2 (T0))
(434)

=77 (yr+1(0), ye+2(0))
> AT"

On the other hand, using (4.3.1), Proposition 4.3.3,
and the assumptions of the theorem,

7z (T, y1)
=72t (TF), i1 (T?)) — 7200, Vet (T%))
=TK —T0 — 721 (T%), Y1 (T))

K
=TK 10 = 3" 723, (T), 31 (T%)

J=1

K
=T - 70 =3 m(3(T%), 31 (T%)

Jj=1
y 72(3;(T%), y;11(T"))
TL(y;(T°), y;+1(T°))

K
<TK 10— XY (i (1), 301 (T%)

J=1
< K(Tg + 8) — KAT*

It follows from (4.3.3), (4.3.4), and (4.3.5) that

(4.3.5)

T2(yL, Yes2(TX))
> AK+ DT — K(Tg + 6)
=AK+1)(Tg— 86— 6) — K(Tg + 9)
The proof of the lemma will be complete if this

last expression is positive. Since K < J < Np — 2, it
follows that 77 (yr, yr+2(TX)) > 0 if

A Np—2 T+ 6
"\ N =1 ) \Tr=6-50

From Proposition 4.3.2, we need to require that A <
1. We can certainly choose A < 1 so that (4.3.6) is
satisfied if 8 and &y are sufficiently small. |

(4.3.6)

The following lemma implies that there exists some
block such that when it jumps down to the silent phase,
no other block jumps up.

Lemma 4.3.5. Suppose that tx1 = TX for 1 < K <
Np — 1.If ) € By, then yl(TN”) > VL.

Remark 4.3e. In the lemma, we assume that for 1 <
K < Np — 1, Bk, jumps up when By jumps down.
The conclusion then states that, in this case, no block
jumps up when By, jumps down. Of course, if the
hypothesis of the lemma is not satisfied, then there
must certainly be some block such that when it jumps
down to the silent phase, no other block jumps up.
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Proof. We show that if the assumptions of the lemma
are satisfied, then 7z (yz, vi (T¥?)) > 0. We first es-
timate

7z(yL, y1 (T ~1))
=77 (yn, (TV? 1),y (TN~ 1Y)

72w, (T 71y, 1) (43.7)

Note that e; and ey, both lieon £z for T! < ¢ <
TN*=! Moreover, the proof of Theorem 4.2.2 implies
that Y1 (Tl) > Yy —3A,. Hence, if T} = Tz(yL, Yy —
3A;), then
72w, (TN, 3 (TV 1))

=72 (N, (TN, 31 (TY))

> 77 (yn, (TY), Yoy — 34))

=72(ye, Y — 3A1) — 7z (yL, yn, (T"))

=T, —72(yL, yn, (T")) (4.3.8)

Since yy, (TN¥*~1) <y, it follows as in (4.3.1) that

7z (yr, yn, (THY) <TNe=1 7!
<(Np —2)(Tr +6)

Together with (4.3.8), this implies that

7z (N, (TN 1) 3 (T 1)

>T, — (Np —2)(Tg + ) (4.39)

On the other hand, (4.3.5), with K = Np — I, im-
plies that

72y (TN 1), y1) < (Np — 1) (Tr + 8)

—A(Np — DT*  (43.10)

It now follows from (4.3.7), (4.3.9), and (4.3.10)
that

Tz, (T 1)) > Ty — (2Np — 3) (T + 6)
+A(Np — 1)(Tg — 8 — &)

Together with (4.3.6), this implies that
T2y (TN ™)) > Ty — (Np — 1) (Tr + 8)

We assume that

Ti. > Np(Tg + 9) (4C.11)

This will be the case if the parameters vy is chosen suf-
ficiently large and 6 is sufficiently small. It then fol-
lows that 77 (yz, yi (T¥*~1)) > Tp+6. From (4.3.1),
TNy —TNe=1 < Tp+6. Hence, 77 (y., yi (TV?)) > 0,
and the result follows. (]

The following lemma completes the proof of The-
orem 4.3.1. For this result, we identify By = By, 11
and BN,, = B().

Lemma 4.3.6. Suppose that there exists J € [0, Np]
such that if 1 < K < J, then txy; = TX. Moreover,
assume that ¢t;,; > 77. Then Theorem 4.3.1 follows
with Ty =77,

Remark 4.3f. In the statement of the lemma, J corre-
sponds to the first block with the property that when
it jumps down, no other block jumps up. In the pre-
ceding lemma, we proved that such a J exists.

Proof. Certainly when t = Ty = T7, all of the blocks
lie on £ and their ordering is preserved for 0 < t <
To. Remark 4.2b demonstrates that the hypothesis of
Theorem 4.2.2 are satisfied for each block if M >
2M,. Moreover, by the previous lemmas, at most one
block is in its active phase for 0 < ¢ < T, and at least
one block, namely Bj, did jump up during this time.
So it remains to prove that if e, € By and e441 € By
then 7. (yi(To), ye1(Tp)) > T* for all appropriate
K.

We first assume that J + 1 < X < Np. Then ¢; did
not jump up for 0 < ¢t < Tp. Since no oscillator is in
its active phase for 0 < ¢ < ¢; = 77, it follows that

LT, Y (T%)) = 7(3(0), vy 1 (0)) > T*

Moreover, there is always an oscillator in its active
phase for T° < t < Ty. Hence, if we set Ty = Ty — T°,
then

yi(To) =¢z(n(T°),T;) and
Vi1 (T0) =¥z (ye1 (T°), T))

Therefore, by Proposition 4.3.2,
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TL(Y(T0) s Y+ 1(T0))
= 7Lz (Y(T°), T1) ¥z (31 (T0), T1) )
> 70(hz (3(T°),0), ¥z (3141 (T°),0))
= 7L ((T°), yes1 (T°))
>T*

We now assume that 1 < K < J — 1. Then both
e; and ex4y jumped up for 0 < ¢ < Tp. By (4.3.1),
sg =TXH _TK 5 Tp — 8. Since yi(TX) < Yy,

Yie(TEYY = oz (W (T, 5x) < Yz (Yar, Tr — 8)
or
Tz(n(T**), Yy) > Tr — 8

On the other hand, it follows from the proof of Theo-
rem 4.2.2 and the definition of 8y given in (4.3.2) that

Yirt (TEFYY > Yiy — 341 = ¢z (Yo, )
This implies that

7z (et (TKFY)  Yay) < 8o

Therefore,

Tz (V(TEHYY, 3y (TKHY)
=72 (T, V) — 72 (TXY), 1)
>Te—8—-8 =T

Since ey and e, both lie on £z for T¥*! < ¢t < Ty,
it follows that

72(¥6(T0), yi+1(T0)) = 7z (e (TKHY), 3 (TFHY)
>T*

Hence, by Proposition 4.3.2,

LYk (To), Ye+1(T0)) > 72 (e(To) , yr+1(To))
>T*

It remains to consider the case K = J. However this
is trivial since when ¢t =Ty, B; is the ‘top’ block on
L, while By, is the ‘bottom’ block.

O

4.4. Separation of blocks

Our final result is concerned with how the blocks
desynchronize themselves from each other. For this
result, we need to make further assumptions on the
connection weights. We do not state here the precise,
detailed assumptions that are required for the proof.
Instead, we consider a specific class of weights. After
proving the theorem in this case, we discuss why the
result extends to more general classes of connection
weights.

Recently, Wang [51,52] proposed a mechanism
called dynamic normalization to ensure that each os-
cillator, whether it is in the interior or on the boundary
of the network, has equal overall connection weights
from its neighbors. This mechanism uses a pair of
connection weights from one oscillator j to another
oscillator i, one permanent T;;, and another dynamic
Ji;. Permanent links reflect the hardwired structure of
a network (2D grid), while dynamic links quickly
change from time to time. In computations, though,
only dynamic links formed on the basis of permanent
links play an effective role. That is W;; in (2.2) is set
to J;;. The idea of using two kinds of synaptic weights
was first proposed by von der Malburg [48,50] who
argued for its computational advantages and neuro-
biological plausibility (see also [7]). The dynamic
normalization mechanism is adopted in the present
model as a modification rule of dynamic links J;;
that combines a Hebbian rule [20] that emphasizes
coactivation of oscillators i and j and a normalization
of all incoming connections to an oscillator. More
specifically, it is a two-step procedure: First update
dynamic links and then normalization:

Ay = ETu(xi)u(x;)

Jij =Wa(Ji; +AJy) [le +3x(Ja + Ady) ]
(4.4.1)

where ¢ and W, are both positive and the small
constant c is introduced to prevent division by 0. In
(4.4.1), ¢ regulates the rate of modification and Wy
specifies the overall connection strength to oscillator
i. Function u(x;) measures whether oscillator i is
activated by external stimulation. It is here simply
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defined as u(x) = 1 if (x) is greater than a constant
and u(x) = O otherwise. The angular bracket (x)
stands for temporal averaging of the activity x over
a period roughly corresponding to the period of os-
cillations. Each weight J;; is updated once every step
in the numerics. The outcome of (4.4.1) is that after
an initial transient an effective connection is estab-
lished between two oscillators if and only if they are
neighbors and both of them are activated by external
stimulation, and the overall dynamic weights to a sin-
gle oscillator equal W,. In engineering applications,
however, J;;’s can be properly set up in a single step
at the beginning based on external stimulation. Notice
that weight normalization is commonly used in neural
network models for competitive learning [47,15].

In the previous section we showed that if the blocks
begin sufficiently separated on £, then they remain
separated for all future time. We now assume that all
of the oscillators begin close to each other on £ and
describe the segmentation process. Our analysis indi-
cates that in the singular limit, the number of cycles
required for full segmentation is no greater than the
number of blocks. By one cycle, we mean the time for
all of the oscillators to jump up exactly one time. For
the following result, we assume dynamic normaliza-
tion of the connection weights and consider singular
solutions of (2.1)-(2.4). We also assume that each
block consists of at least two oscillators. Then every
oscillator receives some excitatory coupling while in
the active phase. Notice that this assumption was not
needed for our previous results. As before, we con-
sider the slow time scale, and the result holds if the
parameters are chosen appropriately.

Theorem 4.4.1. Fix M > 0. Suppose that when ¢ = 0,
all of the oscillators lie on £ and 0 < TL(Yjsye) <
M for every e; and e; such that y; < yi. Then there
exists T > 0 such that when ¢ = T, the hypotheses of
Theorem 4.3.1 are satisfied. That is, when ¢ = T, all of
the oscillators lie on £, and the hypotheses of Theorem
4.2.2 are satisfied for each block B. Moreover, if e;
and e, belong to different blocks with y; < yj, then
TL(yjis i) > T,

Remark 4.4a. The proof of this result demonstrates

that T corresponds to no greater than Np cycles where
Np is the number of blocks.

Remark 4.4b. We assume that no two oscillators be-
gin at exactly the same position. This condition is only
necessary if the oscillators lie in different blocks and
is needed to avoid two oscillators in different blocks
firing at exactly the same time. In this analysis, we
are ignoring the role of noise in the model. It is clear
that a small amount of noise will help to desynchro-
nize the oscillators. Namely, if two oscillators within
different blocks are, at some time, very close to each
other, then because of the noise, the oscillators will, at
some later time, be a small distance apart. This small
distance may be enough to insure that the selective
gating mechanism desynchronizes the oscillators.

Remark 4.4c. The assumption of normalized weights
simplifies the analysis for the following reason. Re-
call that without this assumption, oscillators within
the same block may lie on the right branches of dif-
ferent cubics in the active phase, and two oscillators
within the same block need not jump down at the same
(slow) time. With dynamic normalization, every os-
cillator within the same block receives the same input
and hence lies on the same right branch during its ac-
tive phase.

Suppose that W, is the total connection strength
to each oscillator in the active phase. We let C4 =
C(Wy4, W,). Here, we use the notation of Subsection
3.1. Let R4 denote the right branch of C4 and RK, =
(X4,Y4) denote its right knee.

Proof. We show that after each cycle, at least one
block breaks away from the rest of the oscillators.
Hence, after Np cycles, all of the blocks desynchronize
from each other. It follows from Theorem 4.2.2 that
the oscillators within each block remain synchronized.

As before, we denote the blocks by By, Ba, . .., By,
and assume that e is a typical oscillator in Bgx. We
assume, without loss of generality, that y; (0) < y;(0)
if j # 1. Then B; is the first block to jump up. Suppose
that this happens at ¢ = ¢;. The oscillators in B, then
track along R4 until one of them reaches RKj, say
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at t = T'. We claim that if the parameters are chosen
appropriately, then all of the oscillators in B; must
fall down at T!. By Proposition 4.2.1, given A > 0,
we can choose the parameters so that y; < yi(t1) <
yr + A for all oscillators. A proof similar to that
given in Theorem 4.2.2 demonstrates that A can be
chosen so that if é; € By, then $,(T") > Y4 — W,,.
Hence, when ¢ = T!, each oscillator in B, lies above
the right knees of every cubic that corresponds to an
input less than W4. When e, jumps down, the inputs
to e;’s neighbors in B; decrease, and the cubics of
these neighboring oscillators are then lowered. Since
the neighbors in B; lie above the right knees of the
lowered cubics, these neighbors must jump down. In
a similar fashion, the neighbors’ neighbors must jump
down at t = T'. This continues until every oscillator
in By jumps down to the silent phase.

Let Ty = 7w,(yL,Ya). We claim that given § > O,
we can choose the parameters so that

TAa—8<T —1) <Ty (44.2)

The proof of the first inequality is similar to that of
(4.3.1). Actually this proof is easier than the proof
of (4.3.1). In order to prove (4.3.1), we needed to
assume that S is small, because previously, the oscil-
lators may lie on different cubics in the active phase.
This is not the case here. The second inequality follows
because if é; € By, then y; < $1(t1) < $1(T) < Y.
Hence, T! — < TWA(yL,YA) = Ya.

Proposition 4.2.1 demonstrates that given A > 0,
we can choose the parameters so that y; < y;(#;) <
yr+A forall oscillators. Let ¥y = ¢z (yL +A, T4 —96).
Note that ¥ < y., if A is sufficiently small. Hence, if
J#1and e; € B;, then

yi(Th =Yz (3 (1), T' = 11) <z (yL+ A, T4 — 6)

=h <y (44.3)

Therefore, when the last oscillator in B; jumps down,
all of the other blocks are released from inhibition and
begin to jump up. It is possible that during this inner
region, some of the blocks desynchronize themselves
from the others. On the fast time scale, the oscilla-
tors which desynchronize themselves approach a right
branch as t+ — 0o, while the remaining blocks return

to Lz as t — oo. The reason that this can happen is
the following.

Suppose that during this inner region, e¢; € By is the
first oscillator to cross the line x = ,, while jumping
up. We assume that 8, is chosen so that at this time,
(xj,y;) must lie below the cubic Cz. See Fig. 7. When
x; crosses 8, the inhibition is turned on again so that
z — 1. When z crosses €,,, the oscillators which lie
above Cz will ’turn around’ and return to £z. The
other oscillators will jump up to the active phase. In
particular, B; will jump up.

Remark 4.4d. We do not use this mechanism for
desynchronization in the proof, although it clearly en-
hances the process of desynchronization. Hence, the
blocks may desynchronize in fewer than Np cycles.

We consider the worst case. This is when all the
blocks, except Bi, jump up when B; jumps down.
These blocks then move up their right branches until
one oscillator reaches RK,, and that oscillator’s block
jumps down. Suppose that this block is 53 and it jumps
down when t =T%. Let oy = 7w,(¥,y.). Then
(4.4.3) implies that

T ~T' > Ta+ 0o (4.4.4)

Let e be any oscillator in By and let ¢; be any os-
cillator not in B. We estimate 71, (1 (%), y,(T%)). A
proof similar to that given in Theorem 4.2.2 demon-
strates that

yi(TH > Y, —A (4.4.5)

Moreover, since y;(T') < ¥y, (4.4.4) implies that

y(T? =gz (n(TH, T> - T")

Ltz (Ya, T4 + 09) (4.4.6)

It follows from (4.4.5), (4.4.6), and Proposition4.3.2
that

7L (T2, y(T?)
> 1L(Yz(Ya,Ta +00),Ya — A)
> 7z(z(Ya,Ta + 00), Y4 — A)
=7z(Yz (Ya, T + 00),Ya) —72(Ya — A, Ya)
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=Ta+oo—7z(¥Ya—A,Yy)
> Ty +0’0/2

if A is sufficiently small.

This completes one cycle. Note that B has sepa-
rated from the main group of oscillators, and every
oscillator lies on £. We now show that during the next
cycle, some other block separates itself.

The next block to jump up is B;. Say that this is at
t=1.1f e, € B and ¢; & By, then

(v, ¥; (1)) = 7L (T?), y;(T?)) > Tq + 0¢/2

By Proposition 4.3.3, we can choose the parameters
so that 7z (yz, yj(fl)) > Ty

We now claim that no oscillator jumps up when the
oscillators in B; jump down during this second cycle.
Say that the oscillators in B, jump down at ¢t = T
Then, as in (4.42), T' — f| < T4 If e; & By, then

yilPYY =gz (3 (1), T' = 1)) > ¢z (y;(71),Ta)
>y

Therefore, every oscillator lies above the left knee of
L, and no oscillator jumps up when B; jumps down.
When the next oscillator jumps up, its block desyn-
chronizes from the main group of oscillators. We now
keep repeating the above argument to conclude that
after each cycle, at least one new block separates it-
self from the rest. The above analysis also shows that
after Np cycles, the assumptions of Theorem 4.3.1 are
satisfied. O

Remark 4.4e. It does not follow from our analysis
that for arbitrary connection weights, the oscillators
within a block reach complete synchronization, even
in the singular limit. With normalized weights, how-
ever, we can prove that, in the singular limit, oscilla-
tors within a given block synchronize. That is, if the
oscillators satisfy the assumptions of Theorem 4.2.2,
then the maximal distance between any two oscilla-
tors in a block approaches zero. Moreover, the rate
at which the oscillators approach synchrony is expo-
nential. This follows because the normalized weight
assumption implies that during both the silent and ac-
tive phases, all of the oscillators within a block lie on

the same branch of the same cubic. Moreover, they
all jump up and jump down at the same time. Dur-
ing the silent and active phases, when the oscillators
move along the same branch of a cubic, the maximal
distance between the oscillators decreases at an ex-
ponential rate. This is complete synchronization; it is
stronger than what is demonstrated in Subsection 4.2
where synchronization was taken to mean simultane-
ity in jumping up. Although we do not include a de-
tailed proof of this result here, we will illustrate the
result with numerical simulations in the next section.

Remark 4.4f The proof of Theorem 4.4.1 demon-
strates that there are at least two mechanisms for
desynchronizing different blocks. The first mechanism
is when every oscillator lies in its silent phase. When
one oscillator reaches the left knee of £, it jumps up
and recruits the oscillators within its block, and, at the
same time, prevents other blocks from jumping up by
selective gating. This is the mechanism that was used
in the proof of the theorem. The second mechanism
was discussed in Remark 4.4d. In this case, oscillators
of at least two blocks lie on £z below the left knee
of £. These oscillators begin to jump up at the same
time when they are released from inhibition. If one of
these oscillators crosses the threshold @, sufficiently
ahead of the oscillators in other blocks, then selective
gating may prevent those blocks from jumping up.
‘We did not use this second mechanism for desynchro-
nization in the analysis. We expect that Theorem 4.4.1
holds for more general classes of connection weights
besides those obtained by dynamic normalization.
Numerical simulations, including those shown in the
next section, clearly demonstrate that this is the case.

4.5. Necessary assumptions on the nonlinearities
and € >0

We never used the exact form of the nonlinear func-
tions in (2.1)-(2.4) for the analysis. We now describe
the assumptions necessary for the main theorems. We
shall see that these results remain true for a large class
of neural oscillators.

Assumptions on f and g are required in order that
(a) and (b) in the proof of Proposition 4.3.2 to be
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satisfied. Similar assumptions are required in Remark
4.4e. These conditions are not very restrictive; they
follow for the nonlinearities in our model from simple
conditions on the derivatives of f and g (see [27]).

Recall that in a singular solution, different oscilla-
tors may lie on the left or right branches of different
cubics. It was important for our analysis that the dy-
namics on these branches does not depend heavily on
the particular cubic. This was needed, for example, in
the proof of Proposition 4.3.3 where we need that A
be close to one. We were able to guarantee that this
is true by choosing the parameter B small. Note that
a parameter similar to 8 appears in the Morris—Lecar
model but not in the FitzHugh-Nagumo equations.

For the proof of Theorem 4.3.1, we need that
(4.3.11) and (4.3.6) to be satisfied. These require
that the time of excursion in the active phase is much
shorter than the time of excursion in the silent phase.
This condition is quite natural if we require that there
be many blocks and only one block can be in its ac-
tive phase at any time. We were able to satisfy this
condition by choosing the parameter y sufficiently
large (see Fig. 3b). Note that § and 8y depend on A
which depends on the choice of connection weights.
Hence, in order for (4.3.6) and (4.3.11) to be sat-
isfied, we must assume that the weights are not too
large. If we assume weight normalization, then this
restriction is not necessary.

All of the previous results are for singular solutions
of (2.1)-(2.4) in which e is formally set to zero. We
conclude this section by showing how to extend the
main theorems to the case when € is positive. We begin
with Theorem 4.3.1. Note that this includes Theorem
4.2.2. We prove that Theorem 4.3.1 remains valid for
€ > 0, except that the oscillators within a given block
may not jump up at exactly the same time. The times
at which they jump up will be very close to each other,
however. In order to generalize Theorem 4.3.1 for €
positive, we must first extend the conclusion of the
theorem in the following way.

The proof of Theorem 4.3.1 shows that there exists
8" so that the theorem remains valid if we assume that
attime ¢ =0, y; > y. + 6* for each oscillator ¢;. We
may conclude thatat ¢ =T;, y; > y, + 28*. Finally,
in conclusion (5) of the theorem, we replace T* with

T + 6~
We now reformulate the statement of Theorem 4.3.1
as follows. We view the solutions and singular solu-
tions of (2.1)-(2.4) as trajectories in the full (2N +
1)-dimensional phase space where N is the number
of oscillators. This is a slightly different point of view
from what we took before. In our previous analysis,
we often considered the two-dimensional phase space
corresponding to each oscillator. Since, all of the os-
cillators are identical, we could project each of the os-
cillators onto the same two-dimensional phase space.
It is now necessary to define two subsets, So C S,
in the full phase space. We shall see that the singu-
lar flow defines a map from S into Sp. Let M be as
in Remark 4.2b. Define S to be the set of all points
(e1,e2,...,en,2), where e; = (x;, y;), with the fol-
lowing properties:
(1) yL+ 6" < y;j <Yy + 6 for each oscillator;
(ii) if e;j and e belong to the same block with y; <
Yk, then 7.(y;, yx) < M;
(iii) if e; and e; belong to different blocks and y; <
Yi. then 7. (yj, ye) > T
(iv) |x; — h(y;)| < & for each oscillator;
(v) |z| < &*.
We define Sp in a way similar to §. Let S be the
set of all points (e, e, ..., ey, z) with the following
properties:
(i) yL+26* <y; <Yy + 6*/2 for each oscillator;
(ii) if e; and e belong to the same block with y; <
Yk, then 7. (yj, yx) < M/2;
(iii) if e; and e; belong to different blocks and y; <
Vi, then 7. (yj, ) > T* + 6%
(iv) |xj — h(y;)| < 6* /2 for each oscillator;
(v) |z} < 8%/2.
Note that Sy lies in the interior of S. We show that
the extension of Theorem 4.3.1 allows us to use the
singular flow in order to define a map ®9 : S —
So. Our previous analysis shows that this is true if
each e, € L. If ¢ = (xk,yk) g L, let w(e;) =
(h(ye), ) € L. X p = (e1,...,en,2) € S, let
II(p) = (w(e1),...,m(en),z). Then define P :
S — Sy by ®o(p) = @(1(p)).
We next extend @y to a map ¥, : S — S which
depends continuously on € for € > 0 sufficiently small.
Fix p € S and let ¢.(t) be the solution of (2.1)-
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(2.4) with € > 0 and ¢, (0) = p. Let ¢o(t) be the
singular solution of (2.1)-(2.4) with ¢(0) = p. If
T > 0 and G is any tubular neighborhood of ¢ (t),
then ¢ (¢) € G for 0 < ¢t < T and € sufficiently small
(see [33]).

For each p € S, choose 7, so that ®y(p) =
Yo (T,) € Sp. It follows that if € is sufficiently small,
then ®.(p) = ¢4 (T,) € S, and ¢, (1) has the same
‘firing pattern’ as ¢ (r). Clearly, we can choose
€ > 0 so that this analysis holds for every p € S.

The extension of Theorem 4.3.1, and therefore The-
orem 4.2.2, to the case € > 0 is now complete. We
have demonstrated that for each p € S, there exists
T, > O such that .(7,) € S. Moreover, . shares
the same firing pattern as .

The proof of Theorem 4.4.1 extends to the case €
positive in a similar manner. If p is a point in the full
phase space which satisfies the hypotheses of Theorem
4.4.1, then there must exist 7 > 0 such that ¢ (T) €
Sp. As before, this implies that ¢ (T) € S for e > 0
sufficiently small. We can then apply our extension of
Theorem 4.3.1 to the case € positive.

5. Computer simulation

To illustrate how the network architecture studied
above can be used for scene segmentation, we have
simulated a 20 x 20 grid of oscillators with a global in-
hibitor as defined by (2.1)-(2.4). For simplicity, each
oscillator in this simulation was connected to its near-
est neighbors by a constant weight, and Wy in (2.2)
was set to 2.5. To illustrate that dynamic normaliza-
tion as assumed in Theorem 4.4.1 is not necessary for
achieving segmentation, we did not use dynamic nor-
malization in this simulation. we arbitrarily selected
the scene in Fig. 1 as the input. This scene consists of
three objects: the sun, a tree, and a mountain. These
patterns were simultaneously presented to the grid as
shown in Fig. 8a. Each pattern is a connected region,
but no two patterns are connected to each other. All
of the oscillators stimulated by the objects received an
external input / = 0.2, while the unstimulated oscilla-
tors had 7 = —0.02 (see (2.1)). Thus the oscillators
under stimulation were oscillatory, while those with-

(a) i T

Fig. 8. Scene segmentation by an oscillator network. (a) The
image shown in Fig. 1 is presented to a 20 x 20 grid of oscillators.
Each square correponds to an oscillator. If a square is at least
half covered by the image, the corresponding oscillator receives
external input; otherwise, the corresponding oscillator receives no
external input. (b) A snapshot of the activities of the oscillator
grid at the beginning of dynamic evolution. (c) A snapshot of
the activities of the oscillator grid shortly after the beginning. (d)
Another snapshot taken shortly after (¢). (e) Another snapshot
taken shortly after (d).

out stimulation remained silent. The amplitude p of
the Gaussian noise was set to 0.02. Hence, compared
to the external input, a 10% noise was included in ev-
ery oscillator. We observed in the simulations that the
noise facilitated the process of desynchronization.

The differential equations (2.1)-(2.4) were solved
using both a fourth order Runge-Kutta method and the
adaptive grid o.d.e. solver LSODE. For the simulation
shown in Fig. 8, we chose the following values for
the other parameters in (2.1)-(2.4): € =0.02, ¢ =
3.0, y=6.0, B=0.1, k=50, 8, =—-0.5,and 6,, =
0y, =0.1.
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Fig. 9. Temporal activities of oscillator blocks. The upper three
traces show the combined temporal activities of the oscillator
blocks representing the patterns indicated by the symbols to their
left, respectively. The bottom trace shows the temporal activity
of the global inhibitor. The ordinate in the figure indicates the
normalized x-activity of an oscillator calculated in the same way
as in Fig. 8. The simulation took 8,000 integration steps.

The phases of all of the oscillators on the grid
were randomly initialized. This simulation condition
is more relaxed than what is assumed in the analy-
sis where either the oscillators begin close to each
other (Theorem 4.4.1) or the patterns are initially seg-
mented (Theorem 4.3.1). The simulation results are
displayed in Figs. 8 and 9. The diameter of each black
circle represents the x-activity of the corresponding
oscillator. That is, if the maximum and minimum x-
values of all oscillators are X4, and x4, respectively,
then the diameter of the black circle corresponding
to an oscillator is proportional t0 (X—Xpin) / (Xmax —
Xmin) -

Fig. 8b shows the instantaneous activity (snapshot)
of the network a few steps after the beginning of the
simulation. The activities of the oscillators at this time
were largely random. Fig. 8c shows a snapshot after
the system had evolved for a short time period. One can
clearly see the effect of grouping and segmentation:
all of the oscillators belonging to the mountain were
entrained and had large activities. At the same time,
the oscillators stimulated by the other two patterns had
very small activities. Thus the mountain was clearly
segmented from the rest of the input. A short time
later, as shown in Fig. 8d, the oscillators stimulated
by the tree reached their active phases and separated
from the rest of the input. Finally, Fig. 8e shows that
a short time later, the oscillators representing the sun
were active while the rest of the input remained silent.

This successive ‘pop-out’ of the objects continued in a
stable periodic fashion as described in Theorem 4.3.1.

The patterns shown in Fig. 8a were completely seg-
mented after just two cycles, and the segmentation
process is consistent with that described by the anal-
ysis. This is best illustrated in Fig. 9 where we show
the temporal evolution of each oscillator. Since the os-
cillators receiving no external input were inactive dur-
ing the entire simulation process, they were excluded
from the display in Fig. 9. The activities of the os-
cillators within each pattern (block) were combined
together. Thus, if these oscillators are synchronized,
then they appear like a single oscillator. In Fig. 9, the
three upper traces represent the activities of the three
oscillator blocks, and the bottom trace represents the
activity of the global inhibitor. The synchronized oscil-
lations within each object and desynchronization be-
tween the objects are clearly shown within two cycles
of dynamic evolution.

The mountain popped out during the first cycle af-
ter initial random activation, but the synchronization
within that pattern was weak as shown by the thick
bundle of activity lines in jumping up. When the moun-
tain returned to the silent phase and released the other
oscillators from inhibition, the sun and the tree jumped
up at approximately the same time.

During the second cycle, all of the three objects
were separated. This state of segmentation is main-
tained in the following cycles, and the quality of syn-
chrony within the mountain improved. In the figure,
synchronization in jumping-up is not perfect even af-
ter several cycles, as shown by rather thick bundles
particularly evident in the second and the third traces.
But the quality of synchronization can be improved
by reducing the value of €. On the other hand, rather
large discrepancies in jumping-down times are intrin-
sic in the model, and cannot be improved by varying
€. These numerical observations are consistent with
the analysis of Section 4.

The process of scene segmentation is clearly indi-
cated by the activity of the global inhibitor, which is
activated if any oscillator on the grid reaches its ac-
tive phase. As shown in Fig. 9, before segmentation is
reached the time spans when the inhibitor is activated
tend to be irregular. After segmentation is reached, the
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time spans tend to be regularly spaced and their widths
correspond to the time that a block stays in the active
phase. As described in Section 3, the global inhibitor
drove the oscillators representing different patterns to
desynchronize.

As a comparison, we also simulated the same net-
work for segmenting the same input by using dynamic
weight normalization according to (4.4.1). Each os-
cillator forms a permanent link (7; ;7) to its four nearest
neighbors on the grid, except for those on the bound-
ary where we assumed no wrap-up conditions. All per-
manent links were assumed to have the same strength
(the precise value does not matter). A dynamic link
Jij is formed on the basis of 7;;, and dynamic normal-
ization results in that only two neighboring oscillators
stimulated by a single pattern have an effective dy-
namic connection. For total effective connections (see
(4.4.1)) we set Wy = 6.0; the total dynamic weight
to a single oscillator roughly corresponds to the total
weights that an oscillator receives in the previous sim-
ulation shown in Fig. 8. The parameter £ was set to
10. The values for the other parameters are the same
as in the previous simulation, and the phase of every
oscillator on the grid again was randomly initialized.

The simulation results are displayed in Fig. 10in the
same format as in Fig. 9. The network fully segmented
all three objects in less than two cycles. After just two
cycles, the synchrony within each pattern and desyn-
chrony among the three patterns were almost perfect.
Consistent with our discussion in Subsection 4.4, dy-
namic normalization also produces synchronization in
jumping-down times within an oscillator block. More-
over, the simulation also reveals that the quality of
synchronization in jump-up improves with dynamic
normalization.

The exact shapes and positions of the patterns in
Fig. 8 do not matter for scene segmentation using
our approach. In fact, the two dimensional grid pro-
vides a general solution to segmentation of planar con-
nected patterns. In addition to the simulations pre-
sented above, we have conducted many other simula-
tion experiments with the model, and the results are as
good as in Fig. 9 and Fig. 10. Furthermore, the results
in all simulations that we conducted were robust with
respect to considerable changes in the parameters of
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Fig. 10. Another simulation with dynamic normalization of con-
nection weights. See the legend of Fig. 9 for explanations of this
figure. As in Fig. 9, the simulation took 8,000 integration steps.

the model.

The network defined above can readily be applied to
segmentation of binary images. For gray-level images
(each pixel being in a certain value range), the follow-
ing slight modification suffices to make the network
applicable. An effective connection is established be-
tween two oscillators if and only if they are neighbors
and the difference of their corresponding pixel values
is below a certain threshold. This way, a homogeneous
and connected region forms a segment, or a pattern,
while boundaries among patterns are formed where a
large gradient of pixel values is found. The latter con-
dition underlies various algorithms of edge detection
[41]. Formation of a single segment is, in a sense,
an inverse process of finding closed contours, which
emerge from gluing together nearby edge elements.

6. Discussion

As mentioned previously, the activity of a single
oscillator can be interpreted either as the local field
potential of a group of neurons or as the bursting be-
havior of a single neuron. The structure of our net-
work model is also consistent with known neurobi-
ology. Lateral connections, nearest neighbor connec-
tions being a special case, are one of basic structural
characteristics of the brain [23]. The global inhibi-
tion may be interpreted as an attentional mechanism,
possibly mediated by some subcortical areas such as
the thalamus and/or the superior colliculus [7,8]. In
particular, the thalamus sends its projections to and
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receives input from much of the cortex, satisfying the
structural requirements of the global inhibitor.

Besides neural plausibility, oscillatory correlation
has a unique feature as a computational approach to the
engineering of scene segmentation and figure/ground
segregation. Due to the nature of oscillations, no sin-
gle object can dominate and suppress the perception
of the rest of the image permanently. The current dom-
inant object has to give way to other objects being
suppressed, and let them have a chance to be spotted.
Although at most one object can be dominant at any
time instant, due to rapid oscillations, a number of ob-
jects can be activated over a short time period. This
intrinsic dynamic process provides a natural and re-
liable representation of multiple segmented patterns.
With the selective gating mechanism, the utility of the
representational advantage of oscillatory correlation is
greatly enhanced. Other computational benefits of os-
cillatory correlation are further discussed in the fol-
lowing paragraphs.

In this paper, we have only studied synchrony and
desynchrony of an oscillator network with nearest-
neighbor connections. However, the basic principles
of selective gating can be applied to networks with
lateral connections beyond nearest neighbors. Indeed,
in terms of synchronization, more distant connec-
tions even help expedite phase entrainment. In this
sense, synchronization with all-to-all connections is
a special case of our system. With lateral connec-
tions, we expect that the power of the network would
be markedly increased for scene segmentation. With
nearest-neighbor connectivity (Fig. 4), any isolated
part of an image is considered as a segment. In a
noisy image with many tiny regions, segmentation
would result in too many small fragments. More
distant connections would provide a solution to this
problem. Lateral connections may take on the typical
form of a Gaussian distribution, with the connection
strength between two oscillators falling off exponen-
tially. Since global inhibition is superimposed onto
local excitation, two oscillators positively coupled
may still be desynchronized if global inhibition is
strong enough. Thus, it is unlikely that all objects in
an image form a single segment as a result of ex-
tended connections, an undesirable situation contrary

to the problem of fragmentation.

The prototype of our analysis and simulation is a
2-D oscillator network. However, the results are also
applicable to networks of other dimensions. This is
because, in the analysis, we speak of only oscillator
blocks which are formed by local connections, with-
out specific reference to the dimension of the network.
Thus, one can easily extend the analysis to other di-
mensions as well.

In one of the first studies of using a laterally con-
nected oscillator network to achieve scene segmenta-
tion, Sporns et al. [46] simulated a large neural net-
work with four layers, each having 16 x 16 groups of
neurons. Each group has 60 neurons and behaves as a
single oscillator. Four layers process four directions of
movement respectively. Obviously, this model is com-
putationally expensive. As discussed in Section 1, the
lack of a desynchronization mechanism requires the
model to take averaging of multiple trials in order to
achieve the segmentation of different patterns, further
increasing the computational demand. They demon-
strated synchrony beyond the range of direct connec-
tions, but it is not clear from their simulation whether
synchrony can be maintained for a much larger range
beyond direct connections. Their use of different lay-
ers to process different directions of movement, how-
ever, provides a promising framework to address seg-
mentation based on motion. This idea can be furthered
to accommodate different orientations of curve seg-
ments. With inclusion of orientation sensitivity and di-
rectional sensitivity, two basic properties of the visual
system, our network should be able to model a vari-
ety of grouping phenomena in vision and to provide
an effective algorithm for various scene segmentation
tasks.

Our result of global synchrony emerging from only
local coupling appears in contradiction with the well-
known theorem of Mermin and Wagner [31] in statis-
tical mechanics. The theorem states that no long-range
order (synchrony) exists in one- or two-dimensional
isotropic Heisenberg models (X-~Y models). The fact
that our system is not an equilibrium statistical me-
chanical system makes it not subject to the theorem.
We also note that our relaxation oscillators are far from
being isotropic. This is incompatible with the condi-
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tion of isotropy of the Mermin and Wagner theorem 2.

On the other hand, sinusoidal oscillators as widely
used by many others (see, for example, [6]) to model
phase synchrony tend to be isotropic and are proba-
bly subject to the theorem. This might explain why
long range connections have to be used in these mod-
els in order to reach global network synchronization.
Somers and Kopell {43] and Wang [51,52] have also
realized the qualitative differences in synchronization
behaviors between sinusoidal and relaxation oscilla-
tors. Our analysis further demonstrates that different
models of single oscillators may lead to qualitatively
different global behaviors.

The rigorous analysis in Section 4 demonstrates that
pattern formation is a robust property of the model;
it exists for a large class of initial data and it is not
sensitive to moderate changes of the parameters. The
analysis explains why scene segmentation is an intrin-
sic property of the model and indicates how parame-
ters should be chosen to achieve scene segmentation.
The analysis also indicates how instabilities can arise
as the parameters are varied. The proof of Theorem
4.2.2, for example, demonstrates that the oscillators
within a given pattern may not synchronize if the pa-
rameter 7 is too small.

As discussed in Subsection 4.5, the analysis applies
to a general class of models which includes (2.1)-
(2.4). For this reason, it helps to explain why some
models, such as the conductance based, single-cell
model of Morris and Lecar, are more appropriate for
scene segmentation than other models, such as the
FitzHugh-Nagumo model. In [43] there is a discus-
sion as to why fast threshold modulation in relaxation-
type oscillators is advantageous to the push-pull mech-
anism in phase models for achieving rapid synchro-
nization within one pattern.

The analysis helps to explain why some choices for
connection weights are advantageous over others. In
Subsection 4.4, we discussed why the dynamic nor-
malization mechanism helps in the synchronization
of oscillators within a single block and the desyn-
chronization between different blocks. The proof of

2 We are grateful to J. Cheyes and C. Jayaprakash who helped
us realize the applicability of the Mermin and Wagner theorem.

the Theorem 4.4.1 also demonstrates how instabilities
may arise for other choices of connection weights.

Another reason why the analysis is important is be-
cause networks of coupled oscillators often lead to
very complex and surprising behaviors. For example,
one may naively think that identical oscillators cou-
pled through mutual excitation will always lead to syn-
chrony. It is demonstrated in [27], however, that it is
possible for this simple network to give rise to anti-
phase solutions. On the other hand, it is often assumed
that identical oscillators coupled through mutual in-
hibition will always lead to anti-phase solutions. It is
demonstrated in [56] that if the inhibition decays at
a sufficiently slow rate, then the synchronous solution
may be stable.

We have demonstrated that the theorems in Section
4 extend to the case € > 0 sufficiently small. How
small € must be, however, may depend on the num-
ber of oscillators. It is not clear, for example, how the
number of cycles needed for scene segmentation de-
pends on the number of oscillators if € is positive. Our
analysis shows that the number of cycles only depends
on the number of patterns if € is sufficiently small.
We conjecture that this remains true if € = O(1/N)
where N is the number of oscillators.

The analysis indicates that for a given set of param-
eters, there is an upper bound on the number of blocks
which can be segmented. The inequality (4.3.11), for
example, gives an upper bound on the number of pat-
terns in terms of the time of excursion along the right
and left branches of the cubics. Our results state that
for a given number of patterns, no matter how large, it
is possible to choose the parameters so that the given
patterns will be segmented. However, once we fix the
parameters, the number of patterns cannot be arbitrar-
ily large. This limitation of our system on the number
of patterns that can be segmented seems consistent
with the well-known psychological result that humans
have fundamental limits on the number of objects that
can be held in their attentional span [32].

Due to its critical importance for computer vision,
scene segmentation, or perceptual organization as
known in computer vision, has been studied quite
extensively. Many techniques have been proposed in
the past (for reviews of the subject see [29,19,40]).
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Despite these techniques, as pointed out by Haralick
and Shapiro [19], there is no underlying theory of
image segmentation, and the techniques tend to be ad
hoc and emphasize some aspects while ignoring oth-
ers. One such technique is based on thresholding. The
basic idea of thresholding is that a pixel is assigned
a specific label if some measure of the pixel passes
a certain threshold. This idea can be extended to a
complex form including multiple thresholds [25].
This way, a region of pixels are grouped together if
their measurements fall between two threshold values.
Another popular technique is region growing (or sim-
ilarly region splitting, see [21,41]), where iterative
steps are taken to grow a seed pixel into a connected
region if all the pixels in the region satisfy some
condition. One such condition is that the distance be-
tween the minimum and the maximum pixel values is
within a pre-defined range. Most of the techniques use
one or more Gestalt principles of perceptual group-
ing that emphasize spatial and temporal relationships
among object components [34,40]. Gestalt group-
ing principles, such as connectedness and proximity,
were derived from the studies of human visual per-
ception by Gestalt psychologists [24,39]. One of the
apparent deficits with these algorithms lies in their
iterative (serial) nature [28]. There are some recent
algorithms which are partially parallel. In Sha’ashua
and Ullman [42], a globally consistent curve struc-
ture is detected using a locally connected network. In
Liou et al. [28], a parallel technique is used to search
a partition space. In Mohan and Nevatia [34], part
of the segmentation process is performed by a neural
network for cost optimization.

Compared to the above techniques for scene seg-
mentation, the oscillatory correlation approach offers
many unique advantages. The dynamic process is in-
herently parallel. Each single oscillator behaves fully
in parallel with all of the others in the network. This
feature is particularly attractive in the context that an
image generally consists of many pixels (256x256),
and the current technology of computer architecture
can support massive parallel computations. While con-
ventional computer vision algorithms are based on
descriptive criteria and many ad hoc heuristics, the
network architecture such as the one shown in Fig.

4 performs computations based on only connections
and oscillatory dynamics. The organizational simplic-
ity renders the oscillator network particularly feasible
for VLSI chip implementation. Also, continuous time
dynamics allows real time processing as desired by
many engineering applications.

Neural oscillations have been demonstrated not only
in vision but also in other sensory modalities, includ-
ing audition [ 14,30] and olfaction [13] (for model-
ing, see [2]). With its computational properties plus
the support of biological evidence, oscillatory correla-
tion promises to offer a general computational theory
for scene segmentation and figure/ ground segregation
(see also Wang [54] for a study in audition).

7. Conclusion

We have proposed and analyzed a network of neu-
ral oscillators with local excitation and global inhi-
bition. The mechanism of selective gating leads the
network to form blocks of locally cooperative oscil-
lators which are stimulated by external input. Within
each block neural oscillators synchronize with each
other, and each block separates itself in phase from
all the other blocks. This state of oscillatory dynamics
is proven to be globally stable. The analysis demon-
strates how parameters in the model should be chosen
to achieve scene segmentation and why some mod-
els are more advantageous to others. The mechanism
of selective gating provides a physical foundation for
the theory of oscillatory correlation. Computer simu-
lations have been conducted to demonstrate scene seg-
mentation based on the mechanism. We have argued
that the mechanism is biologically plausible and may
provide a general framework for effective automatic
scene segmentation and figure/ ground segregation.
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