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Abstract

Many real-world applications of speech enhancement, such as
hearing aids and cochlear implants, desire real-time processing,
with no or low latency. In this paper, we propose a novel convo-
lutional recurrent network (CRN) to address real-time monaural
speech enhancement. We incorporate a convolutional encoder-
decoder (CED) and long short-term memory (LSTM) into the
CRN architecture, which leads to a causal system that is natu-
rally suitable for real-time processing. Moreover, the proposed
model is noise- and speaker-independent, i.e. noise types and
speakers can be different between training and test. Our exper-
iments suggest that the CRN leads to consistently better objec-
tive intelligibility and perceptual quality than an existing LSTM
based model. Moreover, the CRN has much fewer trainable pa-
rameters.
Index Terms: noise- and speaker-independent speech enhance-
ment, real-time applications, convolutional encoder-decoder,
long short-term memory, convolutional recurrent networks

1. Introduction
Speech separation aims to separate target speech from a back-
ground interference, which may include nonspeech noise, inter-
fering speech and room reverberation [1]. Speech enhancement
refers to the separation of speech and nonspeech noise. It has
various real-world applications such as robust automatic speech
recognition and mobile speech communication. For many such
applications, real-time processing is required. In other words,
speech enhancement is performed with low computational com-
plexity, providing near-instantaneous output.

In this study, we focus on monaural (single-microphone)
speech enhancement that can operate in real-time applications.
In digital hearing aids, for example, it has been found that a
delay as low as 3 milliseconds is noticeable to listeners and a
delay of longer than 10 milliseconds is objectionable [2]. For
such applications, causal speech enhancement systems, where
no future information is allowed, are often required.

Inspired by the concept of time-frequency (T-F) masking
in computational auditory scene analysis (CASA) [3], speech
separation has been formulated as supervised learning in recent
years, where a deep neural network (DNN) is employed to learn
a mapping from noisy acoustic features to a T-F mask [4]. The
ideal binary mask, which classifies T-F units as either speech-
dominant or noise-dominant, is the first training target used
in supervised speech separation. More recent training target-
s include the ideal ratio mask [5] and mapping-based target-
s corresponding to the magnitude or power spectra of target
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speech [6] [7]. In this study, we use the magnitude spectra of
target speech as the training target.

For supervised speech enhancement, noise generalization
and speaker generalization are both crucial. A simple yet ef-
fective method to deal with noise generalization is to train with
different noise types [8]. Analogously, to address speaker gen-
eralization would include a large number of speakers in a train-
ing set. However, it has been found that a feedforward DNN is
unable to track a target speaker in the presence of many training
speakers [9] [10] [11]. Typically, a DNN independently predicts
a label for each time frame from a small context window around
the frame. An interpretation is that such DNNs cannot lever-
age long-term contexts, which would be essential for tracking a
target speaker. Recent studies [9] [10] suggest that it would be
better to formulate speech separation as a sequence-to-sequence
mapping in order to leverage long-term contexts.

With such a formulation, recurrent neural networks (RNNs)
and convolutional neural networks (CNNs) have been used for
noise- and speaker-independent speech enhancement, where
noise types and speakers can be different between training and
test. Chen et al. [10] proposed an RNN with four hidden LSTM
layers to deal with speaker generalization of noise-independent
models. Their experimental results show that the LSTM model
generalizes well to untrained speakers, and substantially out-
performs a DNN based model in terms of short-time objective
intelligibility (STOI) [12]. A more recent study [13] developed
a gated residual network (GRN) based on dilated convolution-
s. Compared with the LSTM model in [10], the GRN exhibits
higher parameter efficiency and better generalization capabili-
ty for untrained speakers at different SNR levels. On the other
hand, the GRN requires a large amount of future information
for mask estimation or spectral mapping at each time frame.
Hence, it cannot be used for real-time speech enhancement.

Motivated by recent works [14] [15] on CRNs, we develop
a novel CRN architecture for noise- and speaker-independent
speech enhancement in real time. The CRN incorporates a con-
volutional encoder-decoder and long short-term memory. We
find that the proposed CRN leads to consistently better objective
speech intelligibility and quality than the LSTM model in [10].
Moreover, the CRN has much fewer trainable parameters.

The rest of this paper is organized as follows. We give a
detailed description of our proposed model in Section 2. The
experimental setup and results are presented in Section 3. We
conclude this paper in Section 4.

2. System description
2.1. Encoder-decoder with causal convolutions

Badrinarayanan et al. first proposed a convolutional encoder-
decoder network for pixel-wise image labelling [16]. It com-
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Figure 1: An example of causal convolutions. The convolution
output does not depend on future inputs.

prises a convolutional encoder followed by a corresponding
decoder which feeds into a softmax classification layer. The
encoder is a stack of convolutional layers and pooling layers,
which serves to extract high-level features from a raw input im-
age. With essentially the same structure as the encoder in the
reverse order, the decoder maps low-resolution feature maps at
the output of the encoder to feature maps of the full input image
size. The symmetric encoder-decoder architecture ensures that
the output has the same shape as the input. With such an at-
tractive property, the encoder-decoder architecture is naturally
suitable for any pixel-wise dense prediction task, which aims to
predict a label for each pixel in the input image.

For speech enhancement, one approach is to employ a CED
to map from the magnitude spectrogram of noisy speech to that
of clean speech, where the magnitude spectrograms are sim-
ply treated as images. To our knowledge, Park et al. [17] first
introduced CED for speech enhancement. They proposed a re-
dundant CED network (R-CED), which consists of repetition-
s of a convolution, batch normalization (BN) [18], and a Re-
LU activation [19] layer. The R-CED architecture additionally
incorporates skip connections to facilitate optimization, which
connect each layer in the encoder to its corresponding layer in
the decoder.

In our proposed network, the encoder comprises five convo-
lutional layers while the decoder has five deconvolutional layer-
s. We apply exponential linear units (ELUs) [20] to all convolu-
tional and deconvolutional layers except the output layer. ELUs
have been demonstrated to lead to faster convergence and bet-
ter generalization than ReLUs. In the output layer, we utilize
softplus activation [19] which is a smooth approximation to the
ReLU function and can constrain the network output to always
be positive. Moreover, we adopt batch normalization right after
each convolution (or deconvolution) and before activation. The
numbers of kernels are kept symmetric: the number of kernels
is gradually increased in the encoder while it is gradually de-
creased in the decoder. To leverage a larger context along the
frequency direction, we apply a stride of 2 along the frequency
dimension to all convolutional (or deconvolutional) layers. In
other words, we halve the frequency dimension size of feature
maps layer by layer in the encoder and double it layer by layer
in the decoder, whereas we do not change the time dimension
size of feature maps. To improve the flow of information and
gradients throughout the network, we utilize skip connections
which concatenate the output of each encoder layer to the input
of each decoder layer.

To obtain a causal system for real-time speech enhancemen-
t, we impose causal convolutions upon the encoder-decoder ar-
chitecture. Fig. 1 depicts an example of causal convolutions.

Note that the input can be treated as a sequence of feature vec-
tors, while only the time dimension is illustrated in Fig. 1. In
causal convolutions, the output does not depend on future input-
s. With causal convolutions instead of noncausal convolutions,
the encoder-decoder architecture leads to a causal system. Note
that we can easily apply causal deconvolutions to the decoder,
since the deconvolution is intrinsically a convolution operation.

2.2. Temporal modeling via LSTM

In order to track a target speaker, it may be important to leverage
long-term contexts, which cannot be utilized by the aforemen-
tioned convolutional encoder-decoder. The LSTM [21], a spe-
cific type of RNN which incorporates a memory cell, has been
successful in temporal modeling in various applications such as
acoustic modeling and video classification. To account for tem-
poral dynamics of speech, we insert two stacked LSTM layers
between the encoder and the decoder. In this study, we use the
LSTM defined by the following equations:

it = σ(Wiixt + bii +Whiht−1 + bhi) (1)
ft = σ(Wifxt + bif +Whfht−1 + bhf ) (2)
gt = tanh(Wigxt + big +Whght−1 + bhg) (3)
ot = σ(Wioxt + bio +Whoht−1 + bho) (4)
ct = ft � ct−1 + it � gt (5)
ht = ot � tanh(ct) (6)

where xt, gt, ct and ht represent input, block input, memory
cell and hidden activation at time t, respectively. W ’s and b’s
denote weights and biases, respectively. σ represents sigmoid
nonlinearity and � represents element-wise multiplication.

To fit the input shape required by the LSTM, we flatten the
frequency dimension and the depth dimension of the encoder
output to produce a sequence of feature vectors before feeding
it into the LSTM layers. The output sequence of the LSTM
layers is subsequently reshaped back to fit the decoder. It is
worth noting that the inclusion of the LSTM layers does not
change the causality of the system.

2.3. Network architecture

Table 1: Architecture of our proposed CRN. Here T denotes the
number of time frames in the STFT magnitude spectrum.

layer name input size hyperparameters output size
reshape 1 T × 161 - 1×T × 161
conv2d 1 1×T × 161 2 × 3, (1, 2), 16 16×T × 80
conv2d 2 16×T × 80 2 × 3, (1, 2), 32 32×T × 39
conv2d 3 32×T × 39 2 × 3, (1, 2), 64 64×T × 19
conv2d 4 64×T × 19 2 × 3, (1, 2), 128 128×T × 9
conv2d 5 128×T × 9 2 × 3, (1, 2), 256 256×T × 4
reshape 2 256×T × 4 - T × 1024

lstm 1 T × 1024 1024 T × 1024
lstm 2 T × 1024 1024 T × 1024

reshape 3 T × 1024 - 256×T × 4
deconv2d 5 512×T × 4 2 × 3, (1, 2), 128 128×T × 9
deconv2d 4 256×T × 9 2 × 3, (1, 2), 64 64×T × 19
deconv2d 3 128×T×19 2 × 3, (1, 2), 32 32×T × 39
deconv2d 2 64×T × 39 2 × 3, (1, 2), 16 16×T × 80
deconv2d 1 32×T × 80 2 × 3, (1, 2), 1 1×T × 161
reshape 4 1×T × 161 - T × 161

In this study, we use 161-dimensional short-time Fourier
transform (STFT) magnitude spectrum of noisy speech as input
features, and that of clean speech as the training target. Our
proposed CRN is shown in Fig. 2, in which the network input
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Figure 2: Network architecture of our proposed CRN.

is encoded into a higher-dimensional latent space, and the se-
quence of latent feature vectors are then modeled by two LSTM
layers. Subsequently, the output sequence of the LSTM layer-
s is converted back to the original input shape by the decoder.
The proposed CRN benefits from the feature extraction capabil-
ity of CNNs and the temporal modeling capability of RNNs, by
combining the two topologies together.

A more detailed description of our proposed network archi-
tecture is provided in Table 1. The input size and the output
size of each layer are specified in featureMaps × timeSteps ×
frequencyChannels format. The layer hyperparameters are giv-
en in (kernelSize, strides, outChannels) format. For all the
convolutions and the deconvolutions, we apply zero-padding
to the time direction but not to the frequency direction. To
perform causal convolutions, we use a kernel size of 2 × 3
(time × frequency). Note that the number of feature maps in
each decoder layer is doubled by the skip connections.

2.4. LSTM baselines

In our experiments, we build two LSTM baselines for compar-
ison. In the first LSTM model, a feature window of 11 frames
(10 past frames and 1 current frame) is employed to estimate
one frame of the target (see Fig. 3). In other words, 11 frames
of feature vectors are concatenated into a long vector as the net-
work input at each time step. In the second LSTM model, how-
ever, no feature window is utilized. We denote the first LSTM
model as LSTM-1 and the second one as LSTM-2. From the
input layer to the output layer, LSTM-1 has 11 × 161, 1024,
1024, 1024, 1024, and 161 units, respectively; LSTM-2 has
161, 1024, 1024, 1024, 1024, and 161 units, respectively. Both
baselines do not use future information, which amount to causal
systems.

3. Experiments
3.1. Experimental setup

In our experiments, we evaluate the models on the WSJ0 SI-
84 training set [22] including 7138 utterances from 83 speakers
(42 males and 41 females). Among these speakers, 6 speak-
ers (3 males and 3 females) are treated as untrained speakers.
Hence, we train the models with the 77 remaining speakers. To
obtain noise-independent models, we use 10 000 noises from a
sound effect library (available at https://www.sound-ideas.com)
for training, and the duration is about 126 hours. For test, we
use two challenging noises (babble and cafeteria) from an Au-
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Figure 3: An LSTM baseline with a feature window of 11 frames
(10 past frames and 1 current frame). At each time step, the 11
input frames are concatenated into a feature vector.

ditec CD (available at http://www.auditec.com).
We create a training set including 320 000 mixtures with a

total duration of about 500 hours. Specifically, we mix a ran-
domly selected training utterance with a random cut from the
10 000 training noises at a signal-to-noise ratio (SNR) that is
randomly chosen from {-5, -4, -3, -2, -1, 0} dB. To investigate
speaker generalization of the models, we create two test sets for
each noise using 6 trained speakers (3 males and 3 females) and
6 untrained speakers, respectively. One test set comprises 150
mixtures created from 25 × 6 utterances of 6 trained speaker-
s, while the other comprises 150 mixtures created from 25 × 6
utterances of 6 untrained speakers. Note that all test utterances
are excluded from the training set. We use two SNRs for the
test set, i.e. -5 and -2 dB. All signals are sampled at 16 kHz.

The models are trained with the Adam optimizer [23]. We
set the learning rate to 0.0002. The mean squared error (MSE)
serves as the objective function. We train the models with a
minibatch size of 16 on the utterance-level. Within a mini-
batch, all training samples are padded with zeros to have the
same number of time steps as the longest sample does. The best
models are selected by cross validation.

3.2. Experimental results

In this study, we use STOI and perceptual evaluation of speech
quality (PESQ) [24] as the evaluation metrics. Table 2 and 3
present STOI and PESQ scores of unprocessed and processed
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Table 2: Model comparisons in terms of STOI and PESQ scores on trained speakers.

evaluation metrics STOI (in %) PESQ
test SNR -5 dB -2 dB -5 dB -2 dB

noises Avg. babble cafeteria Avg. babble cafeteria Avg. babble cafeteria Avg. babble cafeteria
unprocessed 58.18 58.95 57.40 65.75 66.30 65.19 1.50 1.63 1.52 1.67 1.79 1.70

LSTM-1 75.81 77.29 74.32 82.00 82.62 81.38 2.05 2.06 2.04 2.33 2.36 2.30
LSTM-2 75.80 77.45 74.14 82.53 83.80 81.25 2.05 2.06 2.03 2.31 2.34 2.28

CRN 77.89 79.71 76.07 84.08 85.48 82.68 2.15 2.17 2.12 2.41 2.44 2.38

Table 3: Model comparisons in terms of STOI and PESQ scores on untrained speakers.

evaluation metrics STOI (in %) PESQ
test SNR -5 dB -2 dB -5 dB -2 dB

noises Avg. babble cafeteria Avg. babble cafeteria Avg. babble cafeteria Avg. babble cafeteria
unprocessed 57.86 58.54 57.18 65.08 65.45 64.70 1.52 1.56 1.47 1.66 1.69 1.63

LSTM-1 74.33 75.21 73.44 81.75 82.65 80.84 1.96 1.94 1.97 2.25 2.26 2.24
LSTM-2 74.42 75.55 73.29 81.88 82.87 80.88 1.95 1.94 1.96 2.25 2.25 2.24

CRN 76.42 77.98 74.85 83.31 84.38 82.24 2.04 2.04 2.03 2.33 2.34 2.31
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Figure 4: Mean square errors over training epochs for LSTM-
1, LSTM-2 and CRN on the training set and the test set. All
models are evaluated with a test set of six untrained speakers
on the untrained babble noise.

signals for trained speakers and untrained speakers, respective-
ly. In each case, the best result is highlighted by a boldface
number. As shown in Table 2 and 3, LSTM-1 and LSTM-2
yield similar STOI and PESQ scores for both trained speakers
and untrained speakers, which implies that the use of the fea-
ture window in LSTM-1 does not improve the performance. On
the other hand, our proposed CRN consistently outperforms the
LSTM baselines in both metrics. At the SNR of -5 dB, for ex-
ample, the CRN provides about 2% STOI improvements and
about 0.1 PESQ improvements over the LSTM models. Com-
paring the results in Table 2 with those in Table 3, we can find
that the CRN generalizes well to untrained speakers. In the most
challenging case, where the utterances from untrained speaker-
s are mixed with the two untrained noises at -5 dB, the CRN
produces a 18.56% STOI improvement and a 0.55 PESQ im-
provement over the unprocessed mixtures.

The CRN takes advantage of batch normalization, which
can be easily adopted for convolution operations to accelerate
training and improve the performance. Fig. 4 compares training
and test MSEs of different models over training epochs, where
the models are evaluated on a test set of six untrained speakers.
We observe that the CRN converges faster and achieves low-
er MSEs than the two LSTM models. Moreover, the CRN has
fewer trainable parameters than the LSTM models as shown in
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Figure 5: Parameter efficiency comparison of different model-
s. We compare the number of trainable parameters in different
models.

Fig. 5. This is mainly due to the use of shared weights in convo-
lutions. With a higher parameter efficiency, the CRN is easier
to train than the LSTMs.

In addition, the causal convolutions in the CRN capture lo-
cal spatial patterns in the input STFT magnitude spectrum with-
out using future information. In contrast, the LSTM models
treat each input frame as a flattened feature vector, and cannot
sufficiently leverage the T-F structure in the STFT magnitude
spectrum. On the other hand, the LSTM layers in the CRN
model the temporal dependencies in a latent space, which would
be important to speaker characterization in speaker-independent
speech enhancement.

4. Conclusions
In this study, we have proposed a convolutional recurrent net-
work to deal with noise- and speaker-independent speech en-
hancement for real-time applications. The proposed model
leads to a causal speech enhancement system, where no fu-
ture information is utilized. The evaluation results suggest that
the proposed CRN consistently outperforms two strong LSTM
baselines for both trained and untrained speakers in terms of
STOI and PESQ scores. In addition, we find that the CRN has
fewer trainable parameters than the LSTMs. We believe the pro-
posed model represents a strong speech enhancement method
for real-world applications, of which the desirable properties
often include online operation, single-channel operation, and
noise- and speaker-independent models.
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