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Towards Model Compression for Deep Learning
Based Speech Enhancement

Ke Tan and DeLiang Wang , Fellow, IEEE

Abstract—The use of deep neural networks (DNNs) has dra-
matically elevated the performance of speech enhancement over
the last decade. However, to achieve strong enhancement perfor-
mance typically requires a large DNN, which is both memory and
computation consuming, making it difficult to deploy such speech
enhancement systems on devices with limited hardware resources
or in applications with strict latency requirements. In this study,
we propose two compression pipelines to reduce the model size
for DNN-based speech enhancement, which incorporates three
different techniques: sparse regularization, iterative pruning and
clustering-based quantization. We systematically investigate these
techniques and evaluate the proposed compression pipelines. Ex-
perimental results demonstrate that our approach reduces the sizes
of four different models by large margins without significantly
sacrificing their enhancement performance. In addition, we find
that the proposed approach performs well on speaker separation,
which further demonstrates the effectiveness of the approach for
compressing speech separation models.

Index Terms—Model compression, sparse regularization,
pruning, quantization, speech enhancement.

I. INTRODUCTION

S PEECH enhancement aims to separate target speech
from background noise. Inspired by the concept of time-

frequency (T-F) masking in computational auditory scene anal-
ysis, speech enhancement has been formulated as supervised
learning [45], [46]. In the past decade, many data-driven algo-
rithms have been developed to address this problem, in which
discriminative patterns within signals are learned from training
data. The rapid rise in deep learning has tremendously bene-
fited supervised speech enhancement [47]. Since deep learning
became a dominant approach to speech enhancement in the re-
search community, there has been increasing interest in deploy-
ing DNN-based enhancement systems for real-world applica-
tions and products (e.g. headphones). Due to the well-recognized
over-parameterization property of DNNs [1], [5], however, to
achieve satisfactory enhancement performance would require
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a large DNN, which can be both computationally intensive
and memory consuming. It is difficult to deploy such DNNs
in latency-sensitive applications or on resource-limited devices.
Hence, it becomes an increasingly important problem to reduce
memory and computation in DNNs for speech enhancement.

Various model compression techniques have been developed
in the deep learning community, which can be broadly cate-
gorized into two classes [4]. The first class reduces the num-
ber of trainable parameters. A widely-used technique of this
class is network pruning, which selects and removes the least
important set of weights based on certain criteria [34]. Two
pioneering works are optimal brain damage [23] and optimal
brain surgeon [12], which leverage the Hessian matrix of the loss
function to determine the importance of each weight (i.e. weight
saliency). The weights with the smallest saliency are pruned,
and the remaining weights are fine-tuned to regain the lost
accuracy. Another effective technique is tensor decomposition,
which reduces the redundancy by decomposing a large weight
tensor into multiple smaller tensors based on the low-rankness
of the weight tensor. Moreover, one can transfer the knowledge
from a pretrained large model to a relatively small model, known
as knowledge distillation [15]. Soft targets produced by the large
DNN are used to guide the training of the smaller DNN. This
approach has proven to be effective in classification tasks such
as image classification [36] and speech recognition [2], [27].
Other related studies reduce the inference cost of DNNs by
designing more parameter-efficient network architectures [16],
[17], [52]. The second class of model compression techniques
is network quantization, which reduces the bitwidth of weights,
activations, or both. A simple method is to train DNNs with full
precision and then directly quantize the learned weights, which
was shown to significantly degrade the accuracy for relatively
small DNNs [18], [22]. To compensate for the loss of accuracy,
quantization-aware training was developed in [18], which in-
corporates simulated quantization effects during training. Fur-
thermore, weight quantization can be performed by applying
clustering to the trained weights [3], [10], [11], [19].

Over the past several years, increasing research efforts have
been devoted to improving the inference efficiency of DNNs for
speech enhancement. In [25], an integer-adder DNN was devel-
oped, where an integer-adder is used to implement floating-point
multiplication. Evaluation results show that the integer-adder
DNN yields comparable speech quality to a full-precision DNN
with the same architecture, while more efficient in terms of both
computation and memory. Ye et al. [50] iteratively prune a DNN
for speech enhancement, where the importance of weights is
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determined by simply comparing the absolute values of weights
to a predefined threshold. The experimental results suggest
that their pruning method can compress a feedforward DNN
by a factor of roughly 2, without degrading the enhancement
performance in terms of subjective intelligibility. In [49], Wu
et al. used pruning and quantization techniques to compress
a fully convolutional neural network (FCN) for time-domain
speech enhancement. Their results show that these techniques
can significantly reduce the size of the FCN without perfor-
mance degradation. More recently, Fedorov et al. [6] performed
pruning and integer quantization to compress recurrent neural
networks (RNNs) for speech enhancement, which can reduce
the RNN size to 37% with a 0.2 dB decrease in scale-invariant
signal-to-noise ratio (SI-SNR).

Although DNN compression techniques have been exten-
sively developed and investigated in other fields such as image
processing, most of these techniques have been evaluated only on
classification tasks. Given that DNN-based speech enhancement
is usually treated as a regression task, it remains unclear for
speech enhancement whether specific compression techniques
are effective and how different techniques can be combined to
achieve high compression rates. Furthermore, a generic com-
pression pipeline would be desired due to the wide variety
and fast evolution of speech enhancement models. With these
considerations in mind, we recently developed two preliminary
model compression pipelines for DNN-based speech enhance-
ment [41]. The compression pipelines consist of sparse regu-
larization, iterative pruning and clustering-based quantization.
Sparse regularization imposes sparsity of weight tensors through
DNN training, which leads to a higher pruning ratio without
significantly sacrificing the enhancement performance. We train
and prune the DNN alternately and iteratively, and subsequently
apply k-means clustering based quantization to the remaining
weights. We perform pruning and quantization both based on
per-tensor sensitivity analyses, which would benefit the selection
of pruning ratios and bitwidths if the weight distributions vary
vastly between tensors. Building on [41], the present study
additionally examines the effects of each individual technique
and their combinations on different types of speech enhancement
models, and further investigates the compression pipelines on
speaker separation models. Specifically, we evaluate the com-
pression pipelines on speech enhancement models with different
designs, including DNN types, training targets and processing
domains. Evaluation results show that the proposed approach
substantially reduces the sizes of all these models, without
significant performance degradation. In addition, we find that
our approach performs well on two representative models for
talker-independent speaker separation.

The rest of this paper is organized as follows. In Section II, we
describe our proposed approach in detail. In Section III, we pro-
vide the experimental setup. Experimental results are presented
and analyzed in Section IV. Section V concludes this paper.

II. ALGORITHM DESCRIPTION

A. DNN-Based Speech Enhancement

In this study, we focus on DNN compression for monaural
speech enhancement, although our approach is expected to apply

Fig. 1. (Color Online). Illustration of unstructured and structured pruning.
White cells indicate the pruned weights, and blue cells the remaining weights.

to DNNs for multi-channel speech enhancement. Given a single-
channel mixture y, the goal of monaural speech enhancement is
to estimate target speech s. The mixture can be modeled as

y = s+ v, (1)

where v represents background noise. Thus DNN-based en-
hancement can be formulated as

z = F1(y), (2)

x̂ = H(z; Θ), (3)

ŝ = F2(x̂, y), (4)

where F1 and F2 denote transforms, and H the nonlinear
mapping function represented by a DNN. For T-F domain en-
hancement, F1 and F2 can be short-time Fourier transform
and waveform resynthesis, respectively. For time-domain en-
hancement, F1 and F2 can be segmentation and overlap-add,
respectively. The symbol Θ denotes the set of all trainable
parameters in the DNN, and ŝ the estimated speech signal.
Symbols z and x̂ represent the input and output of the DNN,
respectively. The parameters Θ are trained to minimize a loss
function L(x, x̂) = L(x,H(F1(y); Θ)), where x is the training
target.

B. Iterative Unstructured and Structured Pruning

A typical procedure of network pruning comprises three
stages: (i) training a large DNN that achieves satisfactory perfor-
mance, (ii) removing a specific set of weights in the trained DNN
with a certain criterion, and (iii) fine-tuning the pruned DNN.
One can view the removed weights as zero, and thus pruning
leads to sparse weight tensors. The granularity of tensor sparsity
impacts the efficiency of hardware architecture. Fine-grained
sparsity is a type of sparsity patterns where individual weights
are set to zero [23]. Such sparsity patterns are typically irregular,
which makes it difficult to apply hardware acceleration [30]. This
problem can be mitigated by imposing coarse-grained sparsity,
of which the pattern is more regular. We investigate both unstruc-
tured and structured pruning. Specifically, unstructured pruning
removes each individual weight separately, while structured
pruning groups of weights, as illustrated in Fig. 1. For example,
one can remove entire columns or rows of a weight matrix.

To perform structured pruning, we define the pruning granu-
larity as follows. For convolutional/deconvolutional layers, we
treat each kernel as a weight group for pruning. Specifically,
each weight group for 2-D convolutional/deconvolutional layers
is a matrix, and for 1-D convolutional/deconvolutional layers is
a vector. For both recurrent layers and fully-connected layers,
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each weight tensor is a matrix, of which each column is treated
as a weight group for pruning. For example, a long short-term
memory (LSTM) layer has eight weight matrices, four for the
layer input and the others for the hidden state from the last
time step, which correspond to four gates (i.e. input, forget, cell
and output gates). In the implementation of LSTM, each group
of weight matrices for the four gates is typically concatenated,
which amounts to two larger matrices. We treat each column of
these matrices as a weight group for pruning. Such pruning gran-
ularity would lead to reasonably high compression ratios and
produce coarse-grained sparsity that is more hardware-friendly
than fine-grained sparsity [30]. Note that we do not prune biases,
as the number of biases is small relative to that of weights.

Algorithm 1: Per-tensor sensitivity analysis for unstructured
pruning

Input: (1) Validation set V; (2) setWl of all nonzero
weights in the l-th weight tensor Wl, ∀l; (3) loss
function L(V,Θ), where Θ is the set of all nonzero
trainable parameters in the DNN; (4) predefined
tolerance value α1.

Output: Pruning ratio βl for weight tensor Wl, ∀l.
1: for each tensor Wl do
2: for β in {0%, 5%, 10%, . . . , 90%, 95%, 100%} do
3: Let U ⊆ Wl be the set of the β(%) of nonzero

weights with the smallest absolute values in tensor
Wl;

4: IU ← L(V,Θ|w = 0, ∀w ∈ U)− L(V,Θ);
5: if IU > α1 then
6: βl ← β − 5%;
7: break
8: end if
9: end for

10: if βl is not assigned any value then
11: βl ← 100%;
12: end if
13: end for
14: return βl for weight tensor Wl, ∀l

For network pruning, the key issue is to define the pruning
criterion, which determines the set of weights to be removed.
To perform unstructured pruning, we define the saliency of a
specific set U of weights as the increase in the error induced by
removing them. Specifically, weight saliency is measured using
a validation set V:

IU = L(V,Θ|w = 0, ∀w ∈ U)− L(V,Θ). (5)

Unlike [6], [49], [50], we conduct a per-tensor pruning sensitiv-
ity analysis to determine the pruning ratios for all weight tensors,
following Algorithm 1. Subsequently, we perform unstructured
pruning as per tensor-wise pruning ratio. The pruned DNN is
then fine-tuned to recover the enhancement performance. We
evaluate the fine-tuned DNN on the validation set by two metrics,
i.e. short-time objective intelligibility (STOI) [39] and percep-
tual evaluation of speech quality (PESQ) [35]. Such pruning and
fine-tuning operations are performed iteratively and alternately.

We repeat this procedure until the number of pruned weights
becomes trivial in an iteration or a significant decrease in STOI
or PESQ is observed on the validation set. Note that both
pruning and fine-tuning are performed on the entire network.
For structured pruning, the weight group saliency is measured
as

IU = L(V,Θ|g = 0, ∀g ∈ U)− L(V,Θ), (6)

whereU represents a set of weight groups. Similarly, we conduct
a sensitivity analysis following Algorithm 2. Structured prun-
ing and fine-tuning are then performed for multiple iterations.
Note that the size of the parameter set Θ decreases after each
pruning iteration.

Algorithm 2: Per-tensor sensitivity analysis for structured
pruning

Input: (1) Validation set V; (2) set Gl of all nonzero
weight groups in the l-th weight tensor Wl, ∀l; (3) loss
function L(V,Θ), where Θ is the set of all nonzero
trainable parameters in the DNN; (4) predefined
tolerance value α1.

Output: Pruning ratio βl for weight tensor Wl, ∀l.
1: for each tensor Wl do
2: for β in {0%, 5%, 10%, . . . , 90%, 95%, 100%} do
3: Let U ⊆ Gl be the set of the β(%) of nonzero

weight groups with the smallest �1 norms in tensor
Wl;

4: IU ← L(V,Θ|g = 0, ∀g ∈ U)− L(V,Θ);
5: if IU > α1 then
6: βl ← β − 5%;
7: break
8: end if
9: end for

10: if βl is not assigned any value then
11: βl ← 100%;
12: end if
13: end for
14: return βl for weight tensor Wl, ∀l

Our method is beneficial in two aspects. First, some existing
pruning methods (e.g. [50]) use a common threshold to dif-
ferentiate unimportant weights from the others for all layers
throughout the DNN. This can greatly limit the pruning of the
more redundant layers or over-prune the less redundant layers,
particularly if the importance of layers varies significantly. Such
a problem can be alleviated by our sensitivity analysis. Second,
we perform pruning and fine-tuning iteratively, and evaluate
the resulting model on speech enhancement metrics (STOI and
PESQ) for each iteration. This can substantially reduce the risk
of over-pruning and the corresponding unrecoverable perfor-
mance degradation, even when the importance of a weight is not
strongly correlated with its magnitude [31].

The selection between unstructured and structured pruning
depends on whether hardware acceleration is accessible to the
underlying device. Specifically, when acceleration is inaccessi-
ble, it would be better to use unstructured pruning, as it typically
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allows for higher compression rates than structured pruning
under the constraint that the enhancement performance is not
significantly degraded. For devices with accelerators, structured
pruning would be the better choice.

C. Sparse Regularization

To increase pruning ratios without performance degradation,
we propose to use sparse regularization during training and
fine-tuning. A principal way to impose weight-level sparsity
is �1 regularization, which penalizes the sum of absolute val-
ues of weights during training. Specifically, �1 regularization
encourages less important weights to become zero, reducing
the resulting performance degradation. Hence this may result
in higher pruning ratios with our pruning criterion. The �1
regularizer can be written as

R�1 =
λ1

n(W)

∑
w∈W
|w|, (7)

whereW is the set of all nonzero weights, and λ1 a predefined
weighting factor. The function n(·) calculates the cardinality of
a set. Thus the new loss function is L�1 = L+R�1 .

Group-level sparsity can be induced by a group lasso
penalty [7]:

R�2,1 =
λ2

n(G)
∑
g∈G

√
pg ‖g‖2 , (8)

where G is the set of all weight groups, and ‖ · ‖2 the �2 norm.
Symbol pg represents the number of weights in each weight
group g, and λ2 a weighting factor. With such a penalty, all
weights in a group are simultaneously either encouraged to be
zero, or not. An extended version is sparse group lasso (SGL),
which further imposes sparsity on the non-sparse groups by
additionally incorporating �1 regularization [37], [38]:

RSGL = R�1 +R�2,1

=
λ1

n(W)

∑
w∈W
|w|+ λ2

n(G)
∑
g∈G

√
pg ‖g‖2 .

(9)

The corresponding loss function is LSGL = L+RSGL. Based
on different pruning granularities, we adoptL�1 for unstructured
pruning and LSGL for structured pruning.

D. Clustering-Based Quantization

To further compress the pruned DNN, we propose to
use clustering-based quantization [10], [11]. Specifically,
the weights in each tensor are partitioned into K clusters
S1, S2, . . . , SK through k-means clustering:

argmin
S1,S2,...,SK

K∑
k=1

∑
w∈Sk

|w − μk|2, (10)

where μk is the centroid of cluster Sk. Following [11], we
initialize the cluster centroids with K values evenly spaced over
the interval [wmin, wmax] prior to performing k-means clustering,
where wmin and wmax represent the minimum and maximum
values of the weight tensor, respectively. Once the clustering

algorithm converges, we reset all the weights that fall into the
same cluster to the value of the corresponding centroid. Thus the
original weights are approximated by these cluster centroids.
Such a weight sharing mechanism substantially reduces the
number of effective weight values that need to be stored. Each
weight can be represented as a cluster index. Note that only
nonzero weights are subject to clustering and weight sharing.

We create a codebook to store the values of the cluster cen-
troids for each weight tensor, in which each nonzero weight is
tied to the corresponding cluster index. During inference, the
value of each weight is looked up in the codebook. Fig. 2 illus-
trates clustering-based quantization. Specifically, we quantize
each weight value to log2 K bits. In other words, it requires
log2 K bits to store the corresponding cluster index. Assuming
that the original weights are 32-bit floating-point numbers, to
store the codebook needs 32 K additional bits. Hence, the
compression rate for quantization is calculated as

r =
32 N

N log2 K + 32 K
, (11)

where N denotes the number of nonzero weights in the tensor.

Algorithm 3: Per-tensor sensitivity analysis for quantization
Input: (1) Validation set V; (2) setWl of all nonzero
weights in the l-th weight tensor Wl, ∀l; (3) loss
function L(V,Θ), where Θ is the set of all nonzero
trainable parameters in the DNN; (4) predefined
tolerance value α2.

Output: Number of clusters Kl for weight tensor Wl, ∀l.
1: for each tensor Wl do
2: K ← 1;
3: while true do
4: IK ← L(V,Θ| quantize w to log2 K bits, ∀w ∈

Wl)− L(V,Θ);
5: if IK < α2 or 2 K > n(Wl) then
6: Kl ← K;
7: break
8: end if
9: end while

10: K ← 2 K;
11: end for
12: return Kl for weight tensor Wl, ∀l

A common issue in quantization techniques is how to maintain
the performance of DNNs. For clustering-based quantization,
selecting an appropriate value of K is critical for achieving this
goal. Given that the number of nonzero weights may vary greatly
between weight tensors, we propose to conduct a per-tensor
sensitivity analysis for quantization following Algorithm 3.
The idea is to gradually increase the number of clusters for
each weight tensor and measure the corresponding increase in
the validation loss. The results of this sensitivity analysis are
used to quantize weights in each weight tensor. Unlike [11]
in which the same number of clusters is used for all weight
tensors, our method allows for quantizing each tensor using
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Fig. 2. Illustration of clustering-based quantization.

Fig. 3. Illustration of the proposed compression pipelines.

different numbers of bits, which potentially leads to higher
compression rates.

Thus we can derive two compression pipelines by combin-
ing sparse regularization, iterative pruning and clustering-based
quantization, as illustrated in Fig. 3. In the compression pipeline
depicted in Fig. 3(a), we apply �1 regularization and unstructured
pruning. In the other pipeline (see Fig. 3(b)), we apply group
sparse regularization (see Eq. (9)) and structured pruning.

III. EXPERIMENTAL SETUP

A. Data Preparation

In our experiments, we use the training set of the WSJ0
dataset [8] for evaluation, which contains 12 776 utterances from
101 speakers. These speakers are split into three groups, which
include 89, 6 and 6 speakers for training, validation and testing,
respectively. More specifically, the speaker groups for validation
and testing include 3 males and 3 females. We use 10 000 noises
from a sound effect library1 for training, and a factory noise from
the NOISEX-92 dataset [43] for validation. To create test sets,
we use two highly nonstationary noises, i.e. babble (“BAB”) and
cafeteria (“CAF”), from an Auditec CD.2

Our training set includes 320 000 mixtures, and its total dura-
tion is roughly 600 hours. To create a training mixture, we mix
a randomly sampled training utterance with a random segment
from the 10 000 training noises. The signal-to-noise ratio (SNR)
is randomly sampled between -5 and 0 dB. Following the same
procedure, we create a validation set consisting of 846 mixtures.
A test set including 846 mixtures is created for each of the two
noises and each of three SNRs, i.e. -5, 0 and 5 dB.

In this study, all signals are sampled at 16 kHz. Each noisy
mixture is rescaled by a factor such that the root mean square
of the mixture waveform is 1. We use the same factor to rescale
the corresponding target speech waveform. A 20-ms Hamming

1[Online]. Available: https://www.sound-ideas.com
2[Online]: Available: http://www.auditec.com

window is utilized to produce a set of time frames, with a
50% overlap between adjacent frames. We apply a 320-point
(16 kHz × 20 ms) discrete Fourier transform to each frame,
which yields 161-dimensional one-sided spectra.

B. Speech Enhancement Models

To systematically investigate the proposed model compres-
sion pipelines, we use the following four models for monaural
speech enhancement, which have different designs including
DNN types, training targets and processing domains.

1) Feedforward DNN: The first model is a feedforward DNN
(FDNN), which has three hidden layers with 2048 units in each
layer. We use the ideal ratio mask [48] as the training target:

IRM(m, f) =

√
|S(m, f)|2

|S(m, f)|2 + |N(m, f)|2 , (12)

where |S(m, f)|2 and |N(m, f)|2 represent speech energy and
noise energy within the T-F unit at time frame m and frequency
bin f , respectively. The magnitude spectrogram is used as the
FDNN input.

2) Lstm: The second is a recurrent LSTM model that per-
forms spectral mapping in the magnitude domain. It has four
LSTM hidden layers with 1024 units in each layer, and the
output layer is a fully-connected layer followed by rectified
linear activation function [9].

3) Temporal Convolutional Neural Network: The third
model is a temporal convolutional neural network (TCNN) de-
veloped in a recent study [32]. The TCNN is a fully convolutional
neural network, which directly maps from noisy speech to clean
speech in the time domain.

4) Gated Convolutional Recurrent Network: The fourth
is a newly-developed gated convolutional recurrent network
(GCRN) [40]. The GCRN has an encoder-decoder architecture,
which incorporates convolutional layers and recurrent layers. It
is trained to perform complex spectral mapping, where the real
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TABLE I
COMPARISONS BETWEEN UNCOMPRESSED AND COMPRESSED MODELS

and imaginary spectrograms of clean speech are estimated from
those of noisy speech.

For TCNN and GCRN, we use the same network hyperpa-
rameters in [32] and [40]. Note that all these four DNNs are
causal. We choose causal DNNs to avoid unacceptable latency,
in line with the need to compress DNNs.

C. Training Details and Sensitivity Analysis Configurations

We train the models on 4-second segments using the AMS-
Grad optimizer [33], with a minibatch size of 16. The learning
rate is initialized to 0.001 and decays by 98% every two epochs.
The mean squared error is used as objective function, which
is an average over T-F units (for FDNN, LSTM and GCRN)
or time samples (for TCNN). We use the validation set for both
selecting the best model among different epochs and performing
sensitivity analyses for pruning and quantization.

For unstructured pruning, the initial value of λ1 (see Eq. (7))
is empirically set to 0.1, 10, 0.02 and 1 for FDNN, LSTM,
TCNN and GCRN, respectively. For structured pruning, the
same initial values of λ1 are used, and the initial value of λ2

(see Eq. (9)) is set to 0.0005, 0.005, 0.02 and 0.05 for FDNN,
LSTM, TCNN and GCRN, respectively. With these values, the
orders of magnitude ofR�1 andR�2,1 are almost the same, and
one order of magnitude smaller thanL. Both λ1 and λ2 decay by
10% every pruning iteration. The tolerance values (α1, α2) for
sensitivity analyses (see Algorithms 1, 2 and 3) are empirically
set to (0.003, 0.0005), (0.03, 0.01), (0.0002, 0.00 005) and (0.02,
0.005) for FDNN, LSTM, TCNN and GCRN, respectively.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Evaluation of the Proposed Compression Pipelines

Comprehensive comparisons between uncompressed and
compressed models are shown in Table I. The subscript U indi-
cates the uncompressed models, and C1 and C2 the compressed
models by our proposed compression pipelines illustrated in
Figs. 3(a) and 3(b), respectively. The STOI and PESQ scores
represent the averages over the test examples in each test condi-
tion. We observe that the proposed compression pipelines result
in slight or no performance degradation for all four models,
in terms of STOI and PESQ. Take, for example, the LSTM
model. The two pipelines compress the the LSTM model size

TABLE II
AVERAGE STOI AND PESQ RESULTS PRODUCED BY UNCOMPRESSED AND

COMPRESSED MODELS ON FOUR ADDITIONAL NOISES

from 115.27 MB to 2.49 MB and 9.97 MB, corresponding
to compression rates of 46× and 12×, respectively. Note that
both LSTMC1 and LSTMC2 produce similar STOI and PESQ to
LSTMU for all the three SNRs.

The effectiveness of the compression pipelines is further
demonstrated by the results in Table II, in which four additional
noises from the Diverse Environments Multichannel Acoustic
Noise Database (DEMAND) [42] are used for testing. The
four noises were recorded in four different environments, i.e.
a city park (“NPARK”), a subway station (“PSTATION”), a
meeting room (“OMEETING”) and a public town square (“SP-
SQUARE”). The STOI and PESQ scores in Table II represent
the averages over the four noises. We can see that our approach
induces slight or no degradation in the model performance on
these noises.

In addition, Table I suggests that C1 achieves higher com-
pression rates than C2 for FDNN, LSTM and GCRN. It is
likely because unstructured pruning uses smaller pruning gran-
ularity than structured pruning, which allows for less regular
sparsity patterns and higher sparsity in weight tensors. Hence
unstructured pruning is less constrained than structured pruning,
typically leading to higher pruning ratios. For TCNN, the two
pipelines yield similar compression rates. An interpretation is
that structured pruning can achieve similar compression ratios
to unstructured pruning for fully convolutional neural networks,
consistent with [30].
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TABLE III
NUMBER OF MAC OPERATIONS FOR UNCOMPRESSED AND COMPRESSED

MODELS TO PROCESS A 4-SECOND NOISY MIXTURE. “PERCENT” DENOTES THE

PERCENT OF THE ORIGINAL NUMBER OF MAC OPERATIONS

Fig. 4. (Color Online). The percent of the original number of trainable
parameters at different pruning iterations. (a). Without, and (b). With sparse
regularization. Note that unstructured pruning is performed.

Table III presents the number of multiply-accumulate (MAC)
operations for uncompressed and compressed models to process
a 4-second noisy mixture. We can observe that our approach
significantly reduces the number of MAC operations for all the
four models, demonstrating that the computational complexity
is also reduced by the proposed compression pipelines.

B. Effects of Sparse Regularization and Iterative Pruning

We now investigate the effects of sparse regularization and it-
erative pruning. Fig. 4 presents the percent of the original number
of trainable parameters, with or without �1 regularization (see
Eq. (7)) for unstructured pruning. As shown in Fig. 4, the models
can be incrementally compressed through iterative pruning. For
example, the percent of the original number of trainable parame-
ters in TCNN decreases to 55% after one pruning iteration and to
30% after five pruning iterations, without sparse regularization.

Moreover, it can be observed that the use of sparse regu-
larization results in higher compression rates for all the four
models. For example, the compression rate achieved by pruning
GCRN for five iterations can be increased from 2.9× to 5.1× by
applying �1 regularization. The corresponding STOI and PESQ
results at -5 dB SNR are shown in Fig. 5, which suggests that
our proposed pruning method does not significantly degrade the
enhancement performance. To further investigate the effects of
sparse regularization on pruning, we show the pruning ratios for
different layers in FDNN after one pruning iteration in Fig. 6. We
can see that sparse regularization increases the pruning ratios for
all FDNN layers. These induced increases are significantly larger

for structured pruning than unstructured pruning, which further
demonstrates the effectiveness of group sparse regularization
upon structured pruning.

We additionally train four relatively small DNNs, i.e. FDNNS,
LSTMS, TCNNS and GCRNS. All of them have the same
structures as the FDNN, LSTM, TCNN and GCRN described
in Section III-B, except that the layer widths or the network
depths are reduced. Specifically, the number of units in each
hidden layer of FDNNS and LSTMS is reset to 200 and 320,
respectively. For TCNNS, the number of output channels in the
middle layer of each residual block is reduced from 512 to 256,
and the number of dilation blocks from 3 to 2. For GCRNS,
the number of output channels is reset to 64 and 128 for the
fourth and the fifth gated blocks in the encoder, respectively. The
number of output channels in the first gated block in each decoder
is reduced from 128 to 64. We make these adjustments such that
FDNNS, LSTMS, TCNNS and GCRNS have comparable model
sizes to the original FDNN, LSTM, TCNN and GCRN pruned
for 5, 5, 3 and 5 iterations, respectively. We denote these pruned
models as FDNNP, LSTMP, TCNNP and GCRNP. Table IV
compares the STOI and PESQ results produced by these models.
We observe that FDNNP, LSTMP, TCNNP and GCRNP produce
significantly higher STOI and PESQ than FDNNS, LSTMS,
TCNNS and GCRNS, respectively. This demonstrates the ad-
vantage of training and pruning a large redundant DNN over
directly training a relatively small DNN, consistent with [13],
[24], [28], [51].

We now compare our proposed pruning method based on
per-tensor sensitivity analyses with a method that uses a common
threshold to determine the weights to prune for all weight tensors
in a DNN. Such a strategy was adopted in many existing methods
(e.g. [50]). Specifically, we compare the STOI and PESQ scores
produced by two different pruned GCRNs. One is unstructurally
pruned based on the results of Algorithm 1, denoted as GCRNP1 .
The other (denoted as GCRNP2 ) is pruned by removing the
weights with absolute values smaller than a threshold, which
is the same for all weight tensors. The value of this threshold
is carefully selected such that GCRNP2 has the exactly same
compression rate as GCRNP1 . Both GCRNs are pruned for only
one iteration, and then fine-tuned. We use different values (0.02,
0.04, 0.08, 0.16 and 0.32) of the tolerance α1 to obtain different
compression rates. The STOI and PESQ results are shown in
Fig. 7, and they suggest that our proposed approach yields
higher STOI and PESQ. This demonstrates the advantage of
per-tensor sensitivity analyses over the alternative method that
uses a common pruning threshold.

C. Effects of Clustering-Based Quantization

To investigate the effects of clustering-based quantization,
we directly quantize the weights of the original uncompressed
models (without pruning), which amounts to four quantized
models, i.e. FDNNQ, LSTMQ, TCNNQ and GCRNQ. The com-
parison between uncompressed and quantized models is shown
in Table V. It can be seen that our proposed quantization method
substantially reduces the model sizes without degrading the
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Fig. 5. (Color Online). STOI and PESQ scores for -5 dB SNR at different pruning iterations. (a)&(c). Without, and (b)&(d). With sparse regularization. Note
that unstructured pruning is performed.

Fig. 6. Pruning ratios for different layers in FDNN after one pruning iteration. We apply �1 regularization for unstructured pruning and group sparse regularization
for structured pruning.

TABLE IV
COMPARISONS BETWEEN PRUNED MODELS AND COMPARABLY-SIZED UNPRUNED MODELS

TABLE V
COMPARISONS BETWEEN UNCOMPRESSED AND QUANTIZED MODELS

enhancement performance. For example, the differences be-
tween STOI and PESQ scores produced by LSTMU and LSTMQ

are smaller than 0.2% and 0.01, respectively, for all the three
SNRs. Through clustering-based quantization, the LSTM model
is compressed from 115.27 MB to 21.42 MB, corresponding to
a compression rate of 5×.

D. Evaluation on Speaker Separation

This section evaluates the proposed compression pipelines
on multi-talker speaker separation. Specifically, we select Tas-
Net [29] and an LSTM model based on utterance-level per-
mutation invariant training (uPIT) [21] as representative talker-
independent separation methods to apply our compression. We
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Fig. 7. Comparison between the proposed pruning method and a method that uses a common pruning threshold for all weight tensors.

TABLE VI
COMPARISONS BETWEEN UNCOMPRESSED AND COMPRESSED MODELS FOR TALKER-INDEPENDENT SPEAKER SEPARATION

use the same causal network configurations for both TasNet
and uPIT-LSTM as in [29] and [21], respectively. The mod-
els are evaluated on the widely-used WSJ0-2mix dataset [8],
[14], which contains 20 000, 5000 and 3000 mixtures in the
training, validation and test sets, respectively. The sampling
frequency is set to 8 kHz as in [21] and [29]. Following [26], we
use extended short-time objective intelligibility (ESTOI) [20],
PESQ, SI-SNR [29] and signal-to-distortion ratio (SDR) [44], to
measure speaker separation performance. Other configurations
are the same as Section III-C.

The speaker separation results are presented in Table VI,
in terms of the four metrics. We can see that our proposed
approach significantly compresses both models while main-
taining the separation performance. For example, pipeline C1

compresses the LSTM model from 250.46 MB to 2.50 MB,
without reduction in any of the four performance metrics. This
further demonstrates the effectiveness of our approach on speech
separation models. In addition, pipeline C1 yields higher com-
pression rates than pipeline C2 for uPIT-LSTM, while the two
pipelines achieve comparable compression rates for TasNet,
which is a fully convolutional neural network. This is consistent
with our findings for compressing speech enhancement models
(see Section IV-A).

V. CONCLUSION

In this study, we have proposed two new pipelines to com-
press DNNs for speech enhancement. The proposed pipelines
incorporate three different techniques: sparse regularization,
iterative pruning and clustering-based quantization. We sys-
tematically investigate these techniques on different types of
speech enhancement models. Our experimental results show that
the proposed pipelines substantially reduce the sizes of four
different DNNs for speech enhancement, without significant
performance degradation. In addition, structured pruning yields

similar compression rates to unstructured pruning for fully con-
volutional neural networks, while unstructured pruning achieves
significantly higher compression rates for other types of DNNs.
We also find that training and pruning an over-parameterized
DNN achieves better enhancement results than directly training a
small DNN that has a comparable size to the pruned DNN. More-
over, our approach works well on two representative speaker
separation models, which further suggests the capacity of our
pipelines for compressing speech separation models.
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