
COMPRESSING DEEP NEURAL NETWORKS FOR EFFICIENT SPEECH ENHANCEMENT

Ke Tan1 and DeLiang Wang1,2

1Department of Computer Science and Engineering, The Ohio State University, USA
2Center for Cognitive and Brain Sciences, The Ohio State University, USA

{tan.650, wang.77}@osu.edu

ABSTRACT

The use of deep neural networks (DNNs) has dramatically improved
the performance of speech enhancement in the past decade. How-
ever, a large DNN is typically required to achieve strong enhance-
ment performance, and this kind of model is both computationally
intensive and memory consuming. Hence it is difficult to deploy
such DNNs on devices with limited hardware resources or in ap-
plications with strict latency requirements. In order to address this
problem, we propose a model compression pipeline to reduce DNN
size for speech enhancement, which is based on three kinds of tech-
niques: sparse regularization, iterative pruning and clustering-based
quantization. Evaluation results show that our approach substantially
reduces the sizes of different DNNs without significantly affecting
their enhancement performance. Moreover, we find that training and
compressing a large DNN yields higher STOI and PESQ than di-
rectly training a small DNN that has a comparable size to the com-
pressed DNN. This further suggests the benefits of using the pro-
posed model compression approach.

Index Terms— model compression, sparse regularization, prun-
ing, quantization, speech enhancement

1. INTRODUCTION

Speech enhancement is the task of separating target speech from
background noise. Since it is formulated as supervised learning [1],
many data-driven algorithms have been developed over the past
decade, in which discriminative patterns within signals are learned
from training data. In particular, the enhancement performance has
been substantially advanced due to the use of deep learning [2, 3].
To achieve satisfactory enhancement performance would require a
large DNN, which is both time and memory consuming. Thus it is
difficult to deploy such DNNs in latency-sensitive applications or
on resource-limited devices (e.g. headphones). As a result, reduc-
ing the cost of memory and computation in DNNs has become an
increasingly important problem.

Various model compression techniques have been developed in
recent years [4]. These techniques can be broadly categorized into
two classes. The first class aims to reduce the number of trainable
parameters. A widely-used technique is network pruning, which
selects and removes the least important weights with a certain cri-
terion [5]. It dates back to optimal brain damage [6], which uti-
lizes the Taylor expansion to estimate the importance of each weight
(i.e. weight saliency). The weights with the smallest saliency are
pruned, and the remaining weights are fine-tuned to maintain the

This research was supported in part by an NIDCD grant (R01
DC012048), and the Ohio Supercomputer Center. The authors would like
to thank A. Pandey for providing his implementation of TCNN.

original accuracy. Another effective technique is tensor decomposi-
tion, which decomposes a large weight tensor into multiple smaller
tensors by leveraging the low-rankness of the weight tensor. Further-
more, knowledge distillation was first developed by Hinton et al. [7]
to guide the training of a relatively small DNN using soft targets pro-
duced by a pretrained large DNN, which has proven to be effective in
classification tasks such as image classification [8] and speech recog-
nition [9, 10]. Other related studies reduce network redundancy by
designing more parameter-efficient architectures [11, 12, 13]. The
second class of model compression techniques is network quanti-
zation, which reduces the number of bits representing each weight.
A common method is to train DNNs with full precision and then
directly quantize the resulting weights. This method tends to signif-
icantly degrade the accuracy for relatively small DNNs [14, 15]. In
contrast, a more robust method, known as quantization-aware train-
ing, incorporates simulated quantization effects, which compensate
for the loss of accuracy [14]. Moreover, one can perform quantiza-
tion by applying k-means clustering to the learned weights [16, 17].

For DNN-based speech enhancement, there is increasing inter-
est in reducing network redundancy and accelerating network infer-
ence. In [18], a tensor-train long short-term memory (LSTM) was
developed for monaural speech enhancement, in which tensor-train
decomposition [19] is applied to weight matrices. An integer-adder
DNN was designed in [20], where floating-point multiplication is
implemented using an integer-adder. Experimental results show that
the integer-adder DNN produces comparable speech quality to a full-
precision DNN with the same structure, but it is more computation-
and memory-efficient. Ye et al. [21] iteratively prunes a DNN for
speech enhancement. Their experimental results show that the prun-
ing method can remove roughly 50% of the trainable parameters
without degrading subjective intelligibility. More recently, Wu et
al. [22] proposed to use pruning and quantization techniques to re-
duce the size of a fully convolutional neural network (FCN) for time-
domain speech enhancement. The results suggest that these tech-
niques can significantly increase the compactness of the FCN with-
out affecting the enhancement performance.

Although model compression techniques have been extensively
developed in other fields such as image processing, it remains un-
clear for speech enhancement whether specific techniques are ef-
fective and how different techniques can be combined to achieve
high compression rates. In this study, we propose a generic model
compression pipeline for DNN-based speech enhancement, which
consists of sparse regularization, iterative pruning and clustering-
based quantization. The sparse regularization imposes sparsity of
weight tensors, which allows for a higher pruning ratio under the
constraint that the enhancement performance is not significantly de-
graded. With a sparsity-inducing regularizer, we train and prune
the model alternately and iteratively, which significantly reduces the
number of weights. Subsequently, we apply clustering-based quan-

8358978-1-7281-7605-5/21/$31.00 ©2021 IEEE ICASSP 2021

IC
A

SS
P

20
21

 -
20

21
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e
on

 A
co

us
tic

s,
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g
(I

C
A

SS
P)

 |
97

8-
1-

72
81

-7
60

5-
5/

20
/$

31
.0

0
©

20
21

 IE
EE

 |
D

O
I:

10
.1

10
9/

IC
A

SS
P3

97
28

.2
02

1.
94

13
53

6

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2021 at 16:21:48 UTC from IEEE Xplore. Restrictions apply.

tization to the remaining weights. Both pruning and quantization are
performed based on a per-tensor sensitivity analysis, which can be
beneficial if the weight distributions vary greatly between tensors.
We evaluate the compression pipeline on different DNN architec-
tures with different training targets. The results show that the pro-
posed approach substantially reduces the sizes of all these models,
without significantly sacrificing the enhancement performance.

The rest of this paper is organized as follows. We provide a
detailed description of our approach in Section 2. The experimental
setup and evaluation results are presented in Section 3. Section 4
concludes this paper.

2. SYSTEM DESCRIPTION

2.1. DNN-based speech enhancement

In this study, we focus on DNN compression for monaural speech
enhancement, although our method can be easily applied to DNN-
based multi-channel speech enhancement. The goal of monaural
speech enhancement is to estimate target speech s given a single-
microphone mixture y. Hence, DNN-based enhancement can be for-
mulated as

z = F1(y), (1)
x̂ = H(z; Θ), (2)
ŝ = F2(x̂, y), (3)

whereF1 andF2 are predefined transformation functions, andH the
mapping function defined by a DNN. In the time-frequency domain,
for example, F1 and F2 can be the short-time Fourier transform and
waveform resynthesis, respectively. The symbol Θ denotes the set
of all trainable parameters in the DNN, and ŝ the enhanced speech
signal. The parameters Θ are trained to minimize a loss function
L(x, x̂) = L(x,H(F1(y); Θ)), where x represents the training tar-
get.

2.2. Sparse regularization and iterative pruning

The granularity of sparsity affects the efficiency of hardware archi-
tecture. Fine-grained sparsity is a type of sparsity patterns where
individual weights are masked as zero [6]. These sparsity patterns
are typically irregular, which makes it difficult to apply hardware ac-
celeration [23]. This problem can be alleviated by inducing coarse-
grained sparsity, of which the pattern is more regular. In this study,
we examine both unstructured and structured pruning. Specifically,
unstructured pruning (or fine-grained pruning) removes each indi-
vidual weight separately, while structured pruning (or coarse-grained
pruning) limits sparsity to higher-level structure of weight tensors.
For example, one can prune entire columns or rows of a weight ma-
trix.

To perform structured pruning, we define the pruning granular-
ity as follow. For a 2-D convolutional or deconvolutional layer, the
weight tensor has a shape of C1×C2×K1×K2, where C1 and C2

represent the output and input channel dimensions respectively, and
K1 and K2 the shapes of convolution kernels. Each kernel (i.e. a
K1×K2 matrix) is treated as a weight group for pruning. For a 1-D
convolutional or deconvolutional layer, the weights compose a 3-D
tensor of shape C1×C2×K, where K denotes the kernel size. We
treat each length-K vector as a weight group for pruning. For both
recurrent layers and fully connected layers, each weight tensor is a
matrix, of which each column is treated as a weight group for prun-
ing. Take, for example, an LSTM layer. It has eight weight matrices,
four for the layer input and the others for the hidden state from the

Algorithm 1 Per-tensor sensitivity analysis for unstructured pruning
Input: (1) Validation set V; (2) setWl of all nonzero weights in the
l-th weight tensor Wl, ∀l; (3) loss function L(V,Θ), where Θ is the
set of all nonzero trainable parameters in the DNN; (4) predefined
tolerance value α1.
Output: Pruning ratio βl for weight tensor Wl, ∀l.
1: for each tensor Wl do
2: for β in {0%, 5%, 10%, . . . , 90%, 95%, 100%} do
3: Let U ⊆ Wl be the set of the β(%) of nonzero weights

with the smallest absolute values in tensor Wl;
4: IU ← L(V,Θ|w = 0, ∀w ∈ U)− L(V,Θ);
5: if IU > α1 then
6: βl ← β − 5%;
7: break
8: end if
9: end for

10: if βl is not assigned any value then
11: βl ← 100%;
12: end if
13: end for
14: return βl for weight tensor Wl, ∀l

last time step, corresponding to four different gates (i.e. input, for-
get, cell and output gates). Each group of four weight matrices is
concatenated into a larger matrix and treated as a weight group for
pruning. Note that we do not prune biases, as the number of biases
is far smaller than that of weights.

To achieve a higher compression rate, we propose to use
sparsity-inducing regularization during training. Specifically, we
perform `1 regularization for unstructured pruning:

R`1 =
λ1

n(W)

∑
w∈W

|w|, (4)

where W is the set of all nonzero weights, and λ1 a predefined
weighting factor. The function n(·) calculates the cardinality of a
set. Thus the new loss function can be written as L`1 = L +R`1 .
To impose group-level sparsity for structured pruning, group sparse
regularization [24] is performed during training. We propose to use
the following sparse group lasso (SGL) penalty:

RSGL =
λ1

n(W)

∑
w∈W

|w|+ λ2

n(G)

∑
g∈G

√
pg ‖g‖2 , (5)

where G is the set of all weight groups, and ‖·‖2 the `2 norm. The
symbol pg represents the number of weights in each weight group
g. Such a regularizer combines both `1 and `2,1 norms with two
weighting factors λ1 and λ2, which encourages group-level sparsity
of the weight tensors [25]. The corresponding loss function can be
written as LSGL = L+RSGL.

The saliency of a specific set U of weights can be measured as
the increase in the error incurred by setting them to zero. A valida-
tion set V is used for measuring weight saliency:

IU = L(V,Θ|w = 0,∀w ∈ U)− L(V,Θ). (6)

We conduct a per-tensor pruning sensitivity analysis to determine
the pruning ratios that should be applied to particular weight tensors,
following Algorithm 1. Unstructured pruning is then performed as
per the tensor-wise pruning ratios. Subsequently, we fine-tune the
pruned DNN to regain the lost performance. The fine-tuned DNN is
evaluated on the validation set by two metrics, i.e. short-time objec-
tive intelligibility (STOI) [26] and perceptual evaluation of speech

8359

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2021 at 16:21:48 UTC from IEEE Xplore. Restrictions apply.

quality (PESQ) [27]. This procedure is repeated until the number of
pruned weights becomes trivial in an iteration or a significant degra-
dation of STOI or PESQ is observed on the validation set. Note that
the parameter set Θ becomes smaller after each pruning iteration.
Similarly, one can conduct sensitivity analysis for structured prun-
ing following the same procedures in Algorithm 1, except that the
weight group saliency is measured as

IU = L(V,Θ|g = 0, ∀g ∈ U)− L(V,Θ), (7)

where U represents a set of weight groups. Structured pruning and
fine-tuning are then performed alternately and iteratively.

The selection between unstructured and structured pruning de-
pends upon the accessibility of hardware acceleration for the un-
derlying device. For devices on which acceleration is inaccessi-
ble, unstructured pruning would be the better choice, as it typically
achieves higher compression rates than structured pruning under the
constraint that the enhancement performance is not significantly de-
graded. For devices with accelerators, it would be better to use struc-
tured pruning.

2.3. Clustering-based quantization

To further compress the pruned DNN, we propose to use clustering-
based quantization [16, 17]. Specifically, we partition the weights in
each tensor into K clusters S1, S2, . . . , SK via k-means clustering:

arg min
S1,S2,...,SK

K∑
k=1

∑
w∈Sk

|w − µk|2, (8)

where µk is the centroid of cluster Sk. Prior to applying the k-means
algorithm, the cluster centroids are initialized with K values evenly
spaced over the interval [wmin, wmax], where wmin and wmax are the
minimum and maximum values of the weight tensor, respectively.
Once the clustering algorithm converges, all the weights that fall into
the same cluster are reassigned the value of the corresponding cluster
centroid. Thus the original weights are approximated by these clus-
ter centroids. Such a weight sharing mechanism reduces the number
of effective weights needed to be stored.

A codebook is created to store the values of cluster centroids
for each weight tensor, in which each weight is tied to the corre-
sponding cluster index. During inference, the value of each weight
is looked up in the codebook. An example of the clustering-based
quantization is illustrated in Fig. 1. Each weight value is quantized
to log2K bits, which are needed to store the corresponding cluster
index. Assuming that the original weights are represented as 32-bit
floating-point numbers, 32K additional bits are needed to store the
codebook. Therefore, the compression rate can be calculated as

r =
32N

N log2K + 32K
, (9)

where N is the number of nonzero weights in the tensor. Note that
only nonzero weights are subject to clustering and weight sharing.

To determine the number of clusters that should be used for
each weight tensor, we conduct a per-tensor sensitivity analysis for
quantization following Algorithm 2. Subsequently, we perform the
clustering-based quantization following the analysis results. Un-
like [17] in which the same number of clusters is used for all tensors,
our method allows for quantizing each tensor using different num-
bers of bits, which is beneficial if the importance and sizes of weight
tensors vary vastly.

Algorithm 2 Per-tensor sensitivity analysis for quantization
Input: (1) Validation set V; (2) setWl of all nonzero weights in the
l-th weight tensor Wl, ∀l; (3) loss function L(V,Θ), where Θ is the
set of all nonzero trainable parameters in the DNN; (4) predefined
tolerance value α2.
Output: Number of clusters Kl for weight tensor Wl, ∀l.
1: for each tensor Wl do
2: K ← 1;
3: while true do
4: IK ← L(V,Θ| quantizew to log2K bits,∀w ∈ Wl)−
L(V,Θ);

5: if IK < α2 or 2K > n(Wl) then
6: Kl ← K;
7: break
8: end if
9: end while

10: K ← 2K;
11: end for
12: return Kl for weight tensor Wl, ∀l

0.04 1.94 -0.93 0.97

-1.37 -1.82 0.23 1.37

-0.08 1.43 -1.56 0.80

1.20 1.72 0.98 -0.85

1 3 1 2

0 0 2 3

1 3 0 2

2 3 2 1

-1.583

-0.455

0.836

1.615

0

1

2

3

Index Value

CodebookOriginal Weight Matrix

K-Means
Clustering

Quantized Weight Matrix

Quantization

Fig. 1. Illustration of clustering-based quantization.

3. EVALUATION AND ANALYSIS

3.1. Data preparation

In our experiments, we use the training set of the WSJ0 dataset [28]
as the speech corpus, which includes 12776 utterances from 101
speakers. We split these speakers into three groups (i.e. 89, 6 and
6 speakers) for training, validation and test sets, respectively. To
create a training mixture, we mix a randomly selected training utter-
ance with a random cut from 10,000 noises in a sound effect library
available at https://www.sound-ideas.com. The signal-to-noise ratio
(SNR) is randomly sampled between -5 and 0 dB. We create 320,000
mixtures for training. Following the same procedure, we create a
validation set including 846 mixtures using a factory noise from the
NOISEX-92 dataset [29]. For testing, we use two highly nonsta-
tionary noises, i.e. babble (“BAB”) and cafeteria (“CAF”), from an
Auditec CD available at http://www.auditec.com. We create a test
set consisting of 846 mixtures for each of the two noises and each of
three SNRs, i.e. -5, 0 and 5 dB.

3.2. DNNs for speech enhancement

To systematically examine our proposed model compression pipeline,
we use the following four models for monaural speech enhancement,
which have different network architectures and are trained with dif-
ferent targets. The first is a feedforward DNN (FDNN), which
has three hidden layers with 2048 units in each layer. The ideal
ratio mask is used as the training target. The second is an LSTM
model that performs spectral mapping. It has four LSTM hidden
layers with 1024 units in each layer, and the output layer consists

8360

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2021 at 16:21:48 UTC from IEEE Xplore. Restrictions apply.

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

P
ar

am
s

%

Iteration

FDNN LSTM TCNN GCRN

(a)

0%

20%

40%

60%

80%

100%

0 1 2 3 4 5

P
ar

am
s

%

Iteration

FDNN LSTM TCNN GCRN

(b)

Fig. 2. The percent of the original number of trainable parameters
at different pruning iterations. (a). Without, and (b). With sparse
regularization.

60

65

70

75

80

85

0 1 2 3 4 5

S
T

O
I (

%
)

Iteration

FDNN LSTM TCNN GCRN

(a)

60

65

70

75

80

85

0 1 2 3 4 5

S
T

O
I (

%
)

Iteration

FDNN LSTM TCNN GCRN

(b)

1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

0 1 2 3 4 5

P
E
S
Q

Iteration

FDNN LSTM TCNN GCRN

(c)

1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3

0 1 2 3 4 5

P
E
S
Q

Iteration

FDNN LSTM TCNN GCRN

(d)

Fig. 3. STOI and PESQ scores for -5 dB SNR at different pruning it-
erations. (a)&(c). Without, and (b)&(d). With sparse regularization.

of a fully-connected layer followed by rectified linear activation
function. The third is the temporal convolutional neural network
(TCNN) developed in [30], which is a fully convolutional neural
network for time-domain speech enhancement. The fourth is the
gated convolutional recurrent network (GCRN) developed in [31],
which is trained to learn a complex spectral mapping. We train all
the models following the configurations in [31]. The validation set
is used for both selecting the best model among different epochs and
performing the sensitivity analysis for pruning and quantization.

For unstructured pruning, the initial value of λ1 (see Eq. (4))
is empirically set to 0.1, 10, 0.02 and 1 for FDNN, LSTM, TCNN
and GCRN, respectively. For structured pruning, the same initial
values of λ1 are used, and the initial value of λ2 (see Eq. (5)) is
set to 0.0005, 0.005, 0.02 and 0.05 for FDNN, LSTM, TCNN and
GCRN, respectively. Both λ1 and λ2 decay by 10% every pruning
iteration. The tolerance values (α1, α2) for sensitivity analysis (see
Algorithms 1 and 2) are empirically set to (0.003, 0.0005), (0.03,
0.01), (0.0005, 0.00005) and (0.02, 0.005) for FDNN, LSTM, TCNN
and GCRN, respectively.

3.3. Evaluation results

We first investigate the effects of sparsity-inducing regularization.
Fig. 2 shows the percent of the original number of trainable parame-
ters, with or without `1 regularization (see Eq. (4)) for unstructured

Table 1. Comparisons between pruned models and comparably-
sized unpruned models.

Metric STOI (%) PESQ # Param.SNR -5 dB 0 dB 5 dB -5 dB 0 dB 5 dB
Mixture 57.86 70.14 81.48 1.51 1.80 2.12 -
FDNNP 63.72 77.63 86.59 1.63 2.06 2.44 1.15 M
FDNNB 62.89 76.25 85.54 1.58 1.98 2.35 1.45 M
LSTMP 75.76 86.62 92.25 1.98 2.46 2.85 2.93 M
LSTMB 72.25 83.98 90.31 1.85 2.31 2.68 3.14 M

Table 2. Comparisons between uncompressed and compressed mod-
els.

Metric STOI (%) PESQ Storage CRSNR -5 dB 0 dB 5 dB -5 dB 0 dB 5 dB
Mixture 57.86 70.14 81.48 1.51 1.80 2.12 - -
FDNNU 64.87 78.64 87.25 1.65 2.09 2.47 34.54 MB 1×
FDNNC 63.58 77.51 86.50 1.64 2.06 2.44 0.10 MB 343×
LSTMU 75.74 86.47 92.04 2.00 2.47 2.84 115.27 MB 1×
LSTMC 75.83 86.62 92.25 1.98 2.46 2.84 2.49 MB 46×
TCNNU 79.76 89.72 93.96 2.04 2.52 2.86 19.28 MB 1×
TCNNC 77.77 88.46 93.26 1.95 2.44 2.79 0.56 MB 34×
GCRNU 81.03 90.43 94.43 2.14 2.65 3.01 37.27 MB 1×
GCRNC 80.66 90.15 94.26 2.15 2.65 3.02 1.11 MB 34×
GCRNC-SP 81.05 90.32 94.35 2.15 2.66 3.03 4.11 MB 9×

pruning. We can observe that the use of regularization leads to higher
compression rates for all the four DNNs. For example, the com-
pression rate for GCRN after 5 pruning iterations can be increased
from 2.9× to 5.1× by using sparse regularization over not using it.
Fig. 3 shows the corresponding STOI and PESQ results at -5 dB
SNR, which suggests that our proposed pruning method does not
significantly degrade the enhancement performance, except that the
STOI and PESQ scores produced by TCNN slightly decrease as it is
pruned for more iterations.

We additionally train two small DNNs, i.e. FDNNB and LSTMB.
They have the same structures as the FDNN and LSTM described
in Section 3.2, except that there are only 200 and 320 units in each
hidden layer of FDNNB and LSTMB, respectively. Thus FDNNB and
LSTMB have similar model sizes to the original FDNN and LSTM
pruned for 5 iterations, which we denote as FDNNP and LSTMP in
Table 1. It can be observed that FDNNP and LSTMP produce higher
STOI and PESQ than FDNNB and LSTMB, which demonstrates the
advantage of training and pruning a large DNN over directly training
a small DNN.

Table 2 presents the STOI and PESQ results for uncompressed
models (FDNNU, LSTMU, TCNNU and GCRNU) and compressed
models (FDNNC, LSTMC, TCNNC, GCRNC and GCRNC-SP) with
regularization, pruning (for 5 iterations) and quantization. Note that
all the compressed models are subject to unstructured pruning, ex-
cept that GCRNC-SP is subject to structured pruning. We can see
that our proposed compression pipeline leads to a high compression
rate (denoted as “CR” in Table 2) without significantly sacrificing the
enhancement performance. Moreover, unstructured pruning yields a
higher compression rate than structured pruning, although producing
less regular sparsity patterns.

4. CONCLUSION

We have developed a new pipeline to compress DNNs for speech
enhancement. The pipeline consists of three techniques: sparse
regularization, iterative pruning and clustering-based quantization.
Our experimental results show that the proposed pipeline substan-
tially reduces the sizes of four different DNNs for speech enhance-
ment without significantly degrading the enhancement performance.
In addition, we find that training and compressing a large DNN
achieves better enhancement results than directly training a small
DNN that has a comparable size to the compressed DNN, which
suggests the benefits of using our model compression approach.

8361

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2021 at 16:21:48 UTC from IEEE Xplore. Restrictions apply.

5. REFERENCES

[1] D. L. Wang, “On ideal binary mask as the computational goal
of auditory scene analysis,” in Speech Separation by Humans
and Machines, pp. 181–197. Springer, 2005.

[2] Y. Wang and D. L. Wang, “Towards scaling up classification-
based speech separation,” IEEE Transactions on Audio,
Speech, and Language Processing, vol. 21, no. 7, pp. 1381–
1390, 2013.

[3] D. L. Wang and J. Chen, “Supervised speech separation based
on deep learning: An overview,” IEEE/ACM Transactions on
Audio, Speech, and Language Processing, vol. 26, no. 10, pp.
1702–1726, 2018.

[4] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie, “Model compres-
sion and hardware acceleration for neural networks: A com-
prehensive survey,” Proceedings of the IEEE, vol. 108, no. 4,
pp. 485–532, 2020.

[5] R. Reed, “Pruning algorithms-a survey,” IEEE Transactions
on Neural Networks, vol. 4, no. 5, pp. 740–747, 1993.

[6] Y. LeCun, J. S. Denker, and S. A. Solla, “Optimal brain dam-
age,” in Advances in Neural Information Processing Systems,
1990, pp. 598–605.

[7] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge
in a neural network,” in NIPS Deep Learning and Representa-
tion Learning Workshop, 2015.

[8] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta, and
Y. Bengio, “FitNets: Hints for thin deep nets,” in International
Conference on Learning Representations, 2015.

[9] Y. Chebotar and A. Waters, “Distilling knowledge from en-
sembles of neural networks for speech recognition.,” in Inter-
speech, 2016, pp. 3439–3443.

[10] L. Lu, M. Guo, and S. Renals, “Knowledge distillation for
small-footprint highway networks,” in IEEE International
Conference on Acoustics, Speech and Signal Processing. IEEE,
2017, pp. 4820–4824.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J.
Dally, and K. Keutzer, “SqueezeNet: Alexnet-level accuracy
with 50x fewer parameters and <0.5MB model size,” arXiv
preprint arXiv:1602.07360, 2016.

[12] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “MobileNets: Effi-
cient convolutional neural networks for mobile vision applica-
tions,” arXiv preprint arXiv:1704.04861, 2017.

[13] X. Zhang, X. Zhou, M. Lin, and J. Sun, “ShuffleNet: An ex-
tremely efficient convolutional neural network for mobile de-
vices,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 6848–6856.

[14] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard,
H. Adam, and D. Kalenichenko, “Quantization and training
of neural networks for efficient integer-arithmetic-only infer-
ence,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 2704–2713.

[15] R. Krishnamoorthi, “Quantizing deep convolutional net-
works for efficient inference: A whitepaper,” arXiv preprint
arXiv:1806.08342, 2018.

[16] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing
deep convolutional networks using vector quantization,” arXiv
preprint arXiv:1412.6115, 2014.

[17] S. Han, H. Mao, and W. J. Dally, “Deep compression: Com-
pressing deep neural networks with pruning, trained quanti-
zation and huffman coding,” in International Conference on
Learning Representations, 2016.

[18] S. Samui, I. Chakrabarti, and S. K. Ghosh, “Tensor-train long
short-term memory for monaural speech enhancement,” arXiv
preprint arXiv:1812.10095, 2018.

[19] I. V. Oseledets, “Tensor-train decomposition,” SIAM Journal
on Scientific Computing, vol. 33, no. 5, pp. 2295–2317, 2011.

[20] Y.-C. Lin, Y.-T. Hsu, S.-W. Fu, Y. Tsao, and T.-W. Kuo, “Ia-
net: Acceleration and compression of speech enhancement us-
ing integer-adder deep neural network.,” in Interspeech, 2019,
pp. 1801–1805.

[21] F. Ye, Y. Tsao, and F. Chen, “Subjective feedback-based neu-
ral network pruning for speech enhancement,” in Asia-Pacific
Signal and Information Processing Association Annual Summit
and Conference (APSIPA ASC). IEEE, 2019, pp. 673–677.

[22] J.-Y. Wu, C. Yu, S.-W. Fu, C.-T. Liu, S.-Y. Chien, and Y. Tsao,
“Increasing compactness of deep learning based speech en-
hancement models with parameter pruning and quantization
techniques,” IEEE Signal Processing Letters, vol. 26, no. 12,
pp. 1887–1891, 2019.

[23] H. Mao, S. Han, J. Pool, W. Li, X. Liu, Y. Wang, and W. J.
Dally, “Exploring the granularity of sparsity in convolutional
neural networks,” in IEEE Conference on Computer Vision and
Pattern Recognition Workshops, 2017, pp. 13–20.

[24] S. Scardapane, D. Comminiello, A. Hussain, and A. Uncini,
“Group sparse regularization for deep neural networks,” Neu-
rocomputing, vol. 241, pp. 81–89, 2017.

[25] N. Simon, J. Friedman, T. Hastie, and R. Tibshirani, “A sparse-
group lasso,” Journal of Computational and Graphical Statis-
tics, vol. 22, no. 2, pp. 231–245, 2013.

[26] C. H. Taal, R. C. Hendriks, R. Heusdens, and J. Jensen,
“An algorithm for intelligibility prediction of time–frequency
weighted noisy speech,” IEEE Transactions on Audio, Speech,
and Language Processing, vol. 19, no. 7, pp. 2125–2136, 2011.

[27] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hek-
stra, “Perceptual evaluation of speech quality (PESQ)-a new
method for speech quality assessment of telephone networks
and codecs,” in Proceedings of IEEE International Confer-
ence on Acoustics, Speech, and Signal Processing (Cat. No.
01CH37221). IEEE, 2001, vol. 2, pp. 749–752.

[28] J. Garofolo, D. Graff, D. Paul, and D. Pallett, “CSR-I (WSJ0)
complete LDC93S6A,” Web Download. Philadelphia: Lin-
guistic Data Consortium, vol. 83, 1993.

[29] A. Varga and H. J. Steeneken, “Assessment for automatic
speech recognition: II. NOISEX-92: A database and an experi-
ment to study the effect of additive noise on speech recognition
systems,” Speech Communication, vol. 12, no. 3, pp. 247–251,
1993.

[30] A. Pandey and D. L. Wang, “TCNN: Temporal convolutional
neural network for real-time speech enhancement in the time
domain,” in IEEE International Conference on Acoustics,
Speech and Signal Processing. IEEE, 2019, pp. 6875–6879.

[31] K. Tan and D. L. Wang, “Learning complex spectral map-
ping with gated convolutional recurrent networks for monau-
ral speech enhancement,” IEEE/ACM Transactions on Audio,
Speech, and Language Processing, vol. 28, pp. 380–390, 2019.

8362

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2021 at 16:21:48 UTC from IEEE Xplore. Restrictions apply.

		2021-05-01T01:10:55-0400
	Preflight Ticket Signature

