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ABSTRACT

In voice telecommunication, the intelligibility and quality of speech
signals can be severely degraded by background noise if the speaker
at the transmitting end talks in a noisy environment. Therefore, a
speech enhancement system is typically integrated into the transmit-
ter device or the receiver device. Without the knowledge of whether
the other end is equipped with a speech enhancer, the transmitter and
receiver devices can both process a speech signal with their speech
enhancers. In this study, we find that enhancing a speech signal
twice can dramatically degrade the enhancement performance. This
is because the downstream speech enhancer is sensitive to the pro-
cessing artifacts introduced by the upstream enhancer. We analyze
this problem and propose a new training scheme for the downstream
deep learning based speech enhancement model. Our experimental
results show that the proposed training strategy substantially elevate
the robustness of speech enhancers against artifacts induced by an-
other speech enhancer.

Index Terms— monaural speech enhancement, voice telecom-
munication, processing artifacts, robustness, deep learning

1. INTRODUCTION

A typical telecommunication system for voice comprises a transmit-
ter (i.e. a microphone), a communication circuit (i.e. the physical
medium that encodes and carries the speech signal) and a receiver
(e.g. a mobile phone loudspeaker). If the speaker at the transmit-
ting end is in a noisy environment, the transmitter picks up target
speech as well as background noise, which can severely degrade the
intelligibility and quality of the speech signal at the receiving end.
In order to attenuate background noise, speech enhancement algo-
rithms have been deployed in telecommunication devices such as
mobile phones. One can perform speech enhancement in the up-
stream transmitter device. Alternatively, the speech enhancement
system can be deployed in the downstream receiver device. Fig. 1
illustrates this situation.

Due to the variety of device makers and service providers, in
voice telecommunication such as mobile communication, the re-
ceiver device typically does not have the knowledge of whether
speech enhancement has been performed in the transmitter device.
Similarly, the transmitter device does not have the knowledge of
whether the receiver device is equipped with speech enhancement.
The receiver device may choose to apply a speech enhancer to the
received speech signal to cover the situation that the transmitter side
lacks enhancement or its enhancement is inadequate. One would
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Fig. 1. Diagram of a telecommunication system equipped with a
speech enhancement system. The speech enhancement system can
be deployed in the transmitter device, the receiver device, or both.

imagine that no issue should arise if noisy speech has been en-
hanced at the transmitting end, and further processed by a speech
enhancement system at the receiving end. In this study, we find that
enhancing noisy speech twice can be detrimental to the performance
of speech enhancement. This occurs because the downstream speech
enhancer is susceptible to the processing artifacts introduced by the
upstream speech enhancer.

Numerous speech enhancement approaches have been devel-
oped over the last several decades. A classic speech enhancement
algorithm is spectral subtraction [1], which estimates a short-term
noise spectrum and then subtracts it from the noisy spectrum to
produce an estimated spectrum of clean speech. In [2], Lim and
Oppenheim developed an iterative Wiener filter based on an all-pole
model. A noniterative Wiener filtering algorithm was proposed
in [3], which computes the Wiener gain using an estimated a priori
signal-to-noise ratio (SNR). Another classic speech enhancement
algorithm is the minimum mean-square error (MMSE) estima-
tor developed by Ephraim and Malah [4]. Following this study,
they designed an MMSE log-spectral amplitude estimator (Log-
MMSE) in [5], which leads to less residual noise. In [6], Cohen
and Berdugo introduced a minima controlled recursive averaging
(MCRA) method for noise estimation, which can be combined with
the optimally modified log-spectral amplitude (OM-LSA) estima-
tor [7] to perform speech enhancement. They presented an improved
MCRA (IMCRA) in [8]. A different class of speech enhancement
algorithms is signal subspace algorithms based on matrix analysis.
For example, Hu and Loizou proposed a Karhunen—Loeve transform
(KLT) based subspace algorithm in [9]. However, these conventional
speech enhancement methods make assumptions about the statisti-
cal characteristics of the speech and noise signals, e.g. stationarity
of background noise. Although these assumptions hold for many
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acoustic environments, the enhancement performance is limited in
dynamic environments.

Speech enhancement has been recently formulated as a super-
vised learning task, where discriminative patterns of clean speech
and background noise are learned from training data [10]. Since
deep neural networks (DNNs) were first introduced to supervised
speech enhancement in 2013 [11], various deep learning based ap-
proaches have been developed [12]. The performance of supervised
speech enhancement has been substantially elevated thanks to the
use of deep learning. For any supervised learning task, generaliza-
tion to untrained conditions is a crucial issue. In voice telecommu-
nication, does a supervised speech enhancement model generalize
to the speech signals that have been already processed by another
speech enhancement algorithm?

In this study, we investigate the processing artifacts induced by
monaural speech enhancement, and their effects on a succeeding
speech enhancer. To alleviate performance degradation caused by
the processing artifacts, we propose a new training strategy for deep
learning based speech enhancement in voice telecommunication. We
evaluate the proposed training technique on a commonly-used long
short-term memory (LSTM) model and two newly-developed con-
volutional recurrent network (CRN) models. Our experimental re-
sults show that the proposed training strategy substantially improve
the robustness of speech enhancement models against processing ar-
tifacts. Moreover, we find that the models trained by the proposed
strategy generalize well to new speech enhancers. To our knowledge,
this is the first study to examine and address the important robustness
issue of deep learning based speech enhancement against processing
artifacts introduced by another speech enhancement system.

The rest of this paper is organized as follows. We analyze en-
hancement artifacts and describe a training strategy for speech en-
hancement in Section 2. The experimental setup and evaluation re-
sults are provided in Section 3. Section 4 concludes this paper.

2. ALGORITHM DESCRIPTION

2.1. Analysis of artifacts induced by speech enhancement

Given a single-microphone mixture y, the goal of monaural speech
enhancement is to separate target speech s from background noise
n. A noisy mixture can be modeled as

y[k] = s[k] + n[k], (1)

where k is the time sample index. Taking the time-frequency (T-F)
representations of both sides, we derive

Ymﬁf = Sm,f + ]Vm’f7 (2)

where Y, S and N denote the T-F representations of y, s and n,
respectively, and m and f index the time frame and the frequency
bin, respectively. The T-F representation Sm’ + of enhanced speech
can be written as

St = Sm.f 4 Am. s+ NI 3)

m, 7

where A represents the processing artifact induced by speech en-
hancement, and N ) the residual noise. Typically, the artifact A is
correlated with target speech S, which can result in an alteration or
even a loss of speech components. For voice telecommunication, if a
conventional speech enhancement method is deployed in the receiver
device, such an artifact can dissatisfy the assumptions or conditions
that this enhancement method is based on. For a receiver device
equipped with a deep learning based speech enhancer, the alteration
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Fig. 2. (Color Online). Example of spectrograms of enhanced
speech by Wiener filtering [3], an MMSE estimator [4], a KLT-based
subspace method [9] and an LSTM network. The spectral magni-
tudes are plotted on a log scale.

or the loss of speech components caused by the artifact cannot be
restored by the enhancer if it is only trained with unprocessed noisy
speech. The performance of such an enhancer can severely degrade
on enhanced speech, due to the mismatch between the pattern of en-
hanced speech and that of unprocessed noisy speech. Even though
the SNR of the speech signal is improved by the upstream speech en-
hancer, the detriment caused by processing artifacts may outweigh
the benefit of enhancement in the transmitter device.

Fig. 2 illustrates an example of enhanced spectrograms by
Wiener filtering [3], an MMSE estimator [4], a KLT-based sub-
space method [9] and an LSTM network [13]. One can observe that
different speech enhancement methods can exhibit very different
distortion effects.

2.2. Proposed training strategy

To derive a robust speech enhancer against processing artifacts, we
propose a new training strategy for deep learning based monaural
speech enhancement, as summarized in Algorithm 1. Specifically,
we carefully choose a set of different speech enhancers, and then
process each noisy mixture in the original training set using each of
these enhancers. Subsequently, we collect all these enhanced speech
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Algorithm 1 Proposed training strategy

Input: A set of M different speech enhancers E;(1 < j < M), a
randomly initialized speech enhancer F., to be trained, and a train-
ing set T' = {(yi, s:) }1<i<k that contains K pairs of unprocessed
noisy speech y; and clean speech s;.

Output: A robust speech enhancer E;,..

1: for jin{1,2,..., M} do

2: foriin{1,2,..., K} do

3: Process y; with E; to produce enhanced speech ygj ).

4: Make a new pair of signals (ygj), Si);

5 end for _

6 Collect (yl(]), s;) for all 7’s into a new training set V) =

{(w?”, s) heicks
: end for
cLetT =TUuT®UT@U...uTH™);
9: Train F¢, on the comprehensive training set 7" to obtain a robust
speech enhancer F, ;
10: return Ej,.

o

signals as well as the original unprocessed noisy speech signals to
form a new comprehensive training set, which is used to train the
deep learning based speech enhancer. Note that an unprocessed
noisy signal and its multiple enhanced versions correspond to the
same target speech signal. In other words, the speech enhancer
tends to learn a many-to-one mapping. In this study, we choose a
set of five representative traditional speech enhancement algorithms
and a commonly-used feedforward DNN as E;’s: (1) Ey: spectral
subtraction [1]; (2) F2: a Wiener filter based on a priori SNR es-
timation [3]; (3) E3: an MMSE estimator [4]; (4) E4: the IMCRA
method [8]; (5) E's: a KLT-based subspace algorithm with embedded
pre-whitening [9]; (6) Es: a feedforward DNN that has four hidden
layers with 1024 units in each layer, where the output layer performs
a spectral mapping in the magnitude domain.

The selection of such a speech enhancer set is motivated by the
fact that these methods fall into different classes of speech enhance-
ment algorithms, which are based on different principles or assump-
tions [14]. The spectral-subtractive algorithms exploit the fact that
noise is additive and one can heuristically derive an estimate of the
clean speech signal spectrum simply by subtracting the noise spec-
trum from the noisy speech spectrum. Wiener filtering obtains the
enhanced speech signal by optimizing a mathematically tractable er-
ror criterion, i.e. the mean squared error (MSE). Statistical model
based methods (e.g. the MMSE estimator and the IMCRA method)
use nonlinear estimators of the spectral magnitude, which employ
various statistical models and optimization criteria. Subspace algo-
rithms are based on the principle that the clean speech signal might
be confined to a subspace of the noisy Euclidean space. Supervised
speech enhancement methods train a model to learn discriminative
patterns from training data. Therefore, the speech signals enhanced
by these different approaches may include a relatively wide range of
distortion effects. Thus, training with these processed speech signals
can improve the robustness of a speech enhancer against enhance-
ment artifacts.

3. EVALUATION AND ANALYSIS

3.1. Experimental setup

In our experiments, we use the WSJO SI-84 training set [15] which
includes 7138 utterances from 83 speakers (42 males and 41 fe-
males). Of these speakers, we set aside six (3 males and 3 females) as

Table 1. Evaluation of LSTM models on different speech enhancers.

Metrics STOI (in %) PESQ
SNR -5dB 0dB  5dB | -5dB 0dB 5dB
Unprocessed 57.84  69.80 81.06 149 179 212
LSTM1 72.82 8498 91.57 1.88 239 280
LSTM2 73.80 8528 91.67 | 192 239 279
Spectral subtraction [1] 56.14 7043 82.77 1.61 1.96 2.33

Spectral subtraction - LSTM1 | 60.14 76.42 8824 [ 144 209 273
Spectral subtraction - LSTM2 | 72.84 84.89 91.55 | 1.90 241 282
Wiener filtering [3] 5463 6896 8129 [ 1.52 189 226
Wiener filtering - LSTM1 5748 7446 86.51 135 202 264
Wiener filtering - LSTM2 7250 8482 9157 | 1.90 240 282
MMSE estimator [4] 5419 6721 7926 | 1.61 196 231
MMSE estimator - LSTM1 5555 7027 8327 | 141 196 257
MMSE estimator - LSTM2 71.63 8432 9130 | 1.86 237 2.80
IMCRA method [8] 5533  69.50 81.56 | 1.54 190 227
IMCRA method - LSTM1 56.11 73.07 8592 | 129 195 2.60
IMCRA method - LSTM2 73.00 85.02 9150 | 1.89 241 2.82
KLT-based subspace [9] 5572 7132 8324 [ 120 1.68 211
KLT-based subspace - LSTM1 | 50.20 70.38 85.65 | 091 1.65 2.39
KLT-based subspace - LSTM2 | 71.70 84.29 91.17 | 1.87 237 2.77
DNN mapping 68.09 81.29 89.21 1.73 221 2.60

DNN mapping - LSTM1 68.78 8237 89.76 | 1.69 226 2.69
DNN mapping - LSTM2 71.70 8429 91.17 | 1.87 237 277

Table 2. Evaluation of a KLT-based subspace method on an MMSE

estimator.
Metrics STOI (in %) PESQ
SNR -5dB  0dB 5dB -5dB 0dB 5dB
Unprocessed 57.84 69.80 81.06 1.49 1.79 212

MMSE estimator [4] 54.19 6721 79.26 | 1.61 1.96 231
KLT-based subspace [9] | 55.72 71.32 8324 | 120 1.68 2.11
MMSE - KLT 50.34 67.02 80.33 1.04 154 2.03

untrained speakers for testing. The models are trained with the 77 re-
maining speakers. We use 10,000 noises from a sound effect library
(available at https://www.sound-ideas.com) as the training noises, of
which the total duration is about 126 hours. For testing, we use two
highly nonstationary noises (babble and cafeteria) from an Auditec
CD (available at http://www.auditec.com).

We simulate a training set by mixing randomly selected train-
ing utterance with random cuts from the 10,000 training noises.
The SNR of a mixture is randomly sampled from {-8, -7, -6, -5,
4, -3, -2, -1, 0, 4, 8, 12, 16, 20} dB. We denote this training
set as “training set 17, which contains 80,000 training examples.
Following the procedures 1-8 in Algorithm 1, we process each mix-
ture in training set 1 using each of the six speech enhancers, i.e.
spectral subtraction, Wiener filtering, MMSE, IMCRA, KLT-based
subspace and a four-layer DNN. These procedures yield a compre-
hensive training set (denoted as “training set 2””), which comprises
560,000 (=80,000x(1+6)) training examples. Note that the DNN
enhancer is trained with a different training set including 320,000
mixtures, which is created following the same procedure that gener-
ates training set 1. Moreover, we simulate a test set including 150%3
mixtures, which are created from 25X 6 utterances of 6 untrained
speakers. Three different SNRs are used for the test set, i.e. -5, 0
and 5 dB.

In this study, all signals are sampled at 16 kHz. A 20-ms Ham-
ming window is employed to segment the signals into a set of time
frames, with a 50% overlap between adjacent time frames. We use
161-dimensional spectra, which corresponds to a 320-point short-
time Fourier transform (STFT) (16 kHzx20 ms). We train all mod-
els using the AMSGrad optimizer [16] with a learning rate of 0.001.
The MSE is used as the objective function. The minibatch size is set
to 8 at the utterance level. Within a minibatch, all training examples
are zero-padded to have the same number of time steps as the longest
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Table 3. STOI and PESQ evaluations on two unseen conventional
speech enhancers.

Table 4. STOI and PESQ evaluations on an unseen deep learning
based speech enhancer.

Log-MMSE estimator - LSTM1 | 49.77 6329 7874 | 135 202 2.64
Log-MMSE estimator - LSTM2 | 71.05 83.60 90.76 | 1.87 240 2.84
Log-MMSE estimator - CRN1 | 5331 65.52 79.23 | 125 1.69 231
Log-MMSE estimator - CRN2 | 71.39 8393 91.21 | 1.85 241 2.86

example.

3.2. Experimental results and analysis

We first investigate the performance of two LSTM models on both
original unprocessed noisy speech and enhanced speech produced
by another speech enhancer. Specifically, both LSTM models have
four stacked LSTM hidden layers with 1024 units in each layer, and
a fully connected layer is used to estimate the spectral magnitude
of clean speech, with a softplus activation function [19]. These two
LSTMs with the same architecture are trained on training sets 1 and
2, respectively, which are denoted as “LSTM1”” and “LSTM2”.

Table 1 presents short-time objective intelligibility (STOI) [20]
and perceptual evaluation of speech quality (PESQ) [21] results for
different approaches at different SNR levels. The numbers repre-
sent the averages over all test examples on the two test noises at
each SNR. Note that “Method 1 - Method 2” indicates that the un-
processed mixtures are successively processed by “Method 17 and
“Method 2”. It can be observed that the five conventional speech en-
hancers severely degrade the enhancement performance of LSTM1,
particularly in low-SNR conditions. For example, “LSTM1” im-
proves STOI from 57.84% to 72.82% and PESQ from 1.49 to 1.88
over the unprocessed mixtures at -5 dB. If the noisy mixtures are
first processed by an MMSE estimator prior to being enhanced by
LSTMI1, LSTM1 yields significantly lower STOI and PESQ, i.e.
55.55% and 1.41, which are even lower than those of unprocessed
mixtures. It should be pointed out that most conventional speech en-
hancement algorithms perform poorly on nonstationary noises such
as the babble and cafeteria noises used in this study, especially when
the SNR is low (e.g. -5 dB). In addition, Table 1 shows that LSTM1
is sensitive to artifacts introduced by another DNN-based speech en-
hancer. At -5 dB, for example, “DNN mapping - LSTM1” produces
a STOI score of 68.78% and a PESQ score of 1.69, which are sig-
nificantly lower than those yielded by “LSTM1” (i.e. 72.82% and
1.88). Moreover, we find that conventional speech enhancement al-
gorithms can be susceptible to processing artifacts as well. For ex-
ample, “MMSE-KLT” underperforms both “MMSE estimator” and
“KLT-based subspace”, as shown in Table 2.

In addition, the LSTM trained by our proposed training strategy,
i.e. LSTM2, is far more robust than LSTM1 against artifacts intro-
duced by the six speech enhancers. In other words, the enhancement
artifacts induced by a preceding speech enhancer leads to far slighter
or no performance degradation for LSTM2. For example, “Wiener
filtering - LSTM?2” yields a STOI score of 72.50% and a PESQ score
of 1.90 at -5 dB, which are marginally lower than those produced by
“LSTM?2”, i.e. 73.80% and 1.92. It should be noted that LSTM2

Metrics STOI (in %) PESQ Metrics STOI (in %) PESQ
SNR 5dB0dB _5dB | 5dB 0dB 5dB SNR 5dB 0dB 5dB | -5dB 0dB 5dB
Unprocessed 5784 6980 8106 | 149 179 212 Unprocessed 5784 6980 81.06 | 149 1.9 2.12
LSTM1 72.82 8498 91.57 1.88 239  2.80 CRNI [17] 73.66 8492 91.53 1.90 236 276
LSTM2 73.80 8528 91.67 | 192 239 279 CRN2 [17] 7374 8530 91.81 | 1.91 239 280
CRNI [17] 73.66 8492 9153 | 190 236 276 RI.CRNI [22] 7682 8726 9320 | 200 252 295
CRN2 [17] 7374 8530 9181 | 191 239 2380 RI-CRN2 [22] 7713 8809 9350 | 2.04 256 2.96
Baxesmn ?stlmator [18] 53.16 66.45 78.56 1.58 195 233 LSTM masking 7137 8260 8031 184 548 2.89
Bayesian estimator - LSTM1 43.13 55.61 73.13 1.17 1.65 2.33 .
' ! LSTM masking - CRN1 | 72.14 8429 91.09 | 1.86 239 279
Bayesian estimator - LSTM2 | 68.72 81.40 89.35 | 1.80 236 2.82 .
B . . LSTM masking - CRN2 72.80 85.13 91.66 1.86 243 285
ayesian estimator - CRN1 48.81 60.68 75.14 1.05 144 2.08 ki CRNI | 7288 8567 9197 1.84 248  2.89
Bayesian estimator - CRN2 | 69.97 8236 90.04 | 1.81 238 2.6 ng i e g_CRNZ L sl o51a | 200 aas 3es
Log-MMSE estimator [5] 53.75 6698 79.00 | 152 1.89 226 masxing - 8- . : - . . .

performs even slightly better than LSTM1 on unprocessed mixtures.
A possible interpretation is that training with enhanced speech pro-
duced by different speech enhancers tends to regularize the LSTM
model, which improves its generalization capability to the untrained
speakers and the untrained noises for testing.

We now investigate the generalization to unseen speech en-
hancers. We additionally train a newly-developed CRN in [17] for
evaluation. Akin to the LSTM models, “CRN1” is trained on train-
ing set 1 and “CRN2” on training set 2. The LSTM and CRN models
are evaluated on enhanced speech produced by two unseen speech
enhancers, i.e. a Bayesian estimator based on weighted Euclidean
distortion measure [18] and a Log-MMSE estimator [5]. The STOI
and PESQ comparisons are shown in Table 3. We can observe that
the performance of both LSTM1 and CRN1 is severely degraded by
the two preceding speech enhancers. This performance degradation
can be considerably reduced by our proposed training strategy, as
shown in Table 3. Take, for example, the CRN models. “Bayesian
estimator - CRN1” yields a STOI score of 48.81% and a PESQ score
of 1.05, which are far lower than those produced by “CRN1”. Going
from “Bayesian estimator - CRN1” to “Bayesian estimator - CRN2”
improves STOI by 21.16% and PESQ by 0.76.

We further investigate the generalization to an unseen deep
learning based speech enhancer. Aside from the CRN in [17], we
use another CRN (denoted as “RI-CRN”) that learns a complex
spectral mapping, which is developed in [22]. We train a four-layer
LSTM that estimates the ideal ratio mask (IRM). Note that this
LSTM is trained on a training set different from training sets 1 and
2, akin to “DNN mapping” in Table 1. Both CRN and RI-CRN
are evaluated on enhanced speech by this LSTM speech enhancer
(denoted as “LSTM masking”). As shown in Table 4, our proposed
training strategy consistently improves the robustness of CRN and
RI-CRN against the processing artifacts introduced by the LSTM
enhancer. At -5 dB SNR, for example, “LSTM masking - RI-CRN2”
improves STOI by 3.84% and PESQ by 0.16 over “LSTM masking
- RI-CRN1”.

4. CONCLUSION

In voice telecommunication, the performance of speech enhance-
ment can severely degrade if we enhance the speech signal twice.
In this study, we have examined this problem and proposed a new
training strategy for the downstream speech enhancer in the receiver
device. Our experimental results show that the proposed training
strategy substantially elevate the robustness of deep learning based
speech enhancement systems against processing artifacts induced by
another speech enhancer. In addition, we find that the models trained
by the proposed strategy generalize well to two new conventional
speech enhancers and a new deep learning based speech enhancer.
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