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ABSTRACT

Speech quality and intelligibility can be severely degraded by back-
ground noise in mobile communication. In order to attenuate back-
ground noise, speech enhancement systems have been integrated
into mobile phones, and a microphone array is typically deployed to
improve the enhancement performance. This paper proposes a novel
approach to real-time speech enhancement for dual-microphone
mobile phones. Our approach employs a causal densely-connected
convolutional recurrent network to perform dual-channel complex
spectral mapping. We apply a structured pruning technique for
compressing the model without significantly affecting the enhance-
ment performance. This leads to a real-time enhancement system
for on-device processing. Evaluation results show that the pro-
posed approach substantially advances the performance of an earlier
approach to dual-channel speech enhancement for mobile commu-
nication.

Index Terms— real-time speech enhancement, complex spec-
tral mapping, densely-connected convolutional recurrent network,
dual-microphone mobile phones, on-device processing

1. INTRODUCTION

In mobile speech communication, speech signals can be severely
corrupted by background noise when the far-end talker is in a noisy
acoustic environment. Therefore, speech enhancement algorithms
have been integrated into most mobile phones for noise reduction.
To produce better enhancement results, a two-channel microphone
array is typically deployed, where a primary microphone is placed
on the bottom of a mobile phone and a secondary microphone on the
top. In this study, we focus on noise reduction for such commonly-
used dual-microphone mobile phones, and assume that reverberation
energy is relatively weak, which is reasonable with relatively small
speaker-phone distances in mobile communication.

In the past decade, dual-channel speech enhancement has been
extensively studied in the speech processing community. In [1], a
Wiener filter was formulated by leveraging the power level differ-
ence (PLD) between the signals received by two microphones, which
was shown to improve speech quality. Subsequently, a PLD-based
noise estimator was designed in [2], which uses the normalized inter-
channel PLD as speech presence probability. Using the estimated
noise spectrum, a spectral gain is computed and then applied to the
noisy spectrum to obtain the enhanced spectrum. The results show
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that this approach yields better objective intelligibility than the ap-
proach in [1]. More recently, Fu et al. [3] used a minimum variance
distortionless response spatial filter for noise reduction, which was
shown to be more robust than the PLD method in [2] against different
sensitivities of two microphones. Other related studies include [4]
and [5].

Deep learning based speech enhancement for dual-microphone
mobile phones has attracted increasing interests in recent years. To
our knowledge, the first method was designed by López-Espejo et
al. [6], in which a deep neural network (DNN) is trained to esti-
mate a binary mask from the log-mel features of the noisy array
signals. The enhanced spectrum is produced from the estimated
mask through a truncated-Gaussian based imputation algorithm. In
a subsequent study [7], a DNN is trained to produce an estimate of
the noise spectrum, which is used to compute the primary-channel
enhanced spectrum via a vector Taylor series feature compensation
method. The enhanced spectrum is then passed into a speech recog-
nizer for evaluation. Experimental results show that the DNN-based
approach significantly outperforms several conventional approaches
in terms of word accuracy. In a more recent study [8], we proposed
a convolutional recurrent network (CRN) for real-time dual-channel
speech enhancement, motivated by an earlier study on CRN [9]. The
CRN is trained to estimate the phase-sensitive mask (PSM) [10]
from magnitude-domain intra- and inter-channel features. The re-
sults show that this approach dramatically outperforms several con-
ventional approaches, as well as a simple DNN that estimates the
PSM.

Inspired by recent advances in complex-domain speech en-
hancement [11, 12, 13], we develop a new densely-connected CRN
(DC-CRN) to perform dual-channel complex spectral mapping,
which directly estimates the real and imaginary spectrograms of
the primary-channel clean speech signal from those of the dual-
channel noisy mixture. In addition, we propose a structured pruning
technique to compress the DC-CRN, which substantially reduces
the model size without significantly degrading the enhancement
performance. This leads to a low-latency and memory-efficient
enhancement system, which is necessary for real-time process-
ing on mobile phones. Our experimental results suggest that the
proposed approach consistently improves the enhancement perfor-
mance over the approach in [8], in terms of short-time objective
intelligibility (STOI) [14] and perceptual evaluation of speech qual-
ity (PESQ) [15].

The rest of this paper is organized as follows. In Section 2, we
provide a detailed description of our approach . The experimental
setup and evaluation results are presented in Section 3. Section 4
concludes this paper.

6134978-1-7281-7605-5/21/$31.00 ©2021 IEEE ICASSP 2021

IC
A

SS
P 

20
21

 - 
20

21
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 A
co

us
tic

s, 
Sp

ee
ch

 a
nd

 S
ig

na
l P

ro
ce

ss
in

g 
(I

C
A

SS
P)

 | 
97

8-
1-

72
81

-7
60

5-
5/

20
/$

31
.0

0 
©

20
21

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IC
A

SS
P3

97
28

.2
02

1.
94

14
34

6

Authorized licensed use limited to: The Ohio State University. Downloaded on June 11,2021 at 16:20:49 UTC from IEEE Xplore.  Restrictions apply. 



Conv-DC-Block

Conv-DC-Block

Conv-DC-Block

Conv-DC-Block

Conv-DC-Block

STFT STFT

Concat

RNNReshape Reshape

Deconv-DC-Block

Deconv-DC-Block

Deconv-DC-Block

Deconv-DC-Block

Deconv-DC-Block

iSTFT

Linear

Conv-DC-Block

Conv-DC-Block

Split & Reshape

Linear

Concat

Concat

Conv-DC-Block

Concat

Conv-DC-Block

Concat

ConcatConv-DC-Block

Fig. 1. Diagram of the DC-CRN for dual-channel complex spectral
mapping.

2. SYSTEM DESCRIPTION

2.1. Dual-channel complex spectral mapping

The inter-channel intensity difference (IID) is a spatial cue domi-
nantly used by most studies on dual-channel speech enhancement.
Another useful spatial cue is the inter-channel phase difference
(IPD) or inter-channel time difference (ITD), which is highly cor-
related with the direction of arrival with respect to the microphone
array. Both IID and IPD (or ITD) can be implicitly exploited by
performing multi-channel complex spectral mapping [16], where
the IID and the IPD are encoded in the dual-channel complex
spectrogram of the noisy mixture. In contrast to conventional beam-
forming that typically exploits second-order statistics of multiple
channels, such an approach has the potential to extract all effective
cues in dual-channel complex-domain inputs through deep learning.
Furthermore, complex spectral mapping simultaneously enhances
magnitude and phase responses of target speech [13], which is ad-
vantageous over magnitude-domain approaches that ignore phase.
Note that we aim to estimate the clean speech signal captured by the
primary microphone in this study.

2.2. Densely-connected convolutional recurrent network

By extending a gated convolutional recurrent network (GCRN) [13]
for monaural speech enhancement, we develop a DC-CRN to per-
form dual-channel complex spectral mapping, which additionally
incorporates dense connectivity. As illustrated in Fig. 1, the DC-
CRN has an encoder-decoder architecture with skip connections be-
tween the encoder and the decoder. In order to compute the in-
put complex spectrograms, we apply short-time Fourier transform
(STFT) to the time-domain waveforms of the dual-channel mixtures.
The real and imaginary components of the dual-channel spectro-
grams [11] are concatenated into a 3-dimensional (3-D) represen-
tation with four channels. We feed the 3-D representation into a
convolutional encoder, which comprises a stack of five convolutional
densely-connected (DC) blocks. Subsequently, we reshape the 3-D
representation learned by the encoder into a sequence of 1-D fea-

Conv, BN, ELU

Conv, BN, ELU

Conv, BN, ELU

Gated Conv/Deconv

Conv, BN, ELU

(a)

Conv/Deconv Conv/Deconv

Sigmoid

(b)

Fig. 2. Diagrams of the densely-connected block (a) and the
gated convolution/deconvolution (b). The symbol

⊗
represents the

element-wise multiplication, and “BN” and “ELU” denote batch
normalization and the exponential linear unit, respectively.

tures, which is then modeled by a recurrent neural network (RNN).
The output of the RNN is reshaped back to a 3-D representation and
subsequently passed into a decoder, which is a stack of five decon-
volutional DC blocks. The output of the last block is split into two
equal-sized 3-D representations along the channel dimension, one
for the real spectrum estimation and the other for the imaginary spec-
trum estimation. We reshape these two 3-D representations individ-
ually to a sequence of 1-D features, and then process them with two
linear projection layers to estimate the real and imaginary spectro-
grams of clean speech, respectively. We apply inverse STFT (iSTFT)
to the estimated real and imaginary spectrograms to resynthesize the
time-domain enhanced signal for the primary channel.

Inspired by U-Net++ [17] for image segmentation, we use a
convolutional DC block to process the features learned by each DC
block in the encoder, prior to concatenating them with the output of
the corresponding DC block in the decoder. The introduction of such
DC block based skip pathways can enrich the feature maps from the
encoder, which would help to increase the similarity between the
feature maps from the encoder and the decoder and thus improves
their fusion.

As shown in Fig. 2(a), we propose to use a dense connectivity
pattern in each DC block, i.e. introducing direct connections from
any layer to all subsequent layers. Such dense connections improve
the information flow between layers. Specifically, each DC block has
five layers, where each of the first four layers comprises a 2-D con-
volutional layer successively followed by batch normalization and
exponential linear activation function. The last layer is a gated con-
volutional or deconvolutional layer as depicted in Fig. 2(b), which
incorporates gated linear units [18]. Note that “Conv-DC-Block” in
Fig. 1 performs gated convolution in the last layer, and “Deconv-
DC-Block” gated deconvolution in the last layer.

2.3. Network configurations

To systematically investigate the proposed architecture, we first con-
figure the DC-CRN into a noncausal system with a reasonably large
model size. In each convolutional or deconvolutional DC block, each
of the first four layers has 8 output channels with a kernel size of 1×3
(time×frequency). For the DC blocks in the encoder and the de-
coder, the last layer in each of them has a kernel size of 1×4, where a
stride of 2 and a zero-padding of 1 (for each side) is applied along the
frequency dimension. Note that the kernel size is set to 1×4 rather
than 1×3 in order to mitigate the checkerboard artifacts [19], which
arise when the kernel size of a strided deconvolution is not divisi-
ble by the stride. Moreover, the DC blocks in the encoder have 16,
32, 64, 128 and 256 output channels successively, and those in the
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decoder have 256, 128, 64, 32 and 16 output channels successively.
The convolutional DC blocks in the skip pathways have the same
hyperparameters as those in the encoder, except that the last layer
uses a stride of 1 and a kernel size of 1×3. Analogously, these DC
blocks have 16, 32, 64, 128 and 256 output channels successively. In
addition, the RNN used for sequential modeling is a two-layer bidi-
rectional long short-term memory (BLSTM), of which each layer
contains 640 units in each direction. Akin to [13], we adopt a group-
ing strategy [20] to reduce the number of trainable parameters in the
BLSTM without significantly affecting the performance. The num-
ber of groups is empirically set to 2.

A causal and lightweight DC-CRN can be easily obtained by
simply changing the network configurations. First, we change the
number of output channels of all DC blocks to 16, except that the
last DC block in the decoder only has 2 output channels. Second,
we replace the BLSTM by a two-layer unidirectional LSTM, which
has 80 units in each layer. All other settings are the same as in the
noncausal DC-CRN.

2.4. Iterative structured pruning

To further reduce the number of trainable parameters, we propose
a structured pruning method to compress the causal DC-CRN. We
first define the pruning granularity as follow. For each of the con-
volutional and deconvolutional layers, we treat each kernel (i.e. a
2-D matrix) as a weight group for pruning. In the implementation
of LSTM, the weight matrices for four gates (i.e. input, forget, cell
and output gates) are typically concatenated, which amounts to two
larger matrices, one for the layer input and the other for the hid-
den state from the last time step. Each column of these matrices is
treated as a weight group for pruning. Similarly, we treat each col-
umn of the weight matrix of each linear layer as a weight group for
pruning. Note that we only prune weights, as the number of biases
is trivial relative to that of weights.

In order to increase the compression rate, we use a group sparse
regularization technique [21] to impose the group-level sparsity
of weight tensors. Specifically, we introduce the following sparse
group lasso (SGL) regularizer:

RSGL =
λ1

n(W)

∑
w∈W

|w|+ λ2

n(G)

∑
g∈G

√
pg ‖g‖2 , (1)

whereW and G denote the set of all weights and that of all weight
groups, respectively. The function n(·) calculates the cardinality of
a set, and ‖·‖2 the `2 norm. The symbol pg denotes the number
of weights in each weight group g. Here λ1 and λ2 are predefined
weighting factors. Hence, the loss function can be written as L =
LRI+Mag+RSGL, whereLRI+Mag is the loss function developed in [16].

On a validation set V , the importance of a specific set U of
weight groups can be quantified by the increase in the loss induced
by removing it:

IU = LRI+Mag(V,Θ|g = 0, ∀g ∈ U)− LRI+Mag(V,Θ), (2)

where Θ is the set of all trainable parameters in the model, and U
can be any subset of G. We perform a per-tensor sensitivity analysis
to determine the pruning ratio for each layer, following Algorithm 1.
Subsequently, group-level pruning is applied to each weight tensor
as per the tensor-wise pruning ratios. We then fine-tune the pruned
model to maintain the enhancement performance. The fine-tuned
model is evaluated on the validation set by two metrics, i.e. STOI
and PESQ. We repeat this procedure until the number of pruned
weights becomes trivial in an iteration or a significant drop in STOI
or PESQ is observed on the validation set. During this procedure,
the parameter set Θ becomes smaller after each iteration.

Algorithm 1 Per-tensor sensitivity analysis
Input: (1) Validation set V; (2) set Gl of all nonzero weight groups

in the l-th weight tensor Wl, ∀l; (3) loss function LRI+Mag(V,Θ),
where Θ is the set of all nonzero trainable parameters in the model;
(4) predefined tolerance value α.
Output: Pruning ratio βl for weight tensor Wl, ∀l.
1: for each tensor Wl do
2: for β in {0%, 5%, 10%, . . . , 90%, 95%, 100%} do
3: Let U ⊆ Gl be the set of the β(%) of nonzero weight

groups with the smallest `1 norms in tensor Wl;
4: IU ← LRI+Mag(V,Θ|g = 0,∀g ∈ U)− LRI+Mag(V,Θ);
5: if IU > α then
6: βl ← β − 5%;
7: break
8: end if
9: end for

10: if βl is not assigned any value then
11: βl ← 100%;
12: end if
13: end for
14: return βl for weight tensor Wl, ∀l

3. EVALUATION AND ANALYSIS

3.1. Experimental setup

In the experiments, we simulate a rectangular room with a size of
10×7×3 m3 using the image method [22]. The target source (mouth)
is located at the center of the room, and the primary microphone is
placed on a sphere centered at the target source, of which the radius
is randomly sampled between 0.01 m and 0.15 m. Such a distance
range covers both of two mobile phone use scenarios, i.e. hand-held
and hands-free scenarios. The geometry of the dual-channel micro-
phone array is fixed, and the distance between microphones is set
to 0.1 m. Thus the location of the secondary microphone is ran-
domly selected on a sphere with a radius of 0.1 m, which is centered
at the primary microphone. We randomly sample the reverberation
time (T60) between 0.2 s and 0.5 s. Following this procedure, we
simulate a set of 5000 dual-channel room impulse responses (RIRs)
for training and validation data, and another set of 846 dual-channel
RIRs for test data. We use the training set of the WSJ0 dataset [23]
as the speech corpus, which consists of 12776 utterances from 101
speakers. These speakers are split into three groups (i.e. 89, 6 and 6)
for generating training, validation and test data, respectively.

Following [24], we simulate a diffuse babble noise field. Specif-
ically, we first concatenate the utterances spoken by each of the 630
speakers in the TIMIT corpus [25], and then split them into 480
and 150 speakers for training and testing. We randomly choose 72
speech clips from 72 randomly chosen speakers, and place them on
a horizontal circle centered at the primary microphone, where the
azimuths range from 0◦ to 355◦ with a step of 5◦. The distance be-
tween the primary microphone and each of the interfering sources is
2 m.

We simulate a training set including 40000 mixtures, each of
which is created by mixing a diffuse babble noise and a randomly
sampled WSJ0 utterance convolved with a randomly selected RIR.
The signal-to-noise ratio (SNR) is randomly sampled between -5 and
0 dB. Similarly, we create a validation set consisting of 846 mixtures.
For each of four SNRs, i.e. -5, 0, 5 and 10 dB, we create a test set
including 846 mixtures. In order to mimic the head shadow effect
in hand-held scenarios, we downscale the amplitude of the speech
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Table 1. Comparisons of alternative models in STOI and PESQ. Here 3 indicates causal model, and 7 indicates noncausal model.
Test SNR -5 dB 0 dB 5 dB 10 dB # Param. CausalMetric STOI (%) PESQ STOI (%) PESQ STOI (%) PESQ STOI (%) PESQ
Unprocessed 58.71 1.49 72.08 1.73 83.53 2.04 91.41 2.38 - -
NC-CRN-PSM 85.48 2.20 90.79 2.60 93.82 2.93 95.47 3.17 12.99 M 7
NC-DC-CRN-RI 92.77 3.07 96.09 3.41 97.66 3.63 98.45 3.78 8.36 M 7
IRM 92.02 2.83 94.21 3.10 96.24 3.39 97.74 3.68 - -
PSM 94.08 3.16 96.26 3.40 97.87 3.66 98.87 3.88 - -
C-CRN-PSM 78.77 1.76 86.80 2.18 91.53 2.56 94.05 2.88 73.15 K 3
C-DC-CRN-RI 87.57 2.56 93.36 2.99 96.35 3.30 97.74 3.53 290.44 K 3
C-DC-CRN-RI-P1 86.88 2.54 93.08 2.97 96.16 3.26 97.63 3.46 124.96 K 3
C-DC-CRN-RI-P2 87.13 2.56 93.10 2.98 96.14 3.27 97.62 3.47 113.68 K 3
C-DC-CRN-RI-P3 86.64 2.52 92.89 2.95 96.07 3.26 97.61 3.47 108.77 K 3
C-DC-CRN-RI-P4 86.63 2.49 92.85 2.91 96.03 3.22 97.59 3.44 106.21 K 3
C-DC-CRN-RI-P5 86.63 2.48 92.86 2.90 96.07 3.20 97.65 3.43 104.76 K 3
C-DC-CRN-RI-P6 86.45 2.51 92.64 2.94 95.88 3.27 97.47 3.51 103.07 K 3

signal at the secondary channel prior to mixing, where the down-
scaling ratio is randomly sampled between -10 and 0 dB. Such a
data simulation method accounts for various ways of holding a mo-
bile phone, which is more robust than using close-talk inter-channel
relative transfer functions [8].

The models are trained on 4-second segments using the AMS-
Grad optimizer [26] with a minibatch size of 16. The learning rate
is initialized to 0.001, which decays by 0.98 every two epochs. The
validation set is used for both selecting the best model among dif-
ferent epochs and performing the pruning sensitivity analysis. Other
training configurations are the same as [8]. For structured pruning,
the initial values of λ1 and λ2 (see Eq. (1)) are empirically set to 1
and 0.1, both of which decay by 10% every pruning iteration. The
tolerance value α for sensitivity analysis is set to 0.02.

3.2. Experimental results

Table 1 shows comprehensive comparisons among alternative mod-
els in terms of STOI and PESQ, in which the numbers represent the
averages over the test set in each condition. The proposed models
with noncausal and causal DC-CRNs are represented by “NC-DC-
CRN-RI” and “C-DC-CRN-RI”, respectively. The pruned DC-CRN
model for the k-th iteration is denoted as “C-DC-CRN-RI-Pk”. In
addition, “C-CRN-PSM” represents the approach in [8], and “NC-
CRN-PSM” a noncausal version of it. In the noncausal CRN, the
numbers of output channels for the layers in the encoder are changed
to 16, 32, 64, 128 and 256 successively, and those for each layer in
the decoder to 128, 64, 32, 16 and 1 successively. The two-layer
LSTM is replaced by a two-layer BLSTM, of which each layer con-
tains 512 units in each direction.

We can see that that our proposed approach substantially outper-
forms the approach in [8] in terms of both STOI and PESQ. At -5 dB
SNR, for example, “NC-DC-CRN-RI” yields a 7.6% STOI improve-
ment and a 0.89 PESQ improvement over “NC-CRN-PSM”. Simi-
lar improvements are observed for “C-DC-CRN-RI” over “C-CRN-
PSM”. Moreover, we compare the proposed approach with two ideal
masks, i.e. the PSM and the ideal ratio mask (IRM). As presented
in Table 1, our noncausal enhancement system (“NC-DC-CRN-RI”)
produces higher STOI and PESQ than the IRM, and slightly lower
STOI and PESQ than the PSM. In addition, our pruning method sub-
stantially compress the model size without significantly sacrificing
the performance. As shown in Table 1, the causal DC-CRN orig-
inally has 290.44 K parameters. After 6 iterations of pruning, the
number of parameters in the DC-CRN is reduced to 103.07 K, which
is comparable to that of the CRN in [8], i.e. 73.15 K.

In Table 2, we conduct an ablation study to examine the effects
of dense connectivity in the DC-CRN. Three variants of the causal
DC-CRN are created: (i) replacing the DC block based skip path-
ways by skip connections as in [8]; (ii) replacing each DC block in

Table 2. Effects of dense connectivity at -5 dB SNR.
Test SNR -5 dB # Param.Metric STOI (%) PESQ SNR (dB)
Unprocessed 58.71 1.49 -5.03 -
C-DC-CRN-RI 87.57 2.56 8.61 290.44 K
− DCSkip (i) 87.23 2.53 8.49 253.32 K
− DCED (ii) 86.26 2.42 8.02 218.69 K
− DCSkip − DCED (iii) 82.77 2.10 6.37 181.57 K

Table 3. Investigation of inter-channel features for magnitude- and
complex-domain approaches. “ICFs” represent the inter-channel
features.

Test SNR -5 dB DomainMetric STOI (%) PESQ SNR (dB)
Unprocessed 58.71 1.49 -5.03 -
C-CRN-PSM w/ ICFs 78.77 1.76 5.13 Magnitude
C-CRN-PSM w/o ICFs 76.14 1.67 4.56 Magnitude
C-DC-CRN-RI w/ ICFs 87.64 2.56 8.44 Complex
C-DC-CRN-RI w/o ICFs 87.44 2.56 8.61 Complex

the encoder and the decoder by a corresponding gated convolutional
or deconvolutional layer, as in [13]; (iii) doing both (i) and (ii). We
can observe that all these variants underperform the proposed causal
DC-CRN, which suggests the effectiveness of dense connectivity.
For example, STOI decreases by 1.31% and PESQ by 0.14, when
dense connectivity in the encoder and the decoder is removed.

We now investigate the inclusion of inter-channel features for
both magnitude- and complex-domain approaches. As shown in Ta-
ble 3, the inclusion of inter-channel features significantly improves
STOI and PESQ for the magnitude-domain approaches. For the
complex-domain approach (i.e. our approach), we use the STFTs of
the inter-channel noisy signal difference and summation as the inter-
channel features, similar to the approach in [8]. With multi-channel
complex spectral mapping, the explicit use of these inter-channel
features does not produce performance gain, as shown in Table 3.
This suggests that inter-channel features can be captured implicitly
through a DNN that is trained for multi-channel complex spectral
mapping, which is consistent with [16] for speech dereverberation.

4. CONCLUSION

We have proposed a novel framework for real-time speech enhance-
ment on dual-microphone mobile phones. The framework employs
a causal DC-CRN to perform dual-channel complex spectral map-
ping, which leverages both spectral and spatial cues in dual-channel
complex-domain inputs. In addition, we apply iterative structured
pruning to the DC-CRN, which yields a low-latency and memory-
efficient enhancement system that is amenable to real-time process-
ing on mobile phones. Evaluation results show that the proposed ap-
proach substantially outperforms an earlier approach to dual-channel
speech enhancement for mobile phones, in terms of both STOI and
PESQ.
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