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ABSTRACT
In mobile speech communication, the quality and intelligibility of
the received speech can be severely degraded by background noise
if the far-end talker is in an adverse acoustic environment. Therefore,
speech enhancement algorithms are typically integrated into mobile
phones to remove background noise. In this paper, we propose a
novel deep learning based framework for real-time speech enhance-
ment on dual-microphone mobile phones in a close-talk scenario.
It incorporates a convolutional recurrent network (CRN) with high
computational efficiency. In addition, the framework amounts to a
causal system, which is necessary for real-time processing on mo-
bile phones. We find that the proposed approach consistently out-
performs a deep neural network (DNN) based method, as well as
two traditional methods for speech enhancement.

Index Terms— convolutional recurrent network, close-talk sce-
nario, dual-microphone mobile phone, real-time speech enhance-
ment

1. INTRODUCTION

Mobile speech communication has become an increasingly impor-
tant application as mobile phones are extensively used. The quality
and intelligibility of the received speech can be severely degraded by
background noise if the far-end talker is in an adverse acoustic envi-
ronment. In order to attenuate background noise from noisy speech
signals, speech enhancement algorithms have been integrated into
most mobile phones. Typically, a small microphone array including
from two to four microphones is deployed in mobile phones to yield
better enhancement performance. In a typical dual-microphone con-
figuration, a primary microphone is placed on the bottom of mobile
phones, and a secondary microphone is deployed on the top. In this
study, we focus on speech enhancement for such commonly-used
dual-microphone mobile phones in a close-talk scenario, where a
speech signal is picked up with small distance between the primary
microphone and the human mouth.

In the last decade, various algorithms have been developed for
dual-microphone speech enhancement. Yousefian et al. [1] designed
an approach that uses the dissimilarity between the power of received
signals in the two channels, i.e. the inter-microphone power level
difference (PLD), as a criterion for noise reduction. Their results
show that the approach improves speech quality. In [2], the inter-
microphone PLD is utilized to estimate the power spectral density of
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the noise, which amounts to a spectral gain function. Subsequently,
the spectral gain function is applied to the noisy spectrum to derive
the enhanced spectrum. In this method, it is assumed that the diffuse
noise field is homogeneous and the PLD between the clean speech
signals picked up by the two microphones is sufficiently large. An-
other approach is to use the power level ratio (PLR) of the signal
received by the primary microphone to that by the secondary micro-
phone [3]. Based on the PLR, a spectral gain function is calculated
using the sigmoid function. The experimental results show that the
algorithm yields comparable performance with the methods in [1]
and [2], while it is more computationally efficient. More recently,
Fu et al. [4] utilized the inter-microphone posteriori signal-to-noise
ratio difference to estimate the speech presence probability (SPP).
The estimated SPP is subsequently used to derive a noise correla-
tion matrix estimator, which yields a multichannel minimum vari-
ance distortionless response (MVDR) filter. Other related studies
include [5], [6] and [7].

In recent years, speech enhancement has been formulated as
supervised learning, inspired by the concept of time-frequency (T-
F) masking in computational auditory scene analysis (CASA) [8].
Many supervised speech enhancement algorithms have been devel-
oped, in which the discriminative patterns within speech or noise
signals are learned from training data. In 2013, Wang and Wang [9]
first introduced DNNs to address supervised speech enhancement.
For dual-microphone mobile phones, López-Espejo et al. [10] em-
ployed a DNN to perform noise reduction, where the DNN is trained
to predict a binary mask from the log-Mel features of the noisy sig-
nals picked up by the two microphones. The estimated mask is used
for spectral reconstruction by the truncated-Gaussian based impu-
tation algorithm. In a more recent study [11], they trained a DNN
to map from the log-Mel features of noisy speech to those of back-
ground noise. The estimated log-Mel features of the noise, along
with the noisy signal at the primary channel, are used to obtain the
log-Mel features of enhanced speech through a vector Taylor series
feature compensation method. Subsequently, the enhanced log-Mel
features are transformed into the cepstral domain, prior to being fed
into a speech recognizer for evaluation. Their results show that the
DNN-based approach significantly outperforms several representa-
tive traditional algorithms in terms of word accuracy.

Motivated by our recent study [12] on CRNs, we propose a
novel framework for dual-microphone speech enhancement on mo-
bile phones, where a CRN is employed to predict the phase sensitive
mask (PSM) [13] [14]. The proposed model leads to a causal system,
which is necessary for real-time processing. Moreover, the CRN is
computationally efficient, and thus is amenable to mobile phone ap-
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Fig. 1. Illustration of the dual-channel signal model.
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Fig. 2. Overview of the dual-channel speech enhancement system.

plications. In order to resynthesize the time-domain waveforms, we
propose to use the phase of noisy signal difference between the pri-
mary channel and the secondary channel. In addition, we propose
to use both intra-channel and inter-channel features as the CRN in-
put. We find that the proposed approach substantially outperforms a
DNN-based method that is similar to [10], as well as two traditional
methods for speech enhancement.

The rest of this paper is organized as follows. We provide a
detailed description of our proposed approach in Section 2. The ex-
perimental setup and results are presented in Section 3. Section 4
concludes this paper.

2. ALGORITHM DESCRIPTION

2.1. Problem formulation

Let ym(k), sm(k) and nm(k) denote noisy speech, clean speech
and background noise, respectively, where m is the channel index.
Specifically, m = 1 refers to the primary channel, and m = 2 the
secondary channel. We model the signals as in [2]:

y1(k) = s1(k) + n1(k) = s(k) + n1(k) (1)
y2(k) = s2(k) + n2(k) = s(k) ∗ h12(k) + n2(k) (2)

where s(k) denotes target clean speech, and ‘*’ the convolution
operation. The acoustic transfer function of clean speech between
the two channels is represented by H12(z), and the corresponding
impulse response by h12(k). In a close-talk scenario, where the
distance between the primary microphone and the human mouth is
small, we regard clean speech at the primary channel as target clean
speech, i.e. s1(k) = s(k). Fig. 1 depicts the dual-channel signal
model.

In this study, we treat the dual-microphone enhancement as su-
pervised learning, as shown in Fig. 2. We first extract features from
the noisy signals picked up by the two microphones, which are sub-
sequently fed into a CRN to predict a T-F mask. The estimated T-F
mask is applied to the magnitude spectrogram of noisy speech at the

primary channel. The resulting enhanced magnitude spectrogram is
then combined with the noisy phase to resynthesize the time-domain
waveform of enhanced speech.

2.2. Intra-channel and inter-channel features

We assume that all signals are sampled at 16 kHz. A 20-ms Ham-
ming window is utilized to segment a signal into a set of time frames,
with a 50% overlap between adjacent frames. A straightforward
idea is to use the noisy magnitude spectrograms at the two chan-
nels, i.e. |Y1| and |Y2|, as input features, where Y1 and Y2 are 161-
dimensional spectra corresponding to a 320-point short-time Fourier
transform (STFT). The inter-microphone correlations, however, may
not be sufficiently leveraged. In particular, the inter-microphone cor-
relations between the phase spectra are not utilized. To alleviate this
problem, we propose to additionally include the magnitude spectrum
of the noisy signal difference, as well as that of the noisy signal sum-
mation, i.e. |Y1 − Y2| and |Y1 + Y2|. These inter-channel features,
|Y1−Y2| and |Y1+Y2|, implicitly incorporate phase correlations be-
tween channels. In other words, the intra-channel features (i.e. |Y1|
and |Y2|) and the inter-channel features (i.e. |Y1−Y2| and |Y1+Y2|)
are concatenated, and are treated as four different input channels of
the CRN. We find that the inclusion of inter-channel features signif-
icantly improves objective intelligibility and perceptual quality.

2.3. Training target and waveform resynthesis

In this study, we use the PSM [13] [14] as the training target, which
incorporates the phase information. It is typically defined on the
noisy speech spectrum and the clean speech spectrum at the primary
channel as follows:

PSM(t, f) = Re
{ |S1(t, f)|ejθs1
|Y1(t, f)|ejθy1

}
=
|S1(t, f)|
|Y1(t, f)|

cos(θs1 − θy1)
(3)

where |S1(t, f)| and |Y1(t, f)| denote spectral magnitudes of clean
speech and noisy speech within a T-F unit at time frame t and fre-
quency channel f , respectively, and θs1 and θy1 the phases of clean
speech and noisy speech within the unit, respectively. Re{·} com-
putes the real component.

Once the PSM is estimated, we apply it to the magnitude spec-
trogram of the noisy speech at the primary channel. Typically,
the enhanced magnitude spectrogram is combined with the phase
spectrogram of the corresponding noisy speech, as shown in Fig. 2.
Based on the analysis of the acoustical environment in [2], we as-
sume that the PLD between the clean speech signals at the two
channels is larger than that between the noise signals. In this case,
the noisy signal difference between channels, i.e. y1− y2, may have
a higher signal-to-noise ratio (SNR) than y1, and thus have a cleaner
phase. In our experiments, we find that using the phase of y1−y2 to
resynthesize waveforms improves both objective intelligibility and
perceptual quality over using the phase of y1. Note that the PSM
should be redefined in this case:

PSM(t, f) = Re
{ |S1(t, f)|ejθs1
|Y1(t, f)|ejθy1−y2

}
=
|S1(t, f)|
|Y1(t, f)|

cos(θs1 − θy1−y2)
(4)

where θy1−y2 represents the phase of y1 − y2. For convenience, we
refer to PSM-1 as the PSM defined in Eq. 3, and PSM-2 as the PSM
defined in Eq. 4.
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Fig. 3. Illustration of the CRN architecture.

Table 1. Architecture of our proposed CRN. Here T denotes the
number of time frames in the spectrogram.

layer name input size hyperparameters output size
conv2d 1 4 × T × 161 1 × 3, (1, 2), 8 8 × T × 80
conv2d 2 8 × T × 80 1 × 3, (1, 2), 8 8 × T × 39
conv2d 3 8 × T × 39 1 × 3, (1, 2), 16 16 × T × 19
conv2d 4 16 × T × 19 1 × 3, (1, 2), 16 16 × T × 9
conv2d 5 16 × T × 9 1 × 3, (1, 2), 16 16 × T × 4
reshape 1 16 × T × 4 - T × 64

lstm 1 T × 64 64 T × 64
lstm 2 T × 64 64 T × 64

reshape 2 T × 64 - 32 × T × 4
deconv2d 5 32 × T × 4 1 × 3, (1, 2), 16 16 × T × 9
deconv2d 4 32 × T × 9 1 × 3, (1, 2), 16 16 × T × 19
deconv2d 3 32 × T × 19 1 × 3, (1, 2), 8 8 × T × 39
deconv2d 2 16 × T × 39 1 × 3, (1, 2), 8 8 × T × 80
deconv2d 1 16 × T × 80 1 × 3, (1, 2), 1 1 × T × 161

2.4. Convolutional recurrent network

In [12], we have recently designed a convolutional recurrent net-
work, which combines convolutional layers and recurrent layers. It
benefits from the feature extraction capability of convolutional neu-
ral networks (CNNs) and the temporal modeling capability of recur-
rent neural networks (RNNs). With an encoder-decoder architecture,
the CRN encodes the input features into a higher-dimensional latent
space, and then models the sequence of latent feature vectors via two
long short-term memory (LSTM) layers. The output sequence of the
LSTM layers is subsequently converted back to the original input
size by the decoder. Specifically, the encoder comprises five con-
volutional layers, and the decoder five deconvolutional layers. To
improve the flow of information and gradients throughout the net-
work, skip connections are used to concatenate the output of each
encoder layer to the input of the corresponding decoder layer. In
the CRN, all convolutions and deconvolutions are causal, so that no
future information is used for mask estimation at each time frame.
Fig. 3 illustrates the CRN in [12].

For mobile phone applications, high computational efficiency
is required for real-time processing with low latency. In addition,
a small memory footprint is desired. In order to achieve a com-
putationally efficient model, we prune the CRN in [12] simply by
reducing the number of kernels. Additionally, unlike the 2 × 3
(time × frequency) kernels in [12], we use a kernel size of 1 × 3,
without degrading the performance.

Table 1 provides a detailed description of our proposed CRN
architecture. The input size and the output size of each layer are
specified in featureMaps × timeSteps × frequencyChannels format,

and the layer hyperparameters in (kernelSize, strides, outChannels)
format. Note that the number of feature maps in each decoder layer is
doubled by the skip connections. We employ exponential linear units
(ELUs) [15] in all convolutional and deconvolutional layers except
the output layer. In the output layer, we use the sigmoid nonlinearity
for mask estimation. In this study, the PSM is clipped to between 0
and 1, to fit the range of the sigmoid function.

3. EXPERIMENTS

3.1. Experimental setup

3.1.1. Data preparation

In our experiments, we use the WSJ0 SI-84 training set [16] which
includes 7138 utterances from 83 speakers (42 males and 41 fe-
males). Of these speakers, we set aside 6 speakers (3 males and 3
females) as untrained speakers for test. In other words, we train the
models with the 77 remaining speakers. We consider the target clean
speech the same as the clean speech signal picked up by the primary
microphone, i.e. s1. The clean speech at the secondary microphone,
s2, is generated by the acoustic path h12 from the primary channel
to the secondary channel. We model the inter-channel acoustic path
h12 as a time-invariant finite impulse response (FIR) filter, whose co-
efficients are trained by minimizing the mean squared error (MSE),
i.e. E[e2(k)], where

e(k) = s
(tr)
2 (k)−

p∑
l=0

ĥ12(l)s
(tr)
1 (k − l). (5)

Here p denotes the order of the FIR filter, and s(tr)1 and s(tr)2 the
clean speech signals recorded by a dual-microphone mobile phone
that is mounted on a dummy head in an anechoic environment. In
our experiments, we use six different mobile phones, which amount
to six different inter-channel acoustic paths. Of them, we randomly
select one for the test set, and use the other five for the training set.
Note that the distance between the two microphones is about 10 cm.

In order to simulate stereo noise signals n1 and n2, we con-
sider two different noise fields: quasi-diffuse noise and point noise.
We follow the approach in [17] to generate the quasi-diffuse noise.
Specifically, we place equally strong noise sources in a reverber-
ant room at the height of the primary microphone with azimuths
between 0◦ and 360◦ spaced by 10◦. Hence, the noise signals
at the two microphones are generated by convolving these noise
sources with a binaural room impulse response (BRIR) that is sim-
ulated through the image method [18]. Analogously, we simulate
the point noise by place a noise source at an azimuth that is ran-
domly sampled between 0◦ and 360◦ spaced by 10◦. We assume
that the mobile phone is placed vertically. For training, we use
10,000 noises, which are from a sound effect library (available at
https://www.sound-ideas.com), as noise sources. For test, we use
two highly nonstationary noises (babble and cafeteria) from an
Auditec CD (available at http://www.auditec.com).

Our training set includes 320,000 mixtures, with one half cre-
ated using quasi-diffuse noise and the other half using point noise.
To create a training mixture, we randomly selected a training utter-
ance to generate the clean speech signals at the two microphones.
A random cut from the 10,000 training noises is treated as a noise
source. The SNR at the primary channel is randomly sampled from
-5 to 5 dB with a step of 1 dB. A simulated reverberant room with the
size of 10 m × 7 m × 3 m is used to generate the BRIRs, where the
reverberation time (T60) is randomly drawn from 0.2 s to 0.3 s with
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Table 2. Comparisons of different approaches in terms of STOI and
PESQ for quasi-diffuse noise. The numbers represent the averages
over the two test noises.

metrics STOI (in %) PESQ
SNR -5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB
noisy 57.58 69.66 80.71 89.19 1.49 1.77 2.09 2.43

MMSE 52.88 65.45 76.67 85.74 1.48 1.81 2.15 2.45
MS 54.30 67.05 79.05 87.84 1.49 1.83 2.17 2.47

DNN 80.80 87.07 91.81 95.00 2.18 2.54 2.87 3.18
Prop. 92.52 94.95 96.66 97.88 2.89 3.20 3.48 3.70

Table 3. Comparisons of different approaches in terms of STOI and
PESQ for point noise.

metrics STOI (in %) PESQ
SNR -5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB
noisy 57.65 69.82 80.87 89.27 1.51 1.77 2.09 2.42

MMSE 53.08 65.47 76.63 85.83 1.50 1.83 2.15 2.45
MS 54.35 67.42 79.29 87.87 1.51 1.83 2.16 2.45

DNN 80.49 87.04 91.82 95.03 2.16 2.53 2.87 3.18
Prop. 91.81 94.68 96.54 97.83 2.85 3.17 3.45 3.68

a step of 0.02 s. Our test set comprises 150 mixtures created from
25×6 utterances of 6 untrained speakers for each noise. We use four
SNRs for the test set, i.e. -5, 0, 5 and 10 dB. Moreover, the distance
between the primary microphone and a noise source is sampled from
1 m, 1.5 m and 2 m for the training set, while it is set to 1.5 m for
the test set. In a close-talk scenario, the direct-to-reverberant ratio
(DRR) of the speech signal is high, so that the reverberation from it
can be omitted.

3.1.2. Baselines and training details

In our experiments, we compare our proposed method with three
other baselines, i.e. the MMSE-based noise estimation (MMSE) [19],
the minimum statistics (MS) approach [20] and a DNN-based ap-
proach that is similar to [10]. Both MMSE and MS are single-
channel methods that operate on the primary channel. In the DNN-
based approach, we train a three-layer DNN to predict the PSM
(i.e. PSM-1) from the noisy spectral magnitudes at the two channels
(i.e. |Y1| and |Y2|), which has a comparable model size with the
proposed CRN. The past three feature frames and the current feature
frame are concatenated into a long vector as the DNN input. From
the input layer to the output layer, the DNN has (3+1)×161×2, 64,
64, 64 and 161 units, respectively.

We train both the CRN and the DNN with the AMSGrad opti-
mizer [21]. The learning rate is set to 0.001. We use the MSE as the
objective function. The minibatch size is set to 16 at the utterance
level. Within a minibatch, all training samples are zero-padded to
have the same number of time steps as the longest sample.

3.2. Experimental results

3.2.1. Comparisons of different approaches

In our experiments, we use short-time objective intelligibility
(STOI) [22] and perceptual evaluation of speech quality (PESQ) [23]
as evaluation metrics. Tables 2 and 3 present comprehensive eval-
uations for different approaches on quasi-diffuse noise and point
noise, respectively. The best results in each case are highlighted
by boldface. On the two highly nonstationary noises for both noise
fields, the two traditional methods yield no improvements in STOI,
and relatively small improvements in PESQ over the unprocessed
mixtures. By contrast, the deep learning based methods, i.e., the
DNN and the CRN, significantly improve both STOI and PESQ
metrics. Take, for example the -5 dB SNR case for quasi-diffuse
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Table 4. Evaluation of the inter-channels features and the phase
of noisy signal difference between channels in terms of STOI and
PESQ. The numbers represent the averages over diffuse noise and
point noise. See the text for the definitions of (i), (ii), (iii) and (iv).

metrics STOI (in %) PESQ
SNR -5 dB 0 dB 5 dB 10 dB -5 dB 0 dB 5 dB 10 dB
noisy 57.62 69.74 80.79 89.23 1.50 1.77 2.09 2.43

(i) 83.67 89.00 93.04 95.79 2.38 2.71 3.02 3.32
(ii) 86.75 91.36 94.65 96.84 2.56 2.88 3.21 2.50
(iii) 88.96 92.44 95.02 96.85 2.65 2.97 3.25 3.50
(iv) 92.17 94.82 96.60 97.86 2.87 3.19 3.47 3.69

noise. The DNN improves STOI by 23.22% and PESQ by 0.69,
while the CRN improves STOI by 34.94% and PESQ by 1.40, over
the unprocessed mixtures.

In addition, our proposed CRN-based method consistently out-
performs the DNN baseline in both metrics. In the 0 dB SNR case for
quasi-diffuse noise, for example, going from the DNN to the CRN
yields a 7.88% STOI improvement and a 0.71 PESQ improvement.
In addition, the CRN has fewer trainable parameters than the DNN,
as shown in Fig. 4.

3.2.2. The effectiveness of the inter-channel features and the phase
of noisy signal difference between channels

We evaluate the effectiveness of the inter-channel features and the
phase of noisy signal difference between channels for waveform
resynthesis. Four cases are considered: (i) intra-channel features +
the phase of y1; (ii) both intra-channel and inter-channel features +
the phase of y1; (iii) intra-channel features + the phase of y1−y2; (iv)
both intra-channel and inter-channel features + the phase of y1− y2.
As shown in Table 4, the inclusion of the inter-channel features con-
sistently improves both metrics. Moreover, the phase of y1−y2 leads
to higher STOI and PESQ scores over the phase of y1. It can be ob-
served that going from (i) to (iv) improves STOI by 8.5% and PESQ
by 0.49 at -5 dB SNR, which reveals that the use of the inter-channel
features and the phase of noisy signal difference between channels
is advantageous.

4. CONCLUSION

In this study, we have proposed a new deep learning based frame-
work for real-time speech enhancement on dual-microphone mobile
phones in a close-talk scenario. The proposed framework incorpo-
rates a computationally efficient CRN, which is trained from both
intra-channel and inter-channel features. In addition, we propose to
use the phase of noisy signal difference between channels to resyn-
thesize the waveform. The experimental results show that the pro-
posed approach consistently outperforms a DNN-based method, as
well as two traditional speech enhancement methods.
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