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Abstract

Despite successful applications of multi-channel signal pro-

cessing in robust automatic speech recognition (ASR), rel-

atively little research has been conducted on the effective-

ness of such techniques in the robust speaker recognition do-

main. This paper introduces time-frequency (T-F) masking-

based beamforming to address text-independent speaker recog-

nition in conditions where strong diffuse noise and reverber-

ation are both present. We examine various masking-based

beamformers, such as parameterized multi-channel Wiener fil-

ter, generalized eigenvalue (GEV) beamformer and minimum

variance distortion-less response (MVDR) beamformer, and

evaluate their performance in terms of speaker recognition ac-

curacy for i-vector and x-vector based systems. In addition, we

present a different formulation for estimating steering vectors

from speech covariance matrices. We show that rank-1 ap-

proximation of a speech covariance matrix based on general-

ized eigenvalue decomposition leads to the best results for the

masking-based MVDR beamformer. Experiments on the re-

cently introduced NIST SRE 2010 retransmitted corpus show

that the MVDR beamformer with rank-1 approximation pro-

vides an absolute reduction of 5.55% in equal error rate com-

pared to a standard masking-based MVDR beamformer.

Index Terms: Robust speaker recognition, beamforming, x-

vector, deep neural network

1. Introduction

Smart speaker devices such as Amazon Echo and Google Home

have gained popularity in recent years. These devices increas-

ingly include a speaker recognition component that is used for

authentication or personalized responses. However, the realiza-

tion of robust speaker recognition is still a challenging task as

distant speech signals are susceptible to distortions due to back-

ground noise and room reverberation. A natural way to enhance

robustness against noise and reverberation is to utilize multi-

channel speech enhancement techniques like beamforming as

these devices are equipped with multiple microphones.

The focus of the speaker recognition community is mainly

concerned with the monaural or single-channel case as speaker

recognition has traditionally been applied to telephone speech.

Major advances on increasing the robustness of speaker recog-

nition include the introduction of the i-vector framework based

on Gaussian mixture models (GMM/i-vector) [1], the Prob-

abilistic Linear Discriminant Analysis (PLDA) back-end [2],

Deep Neural Networks (DNNs) replacing the GMM component

[3], and recently introduced x-vectors [4] for speaker embed-

ding. X-vectors are of particular interest due to their use of in-

expensive data augmentation for increasing robustness and uti-

lization of the algorithms associated with i-vectors, e. g. PLDA

for scoring. Monaural speech enhancement techniques have

been investigated in this domain. Background noise is atten-

uated with supervised speech separation based on DNN in [5].

The methods in [6] and [7] use a deep autoencoder and long

short-term memory (LSTM) respectively to estimate clean fea-

tures and subsequently feed them to an i-vector based speaker

recognition system.

Along a related direction, remarkable progress has been

made in multi-channel speech enhancement. By introducing

DNN based T-F masking to conventional beamforming, sub-

stantial improvements have been made on robust ASR [8], [9],

[10]. The main reason behind impressive improvements is that

monaural masking leads to more accurate estimation of speech

and noise covariance matrices, the key components in the adap-

tive beamforming formulation. Motivated by its success in ro-

bust ASR, masking-based beamforming is also investigated in

robust speaker recognition. In [11], Mošner et al. studied far-

field speaker recognition in reverberant environments. In their

study, multi-channel weighted prediction error (WPE) [12] is

combined with masking-based beamforming to reduce the ef-

fect of reverberation. However this study only addresses re-

verberation effects. In real scenarios, reverberation and noise

usually occur simultaneously and they have confounding effects

that make speech enhancement substantially more challenging.

In this paper, we investigate multi-channel speaker recogni-

tion in adverse acoustic conditions where target speech is cor-

rupted by strong diffuse noise and room reverberation. Specifi-

cally, we examine different masking-based beamforming meth-

ods and evaluate their performance on the conventional i-vector

and state-of-the-art x-vector based speaker recognition systems.

Our proposed system employs rank-1 approximation to con-

struct speech covariance matrices for estimating steering vec-

tors used in the MVDR beamformer. Consistent improvements

are observed over other commonly used masking-based MVDR

beamformers in terms of speaker verification error rate.

The rest of the paper is organized as follows. In Section

2, we describe the MVDR beamformer and how to derive the

speech covariance matrix in different ways. We present our ex-

perimental setup in Section 3. We then provide evaluation re-

sults and comparisons in Section 4. Concluding remarks are

given in Section 5.

2. Multi-Channel Speech Enhancement

2.1. MVDR Beamforming

The received signals to a microphone array can be formulated

in the short-time Fourier transform (STFT) domain under the

narrow-band assumption [13]:

y(t, f) = c(f)x(t, f) + h(t, f) + n(t, f) (1)
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where x(t, f) is the STFT value of the target signal at time t

and frequency f , c(f) is the steering vector, and c(f)x(t, f),
h(t, f), n(t, f), y(t, f) respectively represent the STFT vec-

tors of the direct signal, its reverberation, noise, and received

mixture.

MVDR seeks an optimal weight vector w(f) that can be

applied to the received signals to suppress signals from non-

target directions. Concretely, the output of MVDR minimizes

the variance under the constraint that speech source signal will

not be distorted [14]:

argmin
w(f)

w(f)HΦn(f)w(f)

subject to w(f)Hc(f) = 1

(2)

where Φn(f) is the noise covariance matrix and (.)H is the

conjugate transpose operator. The closed-form solution is:

wopt(f) =
Φn(f)

−1c(f)

c(f)HΦn(f)−1c(f)
(3)

Traditionally, Φn(f) is obtained from the noise-only por-

tions of the signal using voice activity detection (VAD). Re-

cently, it is suggested that T-F masking can replace VAD to es-

timate Φn(f) more accurately [9], [10], [15]:

Φn(f) =

∑

t
(1−m(t, f))y(t, f)y(t, f)H

∑

t
(1−m(t, f))

(4)

where m(t, f) denotes the estimated T-F mask from the DNN at

time t and frequency f . The well-established method for find-

ing steering vector c(f) is by Generalized Cross Correlation

with Phase Transform (GCC-PHAT) technique which estimates

direction of arrival (DOA) of speech source [16]. Another way

is to estimate c(f) as the principal eigenvector of the speech co-

variance matrix [17], eliminating the need for DOA estimation:

c(f) = P(Φx(f)) (5)

where P(.) computes the principal eigenvector and

Φx(f) =

∑

t
m(t, f)y(t, f)y(t, f)H

∑

t
m(t, f)

(6)

is the estimated speech covariance matrix. In the ideal case,

Φx(f) is a rank-1 matrix. However this may not be valid in

the presence of reverberation or imperfect mask estimation. In

[15], the speech covariance matrix is estimated by subtracting

the noise covariance matrix from the covariance matrix of noisy

speech with the assumption that they are uncorrelated:

Φx(f) = Φy(f)−Φn(f) (7)

Φy(f) =
1

T

T
∑

t

y(t, f)y(t, f)H (8)

where Φy(f) is the spatial covariance matrix of noisy speech

and T is the total number of frames. It has been observed in

[17] that this derivation results in more accurate estimation of

the steering vector.

2.2. Rank-1 Approximation of Speech Covariance Matrix

Originally proposed in [18] for multi-channel Wiener filtering

and later applied to robust ASR [19], [20], the speech covari-

ance matrix can be approximated using the decomposition tech-

nique:

Φx(f) = Φr1(f) +Φz(f) (9)

where Φr1(f) is a rank-1 matrix and Φz(f) is the remainder

matrix. Several solutions are suggested for estimating Φr1(f),
namely, first column decomposition, eigenvalue decomposition

(EVD) and generalized eigenvalue decomposition (GEVD). In

GEVD, we jointly diagonalize Φx(f) (Eq. (6)) and Φn(f):

{

Q(f)HΦx(f)Q(f) = Λ(f)

Q(f)HΦn(f)Q(f) = IM
(10)

where IM is an M×M identity matrix, M is number of micro-

phones, and Λ(f) = diag{λ1(f), . . . , λM (f)}, assuming that

eigenvalues are sorted in the descending order. Then, Eq. (9)

can be written as:

Φx(f) = Q(f)−Hdiag{λ1(f), λ2(f), . . . , λM (f)}Q(f)−1

Φr1(f) = Q(f)−Hdiag{λ1(f), 0, . . . , 0}Q(f)−1

Φz(f) = Q(f)−Hdiag{0, λ2(f), . . . , λM (f)}Q(f)−1

(11)

Φz(f) can be interpreted as noise, or it can be considered as

residual error and be ignored. Here, by ignoring Φz(f), Φx(f)
simplifies to [19]:

Φr1(f) =
tr(Φx(f))

tr(q1(f)q1(f)H)
q1(f)q1(f)

H
(12)

where q1(f) is the first column of Q−H(f) and tr(.) is the

trace operator. Applying Eq. (5) to the approximated rank-1

Φx(f) yields an estimate of the steering vector c(f), which

can be more accurate since the rank-1 assumption is valid.

2.3. T-F Mask Estimation

Accurate T-F mask estimation is pivotal in the performance of

a masking-based beamformer. We choose the ideal ratio mask

(IRM) as the training target in this study. The IRM is defined as

the ratio between the energy of clean and noisy speech at each

T-F unit [21]. The IRM can be defined in different T-F domains.

We opt to use the IRM in the magnitude spectrogram domain:

IRMi(t, f) =
|ci(f)x(t, f)|

|ci(f)x(t, f)|+ |hi(t, f) + ni(t, f)|
(13)

where i indicates the microphone index. In the IRM formu-

lation, we treat the direct sound as the target signal and the

remaining components as interference. The IRM estimation

with supervised learning has been extensively used in monau-

ral speech enhancement and robust ASR. See [14] for a recent

review.

3. Speaker Verification and Experimental
Setup

We conduct our experiments using the NIST retransmitted cor-

pus [11]. This corpus consists of a subset of NIST SRE 2010

including 459 utterances from 150 female speakers with three
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Table 1: Results (%EER) for the real RIR dataset. First four rows are experiments on individual microphones and only “Best” and

“Worst” performing microphones are reported. “Rank-1” indicates speech covariance matrix reconstructed by rank-1 approximation.

SNR 0 dB 5 dB 10 dB 15 dB Average

i-vector x-vector i-vector x-vector i-vector x-vector i-vector x-vector i-vector x-vector

Unprocessed Best Mic 35.01 25.47 24.74 17.51 17.82 12.05 12.79 8.28 22.59 15.83
Worst Mic 42.24 34.59 36.48 28.72 29.77 22.22 23.17 16.98 32.92 25.63

Estimated IRM Best Mic 29.98 23.27 22.12 16.67 15.30 11.43 11.43 8.28 19.71 14.91
Worst Mic 37.63 32.39 31.66 27.04 26.00 21.28 20.65 16.04 28.99 24.19

BeamformIt 38.05 28.09 29.04 20.44 20.86 14.99 13.42 10.80 25.34 18.58
PMWF-0 35.85 25.47 26.42 18.13 18.03 13.10 14.05 9.12 23.59 16.45
PMWF-0 Rank-1 30.92 22.54 20.86 14.36 14.36 9.85 11.53 8.49 19.42 13.81
GEV-BAN 25.89 16.98 16.56 10.80 11.01 8.07 8.18 5.98 15.41 10.46
MVDR I (Eq. 6) 33.33 25.47 23.79 17.30 15.62 11.53 10.59 8.39 20.83 15.67
MVDR II (Eq. 7) 27.15 17.61 17.92 11.95 11.84 8.70 8.60 6.50 16.38 11.19
MVDR Rank-1 26.10 16.25 16.46 10.80 10.59 7.97 7.97 5.45 15.28 10.12

or five minute durations. The recordings are retransmitted by a

loudspeaker in a highly reverberant environment1. Six micro-

phones are placed for beamforming purposes. Their placement

forms an ad-hoc microphone array with large inter-microphone

distance in the range of 2.80 to 7.62 meters. In order to incorpo-

rate a typical microphone array with a small inter-microphone

distance operating at reasonable reverberation times in our ex-

periments, we create simulated room impulse responses (RIRs)

using the Image method2 and convolve them with the anechoic

version of the NIST retransmitted dataset. We use the algo-

rithm described in [22] to sample parameters of RIR simulation

that is designed for one speaker and reverberation time (T60) in

the range of 0.4 to 0.8 seconds for 6 linearly-arranged micro-

phones with inter-microphone distance less than 0.09 meters.

We denote the first dataset as the real RIR and second one as

the simulated RIR.

To create diffuse babble noise, 10 speakers are first ran-

domly selected from the TIMIT dataset, and then mixed to-

gether to generate 80-minute babble noise, which is split into

two halves for training and testing. Following [23], babble noise

is made diffuse under a spatial coherence constraint induced by

the array geometry. Finally, we add the diffuse babble noise to

the real and simulated RIR dataset. The sampling rate is 8 kHz.

We train a BLSTM for IRM estimation. The input feature is

129-dimensional log magnitude extracted using a frame length

of 32 ms and a hop size of 8 ms. Global mean-variance nor-

malization is performed on the features. The network includes

4 hidden layers, each with 300 units in each direction, and an

output layer with 129 sigmoidal units. The cost function is

mean squared error. A subset of NIST SRE 2008 is selected

as training set which includes three- to five-minute telephone

or interview conversations from female speakers. Same simu-

lation procedure is used to create RIRs with T60 between 0.2

and 1 seconds. Diffuse babble noise is then added with signal-

to-noise ratios (SNR) ranging from 0 dB to 15 dB. The total

duration of the training data is 140 hours.

I-vectors [24] and x-vectors [4] serve as our baseline

speaker recognition systems. Both of them are implemented in

Kaldi [25]. I-vectors include a standard pipeline of feature ex-

traction, a universal background model (UBM) based on GMM,

1The authors did not report reverberation time (T60), but it can be
inferred by listening.

2Available at https://github.com/ehabets/RIR-Generator.

i-vector extractor and PLDA. The i-vector training dataset con-

tains 86,629 utterances from the PRISM dataset [26]. Twenty-

dimensional MFCC feature is calculated every 10ms, based on

a 20ms window length. Delta and acceleration features are also

added to create a 60-dimensional feature. Cepstral mean nor-

malization (CMN) is applied for a sliding window of 3s. The

default energy-based VAD in Kaldi is applied. The number of

full-covariance GMM components for UBM is set to 2048, and

UBM is trained on a portion of training data (15,600 utterances).

I-vectors with 600 dimensions are centered and projected to a

200 dimensional space by linear discriminant analysis (LDA)

prior to PLDA scoring.

We use i-vector training data for x-vector training and aug-

ment it by adding two replicas from reverberation and babble

noise. It is shown in [4] that data augmentation significantly

improves speaker embedding performance. The reverberation

replica is generated by convolving small or medium room RIRs

from the OpenSRL dataset with clean training utterances. The

babble noise replica is generated by 3-7 utterances from the

MUSAN Babble dataset [27] and then mixed with training data

with SNR in the range of 6-13 dB. We select 128,000 utterances

randomly from both replicas and add to the x-vector training

dataset. For training DNN embeddings, we remove those utter-

ances that are less that 500 frames and those speakers that have

less than 8 utterances. Totally, 169,660 utterances are gener-

ated and they include 5,565 speakers and 10,381 hours of data.

Features are from a 23-channel Mel filterbank with the 25ms

frame length and a 10ms frame shift. Similar to i-vectors, we

apply CMN per utterance with the 3s sliding window and use

the same VAD. X-vectors are subject to length-normalization

before PLDA scoring.

4. Results and Discussion

Evaluation results for speaker verification are reported in terms

of equal error-rate (EER). With the i-vector, we achieve 2.5%

EER for clean test data (anechoic and without babble noise),

and this number is reduced to 1.88% for the x-vector.

For a comprehensive comparison, we include other popular

beamforming techniques in our experiments. Weighted delay-

and-sum beamformer is implemented by using the BeamformIt

toolkit [16], where the DOA estimate is obtained from GCC-

PHAT. We also utilize parameterized multi-channel Wiener fil-

ter with parameter β (PMWF-β), which is describe in [28] and
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Table 2: Results (%EER) for the simulated RIR dataset. See Table 1 caption for notations.

SNR 0 dB 5 dB 10 dB 15 dB Average

i-vector x-vector i-vector x-vector i-vector x-vector i-vector x-vector i-vector x-vector

Unprocessed Best Mic 18.87 9.22 10.69 4.61 6.50 3.15 5.03 2.83 10.27 4.95
Worst Mic 20.02 10.90 11.53 5.14 7.23 3.67 5.35 3.04 11.03 5.69

Estimated IRM Best Mic 12.47 7.23 7.34 4.61 5.14 3.46 4.40 2.94 7.34 4.56
Worst Mic 14.26 7.86 8.28 4.82 5.77 3.67 4.72 3.25 8.26 4.90

BeamformIt 18.45 10.06 10.59 5.14 6.92 3.25 5.03 2.62 10.25 5.27
PMWF-0 11.01 5.98 6.39 3.67 4.61 2.94 4.19 2.62 6.55 3.80
PMWF-0 Rank-1 6.92 4.30 4.30 2.83 3.35 2.31 3.35 2.20 4.48 2.91
GEV-BAN 6.39 4.19 4.09 2.83 3.46 2.31 3.25 2.10 4.30 2.86

MVDR I (Eq. 6) 10.06 5.24 5.24 3.46 4.09 2.73 3.56 2.73 5.74 3.54
MVDR II (Eq. 7) 7.44 4.51 4.61 3.35 3.77 2.73 3.56 2.62 4.85 3.30
MVDR Rank-1 6.60 4.61 4.40 3.04 3.46 2.52 3.25 2.41 4.43 3.14

later combined with T-F masking in [29], [30]. It is shown in

[28] that by setting the parameter β = 0, PMWF-0 is tightly

related to the MVDR beamformer. However, reference micro-

phone selection is needed for PMWF-0. In this work, this is

done by summating the estimated mask at each microphone

over time and frequency and choosing the microphone with the

largest summation [17]. Lastly, Generalized Eigenvalue beam-

former with Blind Analytical Normalization post filter (GEV-

BAN) described in [9], [31] is employed. All beamformers

share the same mask estimator and we combine the estimated

masks using median pooling before computing the speech and

noise covariance matrices.

Table 1 shows the results of our experiments for the real

RIR dataset. MVDR I and MVDR II refer to the MVDR beam-

former which its speech covariance matrix derived using Eq. (6)

and Eq. (7), respectively. In terms of the two speaker verifica-

tion systems, the x-vector outperforms the i-vector in all cases.

Note that although the x-vector is trained with 6-13 dB noisy ut-

terances, the x-vector shows robustness to low SNR conditions.

We observed that applying ratio masking for monaural

speaker verification leads to a consistent improvement. Nev-

ertheless, error reduction of multi-channel speaker recognition

is greater, especially at low SNRs. For example, using x-vector

in 0 dB SNR, the result for the best performing microphone

is 25.47% EER. Monaural speech enhancement reduces EER

to 23.27%. On the other hand, using the rank-1 approximated

MVDR beamformer reduces EER to 16.25%. On average, rank-

1 approximated MVDR beamformer yields 22.47% and 32.12%

relative improvement over the best monaural masking for the i-

vector and x-vector, respectively.

We also observe that using rank-1 approximation for speech

covariance matrix brings substantial improvements for both

MVDR and PMWF-0 beamformers. Comparing the average

improvements of rank-1 approximated MVDR and PMWF-0

with MVDR I and PMWF-0 for x-vector system, we observe

an absolute EER reduction of 5.55% and 2.64%, respectively.

Moreover, results obtained by MVDR II is better than MVDR

I, supporting the argument that speech covariance matrix ob-

tained by Eq. (7) leads to better steering vector estimation.

We report the results of the simulated RIR dataset in

Table 2. The same improvement can be seen with rank-1 ap-

proximation. For the x-vector system, rank-1 approximated

MVDR and PMWF-0 bring average improvement of 0.4% and

0.89% EER over MVDR I and PMWF-0, respectively. Note that

improvements are smaller compared to real RIR dataset and it

may be due to higher reverberation of real RIR dataset which

is suppressed better by rank-1 approximation. It is worth not-

ing that GEV-BAN, rank-1 approximated MVDR and PMWF-

0 have comparable results for simulated RIR dataset. This is

expected since beamformers are equivalent up to a scaling fac-

tor [13], [19]. However, the performance of rank-1 approxi-

mated PMWF-0 is worse than GEV-BAN and rank-1 approxi-

mated MVDR for real RIR dataset. This may be due to the fact

that, inter-microphone distance is large and selecting reference

microphone affects the optimal weights of the beamformer sig-

nificantly. This indicates that choosing reference microphone

can be the main reason for the poor performance of PMWF-0

and hence a better approach for selecting reference microphone

is needed. Overall rank-1 approximated MVDR beamformer

gives the best results in the real RIR dataset while GEV-BAN is

performing better in the simulated RIR dataset.

5. Concluding Remarks

To our knowledge, this is the first study that introduces multi-

channel speech enhancement to speaker recognition in order to

deal with both diffuse noise and reverberation. The enhance-

ment frontend is applied to conventional i-vector and state-of-

the-art x-vector based speaker recognition systems. Different

methods for extracting steering vectors from speech covariance

matrices for the MVDR beamformer are explored. We have

shown that speech covariance matrix reconstructed by rank-

1 approximation gives the best result in the real RIR dataset.

Combined with x-vector, rank-1 approximated MVDR reduces

the EER by 5.55% absolutely compared to a standard version.

With straightforward implementation and robustness facili-

tated by data augmentation, x-vector based speaker recognition

is a suitable substitute for i-vector based recognition. In addi-

tion, all the back-end techniques developed for i-vectors can be

directly used for the DNN embeddings, like PLDA scoring and

domain adaptation. Future research will explore training beam-

formers and DNN embeddings jointly, following the success of

such joint training in robust ASR [32].
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