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Abstract

Permutation ambiguity is a major challenge in training
monaural talker-independent speaker separation. While per-
mutation invariant training (PIT) is a widely used technique,
it functions as a ‘black box’, providing little insight into which
auditory cues lead to successful training. We introduce a new
approach to speaker separation by leveraging differences in
pitch and onset, which are both prominent cues for auditory
scene analysis. We propose pitch-based and onset-based train-
ing to resolve permutation ambiguity, assigning speakers by
their pitch frequencies and onset times, respectively. This ap-
proach offers a more explainable training strategy than PIT. We
also propose a hybrid criterion combining these cues to improve
separation performance in challenging conditions such as same-
gender speakers or close utterance onsets. Evaluation results
show that pitch and onset criteria each perform competitively
to PIT and the hybrid criterion surpasses PIT in separating two-
speaker mixtures.
Index Terms: explainable speaker separation, pitch-based
training, onset-based training, permutation invariant training.

1. Introduction
Human listeners have a remarkable ability to segregate multiple
sound sources, including multi-talker speech mixtures. Percep-
tual research in auditory scene analysis (ASA) reveals various
grouping or segregation cues, such as pitch, amplitude modula-
tion, and location [1, 2]. Traditionally, computational auditory
scene analysis (CASA) [3] performs speech separation based on
ASA principles. CASA organizes sound sources through simul-
taneous and sequential grouping by leveraging auditory cues in-
cluding common periodicity and common onset [4, 5].

Recently, the deep learning based approach has been firmly
established as the mainstream methodology for sound separa-
tion [6], resulting in dramatic performance improvement over
the traditional CASA and speech enhancement [7] approaches.
For monaural speaker separation, a DNN (deep neural network)
is trained so that its output layers are assigned to distinct speak-
ers in a multi-talker mixture. For a DNN model to effectively
separate untrained speakers, it must be talker-independent. A
major challenge in achieving talker independency is how to as-
sign output layers to the underlying speakers during training
with mixtures of a large number of speakers. With incorrect
output-speaker assignment, DNN training would not converge
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due to conflicting gradients. This is known as the permuta-
tion ambiguity problem [8, 9]. A widely adopted solution to
this problem is utterance-wise permutation invariant training
(PIT) [9]. PIT tackles permutation ambiguity by evaluating the
losses for every potential output-speaker assignment, and uses
the one with the lowest loss to train DNN models.

Since the introduction PIT for addressing permutation am-
biguity, the focus of research in speaker separation has largely
been on improving DNN architectures, with impressive perfor-
mance gains [10, 11, 12, 13, 14, 15]. Despite its effectiveness,
PIT relies on spectrogram comparisons in the loss calculation
and offers little insight into the auditory cues that are learned
during training and employed during testing. Its ‘black box’
nature makes it difficult to explain why it works, and how to
link to the large body of perceptual research in ASA. The lack
of explainability also hinders the prediction of model behavior
in untrained complex acoustic environments.

As an effort towards explainable speaker separation, this
paper proposes novel training criteria that align more closely
with auditory grouping cues. Motivated by the importance of
pitch and onset in ASA, particularly in speaker separation, we
investigate pitch-based and onset-based training methods; more
specifically, we propose to assign speaker labels consistently
according to their average fundamental frequencies1 (F0) and
onset times, respectively. In pitch-based training, a DNN model
focuses on pitch differences for speaker separation, effectively
learning to differentiate talkers based on distinct pitches. Onset-
based training separates speakers by leveraging the different
starting times of their utterances. Compared to PIT, these crite-
ria are more explainable, allowing for a closer link to psychoa-
coustics. By incorporating pitch and onset in the training phase,
we can analyze model performance in terms of pitch differences
or onset time differences, and draw comparisons with human
performance in similar conditions. This approach also helps to
access the potential limitations of auditory cues in source sepa-
ration and provides insights into mechanisms for further perfor-
mance improvement.

Additionally, we propose a hybrid criterion that combines
pitch and onset training in challenging scenarios where a single
cue is not discriminative enough. Evaluations on the standard
WSJ2-MIX dataset [8] show that pitch-based and onset-based
models perform competitively to those trained with PIT, while
the model trained with the hybrid criterion surpasses PIT in sep-
arating two-speaker mixtures.

The rest of the paper is organized as follows. Section 2
reviews related works. In Section 3, we describe a baseline sep-
aration model, pitch- and onset-based training, and the hybrid

1Pitch is a perceived attribute, while fundamental frequency is a
physical property of sound. For simplicity, we will use the two terms
interchangeably.
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Figure 1: Diagram of the proposed hybrid criterion based on the TF-GridNet architecture, divided into two distinct parts for pitch and
onset training. The outputs from each part use a shared Deconv2D layer, generating four outputs (ŝ1 and ŝ2 for onset, ŝ3 and ŝ4 for
pitch) for a two-speaker mixture. During inference, only the outputs from the onset part are utilized.

criterion. We then present the experimental setup and the eval-
uation results in Section 4 and Section 5, respectively. Finally,
we conclude the paper in Section 6.

2. Related Works
Several studies have explored the utilization of pitch and onset
cues for speaker separation and automatic speech recognition
tasks [16, 17]. Wang et al. [18] combined a separation model
with a PIT-based pitch-tracking network for multi-speaker pitch
tracking, where the estimated pitch is fed to another separation
model as an additional input for further improvement. [19] pro-
posed a method that integrates pitch tracking and speaker sep-
aration, consisting of two stages: pitch extraction from mix-
tures and speaker separation conditioned on the extracted pitch,
utilizing a conditional generative adversarial network. These
approaches, however, perform separation in distinct stages. Un-
like these methods, our work integrates pitch as a direct training
criterion within a single separation model to tackle the permuta-
tion ambiguity problem more efficiently. Furthermore, Pandey
et al. [20] introduced attentive training for extracting the target
speaker based on the earliest speaker onset, focusing on a target
speaker extraction. In contrast, our approach aims to extract all
speakers at once.

3. Algorithm Description
3.1. Baseline Separation Model

In this study, we employ the TF-GridNet [15] architecture as our
baseline separation model. TF-GridNet achieved state-of-the-
art performance across various speaker separation benchmarks.
The TF-GridNet model processes time-frequency (TF) units in a
grid-like pattern and is composed of multiple blocks. The input
to the TF-GridNet is a stack of real and imaginary (RI) compo-
nents of the mixture short-time Fourier transform (STFT). First,
the model uses a two-dimensional convolution (Conv2D) layer
to compute a embedding for each TF unit. The embeddings are
then processed by a series of blocks. Each block features three
components: the first two utilize bidirectional Long Short-Term
Memory (BLSTM) networks to process full-band spectral fea-
tures within individual frames and temporal information across
frequencies. The final component employs a self-attention mod-
ule designed to process information across frames to capture
long-range contexts. Finally, the output of the last block is pro-
cessed by a two-dimensional deconvolution (Deconv2D) to ob-

tain the predicted RI components for all speakers. Similar to
many existing supervised separation models, TF-GridNet em-
ploys the utterance-level PIT criterion for training. PIT uses
fixed output-speaker pairings for an entire utterance and selects
the pairing that minimizes the overall loss across all possible
permutations of speaker outputs [9]:

LPIT = min
ϕ∈Φ

1

N

N∑
n=1

L(Ŝn, Sϕ(n)), (1)

where Ŝn and Sϕ(n) represents the estimated and clean speech
signals for speaker n in the time domain, and L is the loss func-
tion, here employing the widely adopted scale-invariant signal-
to-distortion ratio (SI-SDR) loss [21]. Symbol Φ denotes the
set of all permutations of N speakers, with ϕ representing a
specific permutation.

3.2. Auditory-based Training

To address the permutation ambiguity problem, we propose
leveraging auditory cues of speakers for talker-independent
speaker separation. This study introduces two novel training
criteria based on speaker pitch and onset time. Assuming F01,
F02, . . . , F0N represent the fundamental frequencies of the N
speakers averaged over the utterance, we define the pitch-based
training loss function as:

LPitch =
1

N

N∑
n=1

L(Ŝn, SF0n). (2)

F0 estimation is only required during training. For F0 es-
timation, we employ a pitch tracking algorithm, specifically
RAPT [22]. RAPT, a time-domain pitch tracking method, ex-
tracts F0 information by estimating signal periodicity through
the normalized cross-correlation function. For each mixture,
we extract the F0 for each speaker’s clean speech and aver-
age the F0 over the entire utterance, excluding unvoiced frames.
In pitch-based training, output-speaker assignments follow the
average F0 order, with the first output corresponding to the
speaker with the lowest average F0 and the last output to the
speaker with the highest average F0.

Similarly, the permutation ambiguity problem can be effec-
tively resolved by utilizing onset time information of speakers,
motivated by the observation that speakers rarely start talking si-
multaneously in real-life conversations. We define onset-based
training with the following loss function:
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LOnset =
1

N

N∑
n=1

L(Ŝn, Stn), (3)

where t1, t2, . . . , tN are speaker indices arranged in ascend-
ing order according to their onset time. In onset-based train-
ing, output-speaker assignments are determined by onset order,
assigning the speaker with the earliest onset to the first DNN
output, and so on.

3.3. Combination of Pitch and Onset Cues

Employing either the proposed pitch or onset criterion, our
model is designed to distinguish speakers using a single audi-
tory cue. However, it is anticipated that this approach might un-
derperform under scenarios where speakers’ pitches are closely
matched — such as those of the same gender when utilizing
pitch-based training — or when their onset times are close,
which could challenge onset-based training. To address these
limitations, integrating pitch and onset cues can improve sep-
aration performance. We hypothesize that a model incorporat-
ing both cues will consistently surpass models trained exclu-
sively on either pitch or onset. This combined approach exploits
both pitch and onset information, enabling the model to separate
speakers more effectively, especially in situations where relying
on a single cue is insufficient.

To achieve this, we introduce a hybrid model that combines
pitch-based and onset-based training through a unified training
strategy. As illustrated in Fig. 1, the TF-GridNet architecture,
which comprises B blocks, is divided into two parts. The first
part, comprising the initial B/2 blocks, is optimized using the
pitch-based criterion, while the second part, consisting of the
remaining B/2 blocks, is trained by the onset-based criterion.
The rationale for this sequential arrangement is motivated by
the real-world observation that speakers in conversations rarely
start speaking at exactly the same moment. Consequently, the
onset-based training, applied in the latter part, acts as a decisive
cue for speaker separation.

During training, the output from the final block of the pitch-
focused part is passed through a shared Deconv2D layer, which
generates the predicted STFT components for all speakers. This
hybrid model is trained using the following loss function:

LHybrid = LPitch + LOnset. (4)

4. Experimental Setup
We evaluated our proposed training criteria using the WSJ0-
2mix and WSJ0-3mix datasets [8], both of which are estab-
lished benchmarks for assessing the performance of monaural
speaker separation. These datasets include a 30-hour training
set and a 10-hour validation set, generated by selecting ran-
dom speakers from the Wall Street Journal (WSJ0) training
set and mixing their speeches at various signal-to-noise ratios
(SNRs) ranging from 0 dB to 5 dB. To examine the perfor-
mance of onset-based training models, we introduced four ad-
ditional test sets derived from the WSJ0-2mix test data by in-
corporating speaker onset differences of 0.25s, 0.50s, 0.75s,
and 1.0s. This was done by shifting the onset of one speaker
in each test utterance by the specified durations. All audio
samples were processed at a sampling rate of 8 kHz. We did
not use any dynamic mixing techniques. Performance met-
rics reported include the signal-to-distortion ratio improvement
(∆SDR) [23], scale-invariant signal-to-noise ratio improve-
ment (∆SI-SNR) [21], perceptual evaluation of speech quality

Table 1: Average ∆SDR (dB), ∆SI-SDR (dB), PSEQ and ES-
TOI (%) of different training criteria on WSJ0-2MIX and WSJ0-
3MIX.

Method ∆SDR ∆SI-SDR PESQ ESTOI

WSJ0-2MIX
Unprocessed 0.00 0.00 1.68 56.10
PIT 23.71 23.58 4.07 97.18
Pitch Based Training 23.25 23.11 4.04 96.88

WSJ0-3MIX
Unprocessed 0.00 0.00 1.42 38.51
PIT 20.15 19.99 3.40 90.93
Pitch Based Training 19.44 19.30 3.30 89.44

(PESQ), and extended short-time objective intelligibility (ES-
TOI) [24], to measure separation performance, speech quality
and speech intelligibility, respectively.

Our preprocessing steps involved normalizing the sample
variance of each mixture segment to 1.0, followed by adjusting
the clean target sources accordingly. We utilized the STFT with
a window length of 32 ms, hop length of 8 ms, and employing a
square-root Hann window. Our model, TF-GridNet, comprised
14.5 million parameters including B = 6 blocks, a BLSTM
with 256 units, and 64 channels, with a kernel size of 4 and
stride of 1.

For training, 4-second segments were sampled from each
mixture, and the RAPT [22] algorithm was employed to extract
the pitch of clean speech signals for each speaker within the
frequency range of 60-404 Hz. During training, we apply an
energy-based voice activity detector 1 to remove silent frames
at the beginning of each utterance. We introduced variable on-
set differences during training by randomly shifting the onset
of one speaker in each sample by 0.2 to 1.2 seconds, resulting
training segments with an overlap ratio of 70% to 95%. The
models were optimized using the Adam optimizer, with gradi-
ent norms capped at 1.0. We adopted a learning schedule with a
ramp-up phase, peaking at a learning rate of 0.001 after a warm-
up period of 100K steps, as proposed in [25]. The training was
conducted on two NVIDIA A100 GPUs for approximately 8
days.

5. Evaluation Results
Table 1 compares the performance of pitch-based training with
PIT on the WSJ0-2MIX and WSJ0-3MIX datasets. For 2-
speaker mixtures, we observe that pitch-based training produces
competitive results compared to PIT, with a ∆SI-SDR of 23.11
dB, only 0.47 dB lower than PIT. For 3-speaker mixtures, the
pattern is similar, with pitch-based training yielding a ∆SI-SDR
of 19.30 dB, 0.69 dB lower than PIT.

We speculate that the performance of pitch-based training
is influenced by the pitch difference between speakers. Specif-
ically, it tends to underperform in scenarios where the aver-
age pitch difference is small, such as in same-gender mixtures.
To further investigate this, we analyzed the results for two-
speaker mixtures, categorizing them based on the pitch differ-
ence between speakers and their genders. Figure 2 illustrates
a scatter plot comparing the ∆SI-SDR values for both PIT and
pitch-based training on the WSJ0-2MIX dataset for male-male,

1Available at: https://github.com/wiseman/py-webrtcvad
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Figure 2: Comparison of ∆SI-SDR between pitch-based training and PIT on the WSJ0-2MIX dataset for male-male, female-female,
and male-female mixtures.

Figure 3: ∆SI-SDR of different training criteria based on
speaker onset differences on WSJ0-2MIX. 0.0s onset difference
indicates the original WSJ0-2MIX test set.

female-female, and male-female mixtures. We observe that
pitch-based training is on par with PIT for male-female mix-
tures, irrespective of the average pitch difference. However, in
same-gender mixtures, pitch-based training falls short of PIT’s
performance when the pitch difference is below 20 Hz. This
indicates that pitch-based training remains effective for same-
gender mixtures as well, only underperforming in scenarios
where the average pitch difference between speakers is small.

To evaluate the performance of onset-based training, we uti-
lized the WSJ0-2MIX dataset with different speaker onset dif-
ferences. Figure 3 displays the ∆SI-SDR results for different
training criteria with respect to the speaker onset differences.
Onset-based training achieves a 22.81 dB SI-SDR improvement
with a 0.0s onset difference (the original WSJ0-2MIX test set).
This performance can be attributed to the fact that utterances
in the WSJ0-2MIX mixtures do not start exactly at the same
time, typically featuring some initial silence. As the onset dif-
ference increases, even with a minimal increase to 0.25s, the
performance of onset-based training improves significantly. It
surpasses PIT in scenarios where the onset difference exceeds
0.50s.

When we combine pitch and onset-based training, it be-
comes evident that the hybrid model outperforms both the pitch-
based and onset-based models on their own. This integration

Figure 4: ∆SI-SDR scatter plot based on speaker pitch differ-
ence for pitch-onset training and pitch-based training on WSJ0-
2MIX with 1.0s onset difference.

makes the model more robust and enhances its performance
compared to when only a single criterion is used, especially in
cases where one criterion alone is insufficient for separation.
The hybrid model provides comparable results to PIT in 0.0 on-
set difference. However, it surpasses PIT’s performance when
the onset difference is greater than 0.0 seconds. Figure 4 com-
pares the performance of the combined criterion to pitch-based
training on the WSJ0-2MIX dataset with a 1.0s onset difference.
The plot indicates that the combined criterion is more effective
than pitch-based training alone, particularly when the average
pitch difference between speakers is small. With the hybrid
model, we exploit the explainability of each criterion within the
model to enhance the overall performance.

6. Conclusions
In this study, we have introduced a new approach to address
permutation ambiguity in speaker separation by leveraging au-
ditory cues, specifically pitch frequencies and onset times. By
combining pitch-based and onset-based training, our method
enhances the separation performance in challenging scenarios.
This study represents an initial step towards explainable speaker
separation. The proposed training criteria may be used to ad-
dress other tasks susceptible to permutation ambiguity, such as
DNN-based speaker diarization [26]. Future work will explore
additional grouping cues, such as vocal-tract length [2], and in-
tegrate spatial locations [27].
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