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Gated Residual Networks With Dilated Convolutions
for Monaural Speech Enhancement

Ke Tan

Abstract—For supervised speech enhancement, contextual in-
formation is important for accurate mask estimation or spectral
mapping. However, commonly used deep neural networks (DNNs)
are limited in capturing temporal contexts. To leverage long-term
contexts for tracking a target speaker, we treat speech enhancement
as a sequence-to-sequence mapping, and present a novel convolu-
tional neural network (CNN) architecture for monaural speech
enhancement. The key idea is to systematically aggregate contexts
through dilated convolutions, which significantly expand receptive
fields. The CNN model additionally incorporates gating mecha-
nisms and residual learning. Our experimental results suggest that
the proposed model generalizes well to untrained noises and un-
trained speakers. It consistently outperforms a DNN, a unidirec-
tional long short-term memory (LSTM) model, and a bidirectional
LSTM model in terms of objective speech intelligibility and quality
metrics. Moreover, the proposed model has far fewer parameters
than DNN and LSTM models.

Index Terms—Dilated convolutions, residual learning, gated lin-
ear units, sequence-to-sequence mapping, speech enhancement.

1. INTRODUCTION

ONAURAL speech separation is the task of separat-
M ing target speech from a single-microphone recording,
which may include nonspeech noise, interfering speech and
room reverberation. It has a wide range of real-world applica-
tions such as robust automatic speech recognition and hearing
aids design. In this study, we focus on monaural speech sepa-
ration from background noise, which is also known as speech
enhancement.

Monaural speech separation has been extensively studied in
the speech processing community for decades. In recent years,
speech separation has been formulated as supervised learning,
inspired by the concept of time-frequency (T-F) masking in
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computational auditory scene analysis (CASA) [40]. The ideal
binary mask (IBM) [39], which assigns 1 to a T-F unit if the
target energy within the unit exceeds the interference energy
and O otherwise, is the first training target used in supervised
speech separation. More recent training targets include the ideal
ratio mask (IRM) [43] and the phase-sensitive mask (PSM) [7],
and mapping-based targets corresponding to the magnitude or
power spectra of target speech [48].

Over the last several years, supervised speech separation has
greatly benefited from the use of deep learning. Wang and
Wang [44] first introduced deep neural networks to address
speech separation, where DNNs are trained as binary classifiers
to predict the IBM in order to remove background noise. A more
recent study has demonstrated that ratio masking yields bet-
ter speech quality than binary masking [43]. Subsequently, Xu
et al. [48] employed a DNN to learn the mapping function from
the log power spectrum of noisy speech to that of clean speech.
Their experimental results indicate that the trained DNN leads
to higher perceptual evaluation of speech quality (PESQ) [30]
scores than a traditional enhancement method.

The last decade has witnessed the tremendous success of
CNNs in the fields of computer vision and natural language
processing. A typical CNN architecture comprises a cascade of
convolutional layers, subsampling layers and fully connected
layers. Although CNNs have been used for speech separation in
recent years, none of them achieve substantial performance im-
provement over a DNN. In [19], a convolutional maxout neural
network (CMNN) is employed to estimate the IRM for speech
enhancement. Experimental results show that CMNN yields
comparable PESQ gains compared to DNN-separated speech.
Another study [26] uses a convolutional encoder-decoder net-
work (CED) to learn a spectral mapping. CED exhibits sim-
ilar denoising performance compared with a DNN and an
RNN, but its model size is much smaller. Moreover, a sim-
ilar encoder-decoder architecture is developed in [21]. Other
studies [9], [38], [24], [1], [14], [15] using CNN for mask es-
timation or spectral mapping also achieve small performance
improvements over a DNN. Recently, Fu et al. [11] have pro-
posed a fully convolutional network (FCN) for raw waveform-
based speech enhancement. In contrast to masking and map-
ping based approaches that reconstruct enhanced speech using
noisy phase, FCN performs speech enhancement in an end-to-
end manner, and allows for a straightforward mapping from
a noisy waveform to the corresponding clean waveform. An
extended study [10] follows the same framework to construct
an utterance-based enhancement model and uses short-time
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objective intelligibility (STOI) [33] as the objective function
during training. Their experimental results show 4% to 10%
STOI gains over noisy speech. Another attempt is complex
spectrogram enhancement using a CNN, i.e. estimating clean
real and imaginary spectrograms from noisy ones [8].

Generalization to untrained conditions is crucial for any su-
pervised learning task. In the case of speech enhancement,
three important aspects of generalization are speaker, noise and
signal-to-noise ratio (SNR). A simple yet effective method to
deal with noise generalization and SNR generalization is to in-
clude many different noise types and SNR levels in a training
set [3], [43]. Similarly, to tackle speaker generalization would
be to train with many speakers. However, recent studies [2], [23]
suggest that the capacity of a feedforward DNN in modeling a
large number of speakers is limited. For a DNN, a window of
consecutive time frames is typically utilized to provide tempo-
ral contexts for mask estimation or spectral mapping. Without
the ability to leverage longer term information, a DNN tends
to treat segments of training utterances as if they come from a
single speaker [2]. When exposed to a large number of training
speakers, DNN tends to mistake background noise segments
for target speech, especially when background noise includes
speech components (e.g., babble noise). As suggested in [2], it
would be better to formulate speech enhancement as a sequence-
to-sequence mapping in order to leverage long-term contexts.
With such a formulation, Chen et al. [2] proposed a recurrent
neural network (RNN) with LSTM layers to address speaker
generalization. After training with many speakers and noises,
the LSTM model works well on untrained speakers, and sig-
nificantly outperforms a DNN based model in terms of STOIL.
Earlier works [46], [45] also showed that RNNs are more effec-
tive than DNNs for speech enhancement.

In a preliminary study, we recently developed a novel gated
residual network (GRN) with dilated convolutions to address
monaural speech enhancement [34]. The proposed GRN was
inspired by recent success of dilated convolutions in image seg-
mentation [4], [49], [50]. Compared with conventional convolu-
tions, dilated convolutions expand receptive fields without loss
of resolution while retaining the network depth and the ker-
nel size. A receptive field is a region in the input space that
affects a particular high-level feature. With the formulation of
speech enhancement as a sequence-to-sequence mapping, large
receptive fields of the GRN amount to long-term contexts. Moti-
vated by recent works [6], [36] on gated convolutional networks,
gated linear units (GLUs) are additionally incorporated into the
proposed network. Compared with the LSTM model in [2], the
GRN shows better generalization capability for untrained speak-
ers at different SNR levels [34]. In this study, we further develop
the GRN architecture to elevate the enhancement performance.
The present work mainly makes the following four changes in
the approach.

First, the outputs of all the residual blocks are summated to
yield high-level features which are then fed into a prediction
module to produce an estimate. Such skip connections preserve
and integrate the knowledge learned by all the stacked residual
blocks. Second, we redesign the frequency-dilated module to
learn local spatial patterns in the T-F representation of speech

along both time and frequency directions, rather than only along
the frequency direction in [34]. Third, we replace rectified linear
units (ReLUs) [13] by exponential linear units (ELUs) [5], which
have been demonstrated to lead to not only faster convergence
but also better generalization. Fourth, we evaluate the GRN with
different training targets. Our experimental results suggest that
the GRN achieves better performance with a mapping-based
target than with a masking-based target.

Our experiments compare the proposed GRN with a DNN,
a unidirectional LSTM model and a bidirectional LSTM
(BLSTM) model. All the models are evaluated on the WSJO
SI-84 dataset [28]. We find that the proposed GRN generalizes
very well to untrained noises and untrained speakers, and it pro-
duces consistently higher STOI and PESQ scores than the DNN
and the RNNs. Moreover, the number of learnable parameters
of the GRN is one order of magnitude lower than that of the
DNN and the RNNss.

The rest of this paper is organized as follows. We introduce
the monaural speech enhancement problem in Section II. In
Section III, we describe our proposed model in detail. Ex-
perimental setup is provided in Section IV. In Section V, we
present and discuss experimental results. Section VI concludes
this paper.

II. MONAURAL SPEECH ENHANCEMENT
A. Problem Formulation

Given a single-microphone mixture y(t), the goal of monaural
speech enhancement is to estimate target speech s(t). In this
study, we focus on the scenario where target speech is corrupted
by an additive background noise. Hence, a noisy mixture can be
modeled as

y(t) = s(t) +n(t) (D

where t indexes a time sample and n(t) denotes the background
noise. Supervised speech enhancement can be formulated as
the process that maps from acoustic features of a noisy mix-
ture y(t) to a T-F mask or a spectral representation of target
speech s(t). Specifically, the input acoustic features and the
corresponding desired outputs are passed into a learning ma-
chine for training. During inference, the estimated outputs and
noisy mixture phases are fed into a resynthesizer to reconstruct
the time-domain speech waveform.

B. Training Targets

In this study, we assume that all signals are sampled at 16 kHz.
A 20-ms Hamming window is employed to segment a signal into
a set of time frames, where adjacent time frames are overlapped
by 50%. We use 161-dimensional short-time Fourier transform
(STFT) magnitude spectra as input features, which are calcu-
lated from a 320-point STFT (16 kHz x 20 ms). To demonstrate
the effectiveness of the proposed model, we use three repre-
sentative training targets, i.e. two masking-based targets and a
mapping-based target.

1) Ideal Ratio Mask: The ideal ratio mask (IRM) is a widely
used training target in supervised speech separation, which can
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Fig. 1. (Color Online). Illustration of the IRM, the PSM and the TMS for a
WSIJO utterance mixed with a babble noise at —5 dB SNR.

be regarded as a soft version of the IBM [43]:

[ sty
et )= ¢ S e+ NG @

where S(m, f)? and N(m, f)? represent speech energy and
noise energy within a T-F unit at time frame m and frequency
channel f, respectively. Fig. 1(a) depicts an example of the
IRM. In masking-based approaches for speech separation, the
estimated T-F mask is element-wise multiplied by the magnitude
spectrum of noisy speech to produce that of enhanced speech,
which is subsequently used, along with noisy phase, to recon-
struct the time-domain waveform of enhanced speech with an
overlap-add method.

2) Phase-Sensitive Mask: The phase sensitive mask (PSM)
incorporates the phase information into a T-F mask, and is de-
fined on the STFT magnitudes of clean speech and noisy speech:

_IS(m.p)|
¥ (m. f)]

where |S(m, f)| and |Y (m, f)| denote spectral magnitudes of
clean speech and noisy speech within a T-F unit, respectively,
and 0 represents the difference between the clean speech phase
and the noisy speech phase within the unit. With the inclusion of
the phase difference, the PSM has been demonstrated to yield a
higher signal-to-distortion ratio (SDR) as compared to the IRM.
Fig. 1(b) shows an example of the PSM [7]. In this study, the
PSM is clipped to between 0 and 1, to fit the range of the sigmoid
function.

3) Target Magnitude Spectrum: The target magnitude spec-
trum (TMS) of clean speech, i.e. |S(m, f)], is a standard train-
ing target in mapping-based approaches [25], [16]. An example
of the TMS is illustrated in Fig. 1(c). In mapping-based ap-
proaches, the estimated magnitude spectrum is combined with
noisy phase to produce the enhanced speech waveform.

PSM(m, f) cos 3)

III. SYSTEM DESCRIPTION
A. Dilated Convolutions

In convolutional neural networks, contextual information is
augmented typically through the expansion of the receptive
fields. One way to achieve this goal is to increase the network
depth, which decreases computational efficiency and typically
results in vanishing gradients [41]. Another way is to enlarge
the kernel size, which likewise raises computational burden
and training time. To solve this problem effectively, Yu and
Koltun [49] first proposed dilated convolutions for multi-scale
context aggregation in image segmentation. Their work is based
upon the fact that dilated convolutions can exponentially ex-
pand receptive fields without losing resolution or coverage. The
experimental results indicate their context module increases the
accuracy of segmentation systems.

Formally, a 2-D discrete convolution operator *, which con-
volves signal F' with kernel % of size (2m + 1) x (2m + 1), is
defined as

> F(s)k(t) )

s+t=p

where p,s € Z? and t € [-m,m]? N Z2. Here Z denotes the
set of integers. A dilated version of the operator *, which is
denoted by x*,, can be defined as

(Fx k)(p)= Y F(s)k(t) ©)

s+rt=p

where r denotes a dilation rate. Therefore, we refer to x,
as an r-dilated convolution. Note that conventional convolu-
tions can be regarded as 1-dilated convolutions. Analogously,
a 1-D r-dilated convolution can be defined as (F' x, k)(p) =
Y sirimp F(8)k(t), where p,s € Z and t € [-m,m]NZ.
Fig. 2 illustrates conventional and dilated convolutions.

As shown in Fig. 2, the scale of the receptive fields in con-
ventional convolutions increases linearly with the layer depth,
whereas the scale of the receptive fields in dilated convolutions
increases exponentially with the layer depth if the kernels are
applied with exponentially increasing dilation rates.

1) Time-Dilated Convolutions: Sercu and Goel [32] devel-
oped so-called time-dilated convolutions for speech recognition
by using an asymmetric version of dilated spatial convolutions
(or 2-D convolutions) with dilation in the time direction but not
in the frequency direction. In this study, we use a 1-D version of
time-dilated convolutions, where dilation is applied to temporal
convolutions (or 1-D convolutions).

2) Frequency-Dilated Convolutions: To aggregate contex-
tual information over the frequency dimension, we create dilated
spatial convolutions with kernels of size 5 x 5. The dilation is
applied to the frequency direction but not in the time direction,
and we refer to such convolutions as frequency-dilated con-
volutions. Note that, unlike the frequency-dilated convolutions
in [34], current frequency-dilated convolutions capture contexts
over both time and frequency directions.
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(b) Dilated convolutions

Fig. 2. (Color Online). Illustration of conventional convolutions and dilated
convolutions. (a) a 1-D CNN with three conventional convolutional layers.
(b) a 1-D CNN with three dilated convolutional layers, where the dilation rates
rare 1, 2 and 4, respectively. The blue unit in the top layer is treated as the
unit of interest, and the rest of the blue units indicate its receptive fields in
each layer.

B. Gated Linear Units

Gating mechanisms were first designed to facilitate the infor-
mation flow over time in an RNN [18]. Long short-term memory
in RNN, allows for long-term memory by introducing a memory
cell controlled by an input gate and a forget gate [12]. These
gates alleviate the vanishing or exploding gradient problem aris-
ing when the recurrent connections are trained with backprop-
agation through time [47], [27]. Van den Oord et al. [36] de-
veloped a multiplicative unit in the form of LSTM gates for
convolutional modeling of images:

Yy = tanh(x*Wl —|—b1) @O’(X*Wz +b2)
= tanh(vy) ® o(v2) (6)

where vi = x* Wy + by and vo = x*x Wy 4+ by. W’s and
b’s denote kernels and biases, respectively, o represents sig-
moid function, and © denotes element-wise multiplication.
Their work suggests LSTM-style gating potentially facilitates
more complex interactions by controlling the information flow
in CNNs. The gradient of LSTM-style gating is

V]tanh(vi) ® o(vq)] = tanh’(v1)Vv; © o(va)
+0'(vy)Vvy ® tanh(vy)  (7)

where tanh’(vy),0’(vs) € (0,1), and the prime symbol de-
notes differentiation. Typically, the vanishing gradient problem
arises as the network depth increases, and it becomes more se-
vere with such gating due to the downscaling factors tanh’(v; )
and ¢’ (v5). To tackle this problem, Dauphin et al. [6] introduced

| 1-D Conv, 64, kernel size =1 |

[ 1-Dconv, 64, kernel size=3 |

1-D Conv, 256, kernel size = 1 |
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(a) A common bottleneck residual block
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g gL

(b) The proposed residual block

Fig. 3. Tllustration of a common bottleneck residual block and our proposed
residual block. Note that o denotes a sigmoid function and ‘Conv’ convolution.

gated linear units (GLUs):
y=(x*W;+b;)Oo(x*xW;y+by)
=vi; ©o(vs) (8)
The gradient of the GLUs
Vvi ©®0c(ve)] = Vv @ a(vy) + 0 (va)Vva O vy (9)

includes a path Vv; ® o(vy) without downscaling (value com-
pression), allowing for the gradient flow through layers while
retaining nonlinearity.

C. Residual Learning

He et al. [17] developed a deep residual learning framework
by introducing the identity shortcuts, which dramatically alle-
viate the vanishing gradient problem. Fig. 3(a) depicts a 1-D
version of the bottleneck residual block in [17]. The bottle-
neck design decreases the network depth while maintaining the
performance. By incorporating time-dilated convolutions and
GLUs into the common bottleneck residual block, we introduce
a novel residual block shown in Fig. 3(b), where the kernel size
in the middle layer is increased to 7 to further expand receptive
fields. In addition, we replace ReLLUs with ELUs to accelerate
learning and improve the generalization performance.

D. Network Architecture

Our proposed GRN includes three modules, i.e. frequency-
dilated module, time-dilated module and prediction module.
Fig. 4 depicts the network architecture. A more detailed
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Fig. 4. Network architecture of the proposed GRN, which comprises three
modules: frequency-dilated module, time-dilated module and prediction mod-
ule. More details are provided in Table I.

description of the architecture is given in Table I. In the ta-
ble, the input sizes and the output sizes of layers are specified in
the featureMaps X timeSteps X frequencyChannels format for
2-D convolutions, and in the timeSteps x featureMaps format
for 1-D convolutions. The layer hyperparameters are shown
in the (kernelSize, dilationRate, outputChannels) format. Note
that we apply zero-padding to all the convolutions. Batch nor-
malization [20] is adopted in the time-dilated module and the
prediction module.

1) Frequency-Dilated Module: The frequency-dilated mod-
ule takes the STFT magnitude spectrum of a noisy utterance
as input. The frequency-dilated module contains four stacked
2-D convolutional layers, which are used to capture local spatial

TABLE 1
ARCHITECTURE OF THE PROPOSED GRN. RESIDUAL BLOCKS ARE SHOWN IN
PARENTHESES (SEE ALSO FIG. 3(B))

layer name input size layer hyperparameters output size
expand_dims T x 161 . 1 xT x 161

conv2d_1 1 x T x 161 5x5,(1,1),16 16 x T' x 161
conv2d_2 16 X T'x 161 5x5,(1,1),16 16 X T' x 161
conv2d_3 16 X T'x 161 5% 5,(1,2),32 32 x T x 161
conv2d_4 32X T x 161 5 X 5,(1,4),32 32 x T x 161
reshape 32x T x 161 - T X 5152
convld_l T x 5152 1,1,128 T x 128

1,1,64

7,1,64

1,1,256

1,1,64

7,2,64

1,1,256

1,1,64

7,4,64

1,1,256
convld_2 T X 64 1.1, 64 X 3 T x 256

7,8,64

1,1,256

1,1,64

7,16,64

1,1,256

1,1,64

7,32,64

1,1,256
convld_3 T x 256 1,1,256 T x 256
convld_4 T x 256 1,1,128 T x 128
convld_5 T x 128 1,1,161 T x 161

patterns in the magnitude spectrum. The dilation is applied to
the layers along the frequency direction with rates of 1, 1, 2 and
4, respectively. The features learned by the frequency-dilated
module are then reshaped to a proper dimensionality to fit 1-D
convolutions in the next module.

2) Time-Dilated Module: To model temporal dependencies,
a number of residual blocks (see Fig. 3(b)) are stacked to per-
form time-dilated convolutions. This amounts to the time-dilated
module that takes the outputs of the frequency-dilated module.
We assign the dilation rates following a sawtooth wave-like
fashion [42]: a set of residual blocks is grouped to form the
“rising edge” of the wave which has exponentially increasing
dilation rates, and two succeeding groups repeat the same pat-
tern, e.g. 1,2, 4,8, 16,32; 1, 2,4, 8, 16, 32; 1, 2, 4, 8, 16, 32.
As suggested in [49], such residual block groups enable expo-
nential expansion of the receptive field while retaining the input
resolution, which allows for aggregation of long-term contexts.
Unlike the previous version of the GRN in [34], we use a type
of skip connections (see Fig. 4) designed in the WaveNet [35].
In contrast to the time-dilated module in [34], such skip con-
nections give the next module access to the outputs of all the
residual blocks in the time-dilated module. An advantage is that
such skip connections facilitate training by improving the flow
of information and gradients throughout the network.

3) Prediction Module: After the frequency-dilated module
and the time-dilated module systematically aggregate the con-
texts in the inputs, we employ a prediction module to perform
mask estimation or spectral mapping. The prediction module
comprises three convolutional layers with size-1 kernels. Of the
three layers, two successive layers with ELUs and linear activa-
tions are responsible for cross-channel pooling and dimension
reduction. The two layers are then followed by an output layer.
There are two options for nonlinear activations in the output
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layer, depending on the training target. If we use the IRM or the
PSM as the training target, a sigmoid nonlinearity is applied to
the output layer. If we use the TMS, a softplus activation [13] is
adopted, and it is a smooth approximation to the ReLU function
and can constrain the output of a network to always be positive.

The motivation for applying dilation in the time and the fre-
quency directions separately is two-fold. First, the frequency-
dilated module extracts local features, which are used by the
time-dilated module to model temporal dependencies. This con-
figuration is similar to [1], in which a vertical convolution layer
captures local timbre information and a horizontal convolution
layer subsequently models temporal evolution. Second, the time
dimension is larger than the frequency dimension. In order to
sufficiently leverage the contexts in both directions, it may be
better to separately aggregate the contexts in the frequency di-
rection and the time direction.

IV. EXPERIMENTAL SETUP
A. Data Preparation

In our experiments, we use the WSJO SI-84 training set
which includes 7138 utterances from 83 speakers (42 males
and 41 females). Of these speakers, we set aside 6 speakers
(3 males and 3 females) as untrained speakers, and train the
models with the 77 remaining speakers. To investigate noise
generalization of the models, we utilize four test noises which
include a speech-shaped noise (SSN), a factory noise from
the NOISEX-92 dataset [37], and two highly nonstationary
noises (babble and cafeteria) from an Auditec CD (available
at http://www.auditec.com). For training, we use 10,000 noises
from a sound effect library (available at https://www.sound-
ideas.com) and the total duration is about 126 hours. Note that
the four test noises are different from the training noises.

Of the utterances from the 77 training speakers, we hold out
150 randomly selected utterances to create a validation set with
the babble noise from the NOISEX-92 dataset. Our training set
comprises 320,000 mixtures with the total duration of about
500 hours. To create a training mixture, we mix a randomly
drawn training utterance with a random cut from the 10,000
training noises at an SNR level that is randomly chosen from
{-5, -4, -3,-2,—1,0} dB.

To investigate speaker generalization of the models, we cre-
ate two test sets for each noise using 6 untrained speakers and 6
trained speakers (3 males and 3 females). One test set contains
150 mixtures created from 25 x 6 utterances of 6 trained speak-
ers, while the other contains 150 mixtures created from 25 x 6
utterances of 6 untrained speakers. We use three SNR levels for
test mixtures, i.e. —5, 0 and 5 dB. Note that all test utterances
are excluded from the training set.

B. Baselines and Training Details

In our experiments, we compare our proposed GRN with
three other baselines, i.e. a feedforward DNN, a unidirectional
LSTM model employed in [2], and a bidirectional LSTM model.
For the DNN, the LSTM and the BLSTM, a feature window of
11 frames (5 to each side) is employed to estimate one frame
of the target. From the input layer to the output layer, the DNN

t-|:6| |t:5| ﬁ H[] t|:5| t|-:4| tﬂ t|+:5| t-|:4| t|:3| t|+:|5 t|+:6|
I Input Layer I I Input Layer I I Input Layer I
I I '
LSTM, 1024  |—-—--— LSTM, 1024  |—-——-—
LSTM, 1024 F----- - LSTM, 1024 F-----
A | A |
LSTM, 1024  |—-——-— LSTM, 1024  |—-——-—
LSTM, 1024 F----- - LSTM, 1024 F-----
A | A | A |
| Output Layer | | Output Layer | | Output Layer |

| | |

t-1 t t+1

Fig. 5. An LSTM baseline with a feature window of 11 frames (5 to each
side). At each time step, the 11 input frames are concatenated into a feature
vector.

has 11 x 161, 2048, 2048, 2048, 2048, 2048, and 161 units,
respectively; the LSTM has 11 x 161, 1024, 1024, 1024, 1024,
and 161 units, respectively; the BLSTM has 11 x 161,512,512,
512, 512, and 161 units, respectively. Note that the features are
expanded by the 11-frame feature window at each time frame
for the LSTM and the BLSTM, as shown in Fig. 5.

We train the models with the Adam optimizer [22]. The initial
learning rate is set to 0.001 and halved every five epochs. We
use mean squared error (MSE) as the objective function. The
proposed GRN, the LSTM and the BLSTM are trained with a
minibatch size of 16 at the utterance level. Within a minibatch,
all samples are zero-padded to have the same number of time
steps as the longest sample. The feedforward DNN is trained
with a minibatch size of 1024 at the frame level. The best models
are selected by cross validation.

V. EXPERIMENTAL RESULTS AND ANALYSIS

A. Speaker and Noise Generalization

Tables II and III present comprehensive evaluations for dif-
ferent models and training targets on babble (‘BAB’) noise and
cafeteria (‘CAF’) noise. The numbers represent the averages
over the test samples in each case. Table II lists STOI and PESQ
scores for trained speakers, and Table III lists those for un-
trained speakers. The best scores in each case are highlighted
by boldface. Overall, regardless of the training target of choice,
the proposed GRN yields significant improvements over the un-
processed mixtures in terms of STOI and PESQ scores. In the
—5 dB SNR case, for example, the GRN with the IRM im-
proves the STOI score by 20.55% and the PESQ score by 0.57
as compared to the unprocessed mixtures for trained speakers.
Among the three training targets, the TMS produces the best
performance in both metrics. The IRM and the PSM yield simi-
lar STOI scores, while the PSM produces slightly higher PESQ
scores than the IRM. Let us analyze speaker generalization of
the GRN using the TMS target. For the six trained speakers,
the GRN achieves 22.73% STOI improvements and 0.70 PESQ
improvements over the unprocessed mixtures at —5 dB. Com-
pared to the trained speakers, the GRN achieves similar STOI
improvements (i.e. 21.81%) and PESQ improvements (i.e. 0.70)
for the six untrained speakers. This reveals that, with a large
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TABLE II
COMPARISONS BETWEEN MODELS AND TRAINING TARGETS IN TERMS OF STOI AND PESQ ON TRAINED SPEAKERS

metrics STOI (in %) PESQ
test SNR -5dB 0dB 5dB -5dB 0dB 5dB
noises BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg.
unprocessed 58.77 57.29 58.03 71.19 70.27 70.73 82.56 82.13 82.35 1.62 1.52 1.57 1.88 1.82 1.85 2.15 2.15 2.15
DNN + IRM 66.56 67.91 67.24 79.77 80.29 80.03 88.17 88.25 88.21 1.70 1.77 1.74 2.11 222 2.17 2.47 2.59 2.53
LSTM + IRM 77.11 74.52 75.76 86.47 84.95 85.71 91.62 91.07 91.35 2.00 2.03 2.02 243 2.46 245 2.79 2.81 2.80
BLSTM + IRM 71.57 74.22 75.90 86.53 85.10 85.82 91.84 91.23 91.54 2.01 2.02 2.02 245 2.47 2.46 2.80 2.83 2.82
GRN + IRM 79.35 77.80 78.58 87.36 86.67 87.02 92.24 91.99 92.12 2.10 2.17 2.14 2.53 2.60 2.57 2.86 2.94 2.90
DNN + PSM 66.27 67.74 67.01 79.62 80.09 79.86 87.94 87.83 87.89 1.67 1.83 1.75 2.13 2.28 221 2.53 2.65 2.59
LSTM + PSM 75.87 74.03 74.95 86.31 85.29 85.80 92.03 91.54 91.79 2.03 2.10 2.07 2.55 2.60 2.58 2.94 2.99 297
BLSTM + PSM 77.31 74.41 75.86 87.36 85.86 86.61 92.49 91.74 92.12 2.08 2.10 2.09 2.62 2.62 2.62 3.00 3.02 3.01
GRN + PSM 79.54 77.80 78.67 87.81 87.05 87.43 92.97 92.68 92.83 217 2.25 2.21 2.65 272 2.69 3.01 3.08 3.05
DNN + TMS 69.61 70.76 70.19 82.77 82.54 82.66 89.40 89.03 89.22 1.81 1.88 1.85 231 235 233 2.67 2.69 2.68
LSTM + TMS 79.27 76.79 78.03 88.57 87.11 87.84 92.80 92.14 92.47 2.15 2.15 2.15 2.63 2.60 2.62 297 2.94 2.96
BLSTM + TMS 79.47 76.90 78.19 88.63 87.13 87.88 93.01 92.19 92.60 2.16 2.14 2.15 2.64 2.61 2.63 2.98 295 2.97
GRN + TMS 81.64 79.88 80.76 89.44 88.03 88.74 93.59 92.81 93.20 2.26 2.27 2.27 2.68 2.67 2.68 3.01 3.00 3.01
TABLE III
COMPARISONS BETWEEN MODELS AND TRAINING TARGETS IN TERMS OF STOI AND PESQ ON UNTRAINED SPEAKERS
metrics STOI (in %) PESQ
test SNR -5dB 0dB 5dB -5dB 0dB 5dB
noises BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg. BAB CAF Avg.
unprocessed 58.52 57.45 57.99 70.25 69.70 69.98 81.35 81.02 81.19 1.56 1.44 1.50 1.81 1.77 1.79 2.12 2.12 2.12
DNN + IRM 65.03 67.63 66.33 78.72 80.05 79.39 87.64 88.13 87.89 1.60 1.71 1.66 2.06 2.16 2.11 2.45 2.56 251
LSTM + IRM 74.54 73.04 73.79 84.88 83.89 84.39 90.84 90.53 90.69 1.85 1.92 1.89 233 2.36 2.35 2.70 273 272
BLSTM + IRM 75.23 74.12 74.68 85.05 84.44 84.75 90.96 90.79 90.88 1.88 1.96 1.92 235 2.40 2.38 271 2.76 2.74
GRN + IRM 77.32 76.91 77.12 86.17 86.19 86.18 91.62 91.63 91.63 1.98 2.07 2.03 2.44 2.52 2.48 2.80 2.86 2.83
DNN + PSM 64.79 67.59 66.19 78.56 80.02 79.29 87.46 87.92 87.69 1.60 1.77 1.69 2.09 2.24 2.17 2.52 2.64 2.58
LSTM + PSM 74.12 73.34 73.73 84.90 84.66 84.78 91.28 91.18 91.23 1.91 2.04 1.98 245 2.53 2.49 2.86 292 2.89
BLSTM + PSM 74.67 73.65 74.16 85.64 84.86 85.25 91.55 91.24 91.40 1.91 2.04 1.98 249 2.53 2.51 2.89 2.92 291
GRN + PSM 77.45 77.41 77.41 86.70 86.62 86.66 92.15 92.13 92.14 2.06 2.19 2.13 2.57 2.65 2.61 2.95 3.02 2.99
DNN + TMS 68.13 70.78 69.46 81.99 82.93 82.46 89.43 89.58 89.51 1.71 1.85 2.28 2.25 231 2.28 2.64 2.66 2.65
LSTM + TMS 76.38 75.76 76.07 87.37 86.54 86.96 92.64 92.08 92.36 1.99 2.08 2.04 2.53 2.52 2.53 2.90 2.87 2.89
BLSTM + TMS 76.98 76.23 76.61 87.73 86.79 87.26 92.80 92.14 92.47 2.01 2.09 2.05 2.53 2.53 2.53 291 2.88 2.90
GRN + TMS 80.18 79.42 79.80 88.92 88.04 88.48 93.40 92.88 93.14 2.16 2.23 2.20 2.63 2.62 2.63 2.97 2.96 2.97
ODNN B UniLSTM DOBLLSTM BGRN improvements over the unprocessed mixtures. Going from DNN
25 to LSTM substantially improves the two metrics. This result is
23.05 . . . . .
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Fig. 6. Comparisons of DNN, LSTM, BLSTM and GRN in terms of STOI
improvements over unprocessed mixtures for the six untrained speakers on four
different noises at —5 dB SNR.

number of training speakers, the GRN generalizes very well to
untrained speakers.

Fig. 6 shows the performance of different models using the
TMS in terms of STOI improvements for untrained speakers
and different noises. Four noises (i.e. babble, cafeteria, fac-
tory and SSN) are used to evaluate the models. As shown in
Fig. 6, the GRN consistently provides significant STOI im-
provements for all the noises, which implies the GRN model is
noise-independent.

B. Model Comparisons

We first compare the DNN with the other three models.
As shown in Tables II and III, the DNN achieves about
8.2% to 12.2% STOI improvements and 0.16 to 0.27 PESQ

into two directions, one for future direction (forward states)
and another for past direction (backward states) [31]. Unlike
LSTM that utilizes only the future information within a con-
text window, BLSTM can access all future time frames via the
backward states. As shown in Tables II and III, however, similar
performance is obtained by LSTM and BLSTM, while BLSTM
generalizes slightly better to untrained speakers.

Our proposed GRN consistently outperforms LSTM and
BLSTM in all conditions. Take, for example the —5 dB SNR
case where the TMS is used as the training target. On trained
speakers, the proposed GRN improves STOI by 2.57% and
PESQ by 0.12 over BLSTM. On untrained speakers, the pro-
posed GRN improves STOI by 3.19% and PESQ by 0.15 over
BLSTM. For higher SNRs, the GRN yields smaller improve-
ments over LSTM and BLSTM. To assess the significance of the
STOI and PESQ differences between the GRN and the BLSTM,
we conduct one-tailed two-paired Kolmogorov-Smirnov (KS)
tests. The one-tailed KS tests reject the null hypothesis for a
p-value lower than 0.05, which indicates that the GRN group
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TABLE IV
P-VALUES FROM ONE-TAILED TWO-PAIRED KS SIGNIFICANCE TESTS FOR
TRAINED SPEAKERS

metrics STOI PESQ
test SNR -5dB 0dB 5dB -5dB 0dB 5dB
IRM p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
PSM p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
TMS p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
TABLE V

p-VALUES FROM ONE-TAILED TWO-PAIRED KS SIGNIFICANCE TESTS FOR
UNTRAINED SPEAKERS

metrics STOI PESQ
test SNR -5dB 0dB 5dB -5dB 0dB 5dB
IRM p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
PSM p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
TMS p<0.05 p<0.05 p<0.05 p<0.05 p<0.05 p<0.05
——DNN train  ——~DNN test LSTM train LSTM test
—+—BLSTM train—+—BLSTM test ——GRN train ——GRN test

Training Epoch

Fig. 7. (Color Online). Mean squared errors over training epochs for DNN,
LSTM, BLSTM and GRN on the training set and the test set. All models are
evaluated with a test set of six untrained speakers on the untrained babble noise.

of samples is significantly higher than the BLSTM group of
samples. Tables IV and V show the p-values for the KS tests
on trained speakers and untrained speakers, respectively, where
each evaluation score was averaged over the two test noises
(babble and cafeteria) before the KS tests are conducted. In all
cases, the KS tests indicate the significance of STOI and PESQ
improvements of GRN over BLSTM.

Fig. 7 compares the training and test MSEs of different mod-
els over training epochs. We observe that the GRN converges
faster and achieves a lower training MSE and a lower test MSE
than the other three models. In Fig. 8, we illustrate the STFT
magnitudes of an enhanced speech utterance using the DNN,
LSTM, BLSTM and GRN. The magnitudes are plotted on a
log scale. We can see that the DNN-separated speech is still
quite noisy. The separated speech using the other three models
preserves the spectrotemporal modulation patterns of the clean
speech, which are important for speech intelligibility [29]. In
addition, the BLSTM separated speech and the GRN separated
speech have sharper spectral transitions and less distortion com-
pared to the LSTM separated speech.

Finally, we compare the GRN with a fully convolutional net-
work without dilation, gating, and skip connections. The FCN is
constructed by simplifying the GRN architecture. Specifically,
each dilated convolution is replaced by a corresponding conven-
tional convolution and each residual block by one convolutional
layer with a kernel size of 7. Moreover, the skip connections are
removed. The remaining hyperparameters are unaltered. This
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Fig. 8. (Color Online). STFT magnitudes (log scale) of a separated speech

using different models. We use TMS as the training target. The unprocessed
mixture is generated by mixing an utterance of an untrained speaker with babble
noise at —5 dB.

TABLE VI
COMPARISONS BETWEEN FCN AND GRN IN TERMS OF STOI AND PESQ ON
TRAINED SPEAKERS. THE IRM 1S USED AS THE TRAINING TARGET

metrics STOI (in %) PESQ

estSNR | -5dB | 0dB 5dB | -5dB | 0dB | 5dB

FCN 7188 | 8281 | 89.80 1.89 230 | 2.66

GRN 7858 | 87.02 | 9212 | 214 | 257 | 290
TABLE VII

COMPARISONS BETWEEN FCN AND GRN IN TERMS OF STOI AND PESQ ON
UNTRAINED SPEAKERS. THE IRM IS USED AS THE TRAINING TARGET

metrics STOI (in %) PESQ

test SNR -5dB 0dB 5dB -5dB 0dB 5dB
FCN 70.83 82.23 89.48 1.80 2.24 2.62
GRN 77.12 86.18 91.63 2.03 2.48 2.83

amounts to a 26-layer FCN, which has about 1.29 million train-
able parameters. Tables VI and VII present STOI and PESQ
scores for trained speakers and untrained speakers, respectively.
The scores are averaged over the two test noises (babble and
cafeteria). As shown in the tables, the GRN substantially outper-
forms the FCN in all scenarios, which reveals the contributions
of dilation, gating and skip connections.

C. Impact of Time-Dilated Submodules

Before we investigate the impact of time-dilated submod-
ules in the GRN architecture, we first analyze the receptive
field size of a unit in the top layer. Note that we only cal-
culate the receptive field size for the time direction. In our
proposed GRN architecture, the frequency-dilated module con-
sists of four convolutional layers with 5 x 5 kernels and dila-
tion rates 1, 1, 2 and 4, which leads to a receptive field size
of 1+ (5—1) x (14 1+2+4) = 33. The time-dilated mod-
ule comprises three submodules, each of which amounts to an
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Fig. 9. Impact of the time-dilated submodules on the performance of the
GRN in terms of STOI improvements over unprocessed mixtures. The models
are evaluated with the six untrained speakers and the unseen babble noise. We
use IRM as the training target.

40.0

36.80

w
bl
=

[
g
o

[N}
bl
o

20.74 2212

bl
=3

b
=3

Number of params (million)
S
(=}

bl
=1

2.49

00 : : N

DNN LST™M BLSTM GRN

Fig. 10.  Parameter efficiency comparison of DNN, LSTM, BLSTM and GRN.
‘We compare the number of trainable parameters in different models.

additional receptive field size of (7—1)x (1+2+4+4+4+8+
16 + 32) = 378. In the prediction module, all three convolu-
tional layers use size-1 kernels, which do not expand the recep-
tive field. Therefore, the total receptive field size of a unit in
the top layer is 33 4+ 378 x 3 = 1167. In other words, a unit in
the top layer is affected by at most 1167 time frames of input
features. Since we use a 10-ms frame shift, 1167 time frames
are equivalent to 1167 x 0.01 = 11.67 s (5.835 s to the past and
5.835 s to the future). Thus the proposed GRN leverages a large
amount of future information like BLSTM.

We now evaluate the GRNs with different numbers of time-
dilated submodules with the six untrained speakers and the un-
trained babble noise. Specifically, we evaluate the GRNs with
0, 1, 2 and 3 time-dilated submodules, which correspond to
receptive field sizes of 33, 441, 789 and 1167, respectively.
Fig. 9 compares the impact of the time-dilated submodules on
the enhancement performance in terms of STOI improvements.
We can see that the performance of the GRN is improved with
more time-dilated submodules as more contextual information
is leveraged.

D. Parameter Efficiency

Our proposed GRN provides higher parameter efficiency
compared with the DNN and the RNNs due to the use of
shared weights in convolution operations. Fig. 10 presents the

numbers of learnable parameters in the four different models.
The GRN has much fewer parameters than the other three mod-
els even though the GRN is far deeper than them. Note that we
can adjust the parameter efficiency of the GRN simply by alter-
ing the number of the time-dilated submodules as discussed in
Section V-C. Since computational resources are sometimes lim-
ited for real-world applications, it may be essential to achieve
an optimal trade-off between enhancement performance and
parameter efficiency of the model.

VI. CONCLUDING REMARKS

In this study, we have proposed a GRN model for monaural
speech enhancement. The proposed model incorporates dilated
convolutions, gating mechanisms and residual learning. With
the formulation of speech enhancement as a sequence-to-
sequence mapping, the GRN benefits from its large receptive
fields upon the input T-F representation. This allows the GRN
to model long-term dependencies that are critical to speaker
characterization for speaker-independent enhancement. RNNs
likewise learn temporal dynamics of speech, but they utilize fre-
quency information inadequately. The proposed GRN, however,
systematically aggregates contexts along both the frequency
and the time directions. Our experimental results demonstrate
that the GRN generalizes very well to untrained speakers and
untrained noises. It consistently outperforms a DNN, a unidirec-
tional LSTM model and a bidirectional LSTM model in terms
of STOI and PESQ for both trained and untrained speakers.
Another advantage of the GRN is its parameter efficiency due to
the shared weights in convolutions. The GRN has one order of
magnitude lower number of trainable parameters than that of an
RNN with four hidden LSTM layers. This reveals the potential
of CNN models for real-world speech enhancement applications
in which computational efficiency is essential. We believe that
the design of the CNN architecture presented in this paper is an
important step towards practical monaural speech enhancement.

It should be noted that the proposed model utilizes a large
amount of future information like BLSTM. Such a model can-
not be used for real-time processing, which is a demand of many
real-world applications. In future studies, we would devote ef-
forts to the design of new CNN architectures that are causal
or have a low latency, to meet the need of real-time speech
enhancement.
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