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Abstract

Phonemic restoration is the perceptual synthesis of phonemes when masked by appropriate replacement sounds by

utilizing linguistic context. Current models attempting to accomplish acoustic restoration of phonemes, however, use

only temporal continuity and produce poor restoration of unvoiced phonemes, and are also limited in their ability

to restore voiced phonemes. We present a schema-based model for phonemic restoration. The model employs a missing

data speech recognition system to decode speech based on intact portions and activates word templates corresponding

to the words containing the masked phonemes. An activated template is dynamically time warped to the noisy word and

is then used to restore the speech frames corresponding to the masked phoneme, thereby synthesizing it. The model is

able to restore both voiced and unvoiced phonemes with a high degree of naturalness. Systematic testing shows that this

model outperforms a Kalman-filter based model.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Listening in everyday acoustic environments is

subject to various noise interference and other dis-

tortions. The human auditory system is largely ro-

bust to these effects. According to Bregman (1990),

this is accomplished via a process termed auditory
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scene analysis (ASA). ASA involves two types of

organization, primitive and schema-driven. Primi-

tive ASA is considered to be an innate mechanism

based on bottom-up cues such as pitch, and spatial

location of a sound source. Schema-based ASA

use stored knowledge about auditory inputs, e.g.

speech patterns, to supplement primitive analysis
and sometimes provides the dominant basis

for auditory organization. This frequently occurs

when parts of speech are severely corrupted by

other sound sources.
ed.
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Phonemic restoration refers to the perceptual

synthesis of missing phonemes in speech when

masked by appropriate intruding sounds on the

basis of contextual knowledge about word se-

quences. In 1970, Warren discovered that when a
masker (cough) fully replaced the first ‘‘s’’ of the

word ‘‘legislatures’’ in the sentence, ‘‘The state

governors met with their respective legislatures

convening in the capital city,’’ listeners reported

the hearing of the masked phoneme (Warren,

1970). When phonemic restoration happens, sub-

jects are unable to localize the masking sound

within a sentence accurately; that is, they cannot
identify the position of the masking sound in the

sentence. When ‘‘s’’ was replaced with silence in-

stead, phonemic restoration was not observed.

Subsequent studies have shown that phonemic res-

toration is dependent on the linguistic skills of the

listeners, the characteristics of the masking sound

and temporal continuity of speech (Bashford

et al., 1992; Samuel, 1981, 1997; Warren and Sher-
man, 1974).

Fig. 1 depicts a visual analogue of phonemic

restoration. Fig. 1(a) shows the fragments of mul-

tiple images of the letter �B� (Bregman, 1981). We

cannot perceive �B� patterns from these fragments.

Fig. 1(b) shows the fragments in the presence of an

irregularly shaped occluding pattern. We are now

able to organize the fragments as parts of the letter
�B�. The standard explanation of this visual phe-

nomenon is in terms of amodal completion—the
Fig. 1. Visual analogue of phonemic restoration (from Bregman, 198

same fragments of (a) together with an irregularly shaped occluding
process of perceptually completing occluded visual

surfaces (Nakayama et al., 1995). In this case, it is

suggested that the organization is triggered by a

top-down representation or a schema for �B� with
the occluder providing bottom-up evidence for
the organization (Bregman, 1990).

Auditory organization can also be classified as

simultaneous and sequential (Bregman, 1990).

Simultaneous organization involves grouping of

acoustic components that belong to a sound

source at a particular time. Sequential organiza-

tion refers to grouping of acoustic components

of a sound source across time. Phonemic restora-
tion may be viewed as a sequential integration

process involving top-down (schema-based) and

bottom-up (primitive) continuity. Monaural com-

putational auditory scene analysis (CASA) sys-

tems employ harmonicity as the primary cue for

simultaneous grouping of acoustic components

corresponding to the respective sound sources

(Brown and Cooke, 1994; Wang and Brown,
1999; Hu and Wang, 2004). These systems do

not perform well in those time–frequency regions

that are dominated by aperiodic components of

noise. Phonemic restoration is therefore a natural

way to introduce other sequential integration cues.

Monaural CASA systems currently also lack an

effective cue for grouping unvoiced speech. Sche-

ma-based grouping in particular, may provide a
strong grouping cue for integration across un-

voiced consonants. Schemas can be used to gener-
1). (a) Fragments of multiple instances of the letter �B�. (b) The
pattern.
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ate expectations for verification by existing bot-

tom-up grouping algorithms and may provide a

cue for resolving competition among different

primitive organization principles. Schema-based

features also inherently bring to the fore top-down
aspects like memory and attention into CASA.

Additionally, phonemic restoration helps to re-

store lost packets in speech transmission systems

(Perkins et al., 1998; Hassan et al., 2000) and in-

crease the performance of speech enhancement

(Nakatani and Okuno, 1999).

Previous attempts to model phonemic restora-

tion have been only partly successful. Cooke
and Brown (1993) use a weighted linear interpola-

tion of the harmonics preceding and succeeding

the masker for restoration. The later work of

Masuda-Katsuse and Kawahara (1999) uses Kal-

man filtering to predict and track spectral trajec-

tories in those time–frequency regions that are

dominated by noise. In its use of temporal conti-

nuity for restoration, the Masuda-Katsuse and
Kawahara model is similar to that of Cooke

and Brown. Note that we use temporal continuity

to refer to continuity of individual spectral com-

ponents. The biggest problem for a filtering/inter-

polation system for predicting missing speech

segments is that temporal continuity of speech

frames can be weak or even absent. This typically

occurs with unvoiced speech. In the absence of
co-articulation cues, it is impossible to restore

the missing portions by temporal continuity; in

such cases it seems that lexical knowledge must

be employed.
Fig. 2. (a) The spectrogram of the word �Eight�. (b) The spectrogram
Fig. 2 depicts one such situation. In Fig. 2(a),

the phoneme /t/ in the coda position of the word

�Eight� possesses no temporal continuity with the

preceding phoneme. Thus, when white noise masks

the final stop (Fig. 2(b)), this phoneme cannot be
recovered by extrapolating the spectrum at the

end of the preceding phoneme, /eI/. An automatic

speech recognizer (ASR) though could be used to

hypothesize the noisy word based on its vocabu-

lary. This hypothesis could then be used to predict

the masked phoneme. Ellis (1999) proposes a pre-

diction-driven architecture to hypothesize the

information in the missing regions using an ASR.
Though the direction is promising, the proposed

system is incomplete with few results obtained; in

particular, recognition of corrupted speech and

resynthesis of speech from the ASR output are lar-

gely unaddressed.

In this paper, we present a predominantly top-

down model for phonemic restoration, which em-

ploys lexical knowledge in the form of a speech
recognizer and a sub-lexical representation in word

templates realizing the role of speech schemas. The

main purpose of our model is speech enhancement.

In the first stage of the model, reliable regions of

the corrupted speech are identified using a percep-

tron classifier and a spectral continuity tracker. A

missing data speech recognizer (Cooke et al., 2001)

is used to recognize the input sounds as words
based on the reliable portions of the speech signal.

The word template corresponding to the recog-

nized word is then used to ‘‘induce’’ relevant

acoustic signal in the spectro-temporal regions
obtained from (a) when the stop /t/ is masked by white noise.
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previously occupied by noise. Phonemic restora-

tion is typically interpreted as induction based on

intact portions of the speech signal and then

followed by synthesis of masked phonemes. This

synthesis is based on bottom-up confirmation of
top-down induction (Warren, 1999). Our approach

is consistent with this understanding. The tem-

plates are formed by averaging tokens of each

word with sufficient spectral detail to permit pho-

nemic synthesis. Finally the induced information

is pitch synchronized with the rest of the utterance

to maintain the naturalness of restored speech.

The rest of the paper is organized as follows.
Section 2 outlines our model. We then describe

the details of feature extraction and identification

of corrupted regions of the speech signal in Section

3. Section 4 describes the core of our model: The

missing data recognizer, word templates and pitch

synchronization. The model has been tested on

both voiced and unvoiced phonemes and the test

results are presented in Section 5. In Section 6,
we compare the performance of our model with

the Kalman filter based model of Masuda-Katsuse

and Kawahara (1999). Finally, conclusion and fu-

ture work are given in Section 7.
2. Model overview

Our model for phonemic restoration is a multi-

stage system as shown in Fig. 3. The input to the

model is utterances with words containing masked

phonemes. The maskers used in our experiments

are broadband sound sources. Phonemes are

masked by adding a noise source to the signal

waveform. In the first stage, input waveform with

masked phonemes, sampled at 20kHz with 16 bit
resolution, is converted into a spectrogram. A bin-

ary mask for the spectrogram is generated in this

stage to identify reliable and unreliable parts. If a

time–frequency unit in the spectrogram contains

predominantly speech energy, it is labeled reliable;

it is labeled unreliable otherwise.

The second stage is the missing data ASR

(Cooke et al., 2001) based on hidden Markov
model (HMM), which provides word level recogni-

tion of the input signal by utilizing only the relia-

ble spectro-temporal regions. Thus, the input to
the missing data ASR is the spectrogram of the in-

put signal along with a corresponding binary

mask. Raj et al. (2000) restore the unreliable units

prior to recognition by the missing data ASR.

Hence their restoration does not utilize lexical
information. Cooke et al. (2001) suggest that for

restoration, one can use the maximum likelihood

estimate of the output distribution of the winning

states. Winning states are obtained during recogni-

tion by Viterbi decoding in an HMM-based speech

recognizer. We find that such a restoration does

not work well and degrades with increasing num-

ber of frames that need to be restored. This is
not surprising as the missing data ASR has only

10 states to model each word (Section 4.1) and

hence state-based imputation is an ill-posed one-

to-many projection problem.

On the other hand, template-based speech rec-

ognizers use spectral templates to model each

word. These templates could be used as a base

for restoration. We train a word-level template
corresponding to each HMM model in the missing

data ASR. Two sets of templates are considered,

speaker-independent and speaker-dependent. The

speaker-independent template is derived from

utterances of speakers different from the test

speaker. The speaker-dependent template is de-

rived from those utterances of the test speaker

which are not utilized for testing. In certain appli-
cations, e.g. tracking of a known speaker, speaker

identity may be known. In such applications, these

speaker-dependent templates could be applied.

Evidence from psychophysical studies suggests

that speaker-specific details are utilized by listeners

in improving their word identification perform-

ance (Goldinger, 1996; Goldinger and Azuma,

2003; Nygaard and Pisoni, 1998).
Based on the results of recognition, word tem-

plates corresponding to the noisy words are se-

lected. The time–frequency units of the template

corresponding to the unreliable time–frequency

units then replace the unreliable units of the noisy

word.

A template is an average representation of each

word. Thus, the restored phoneme may not be in
consonance with the speaking style of the remain-

ing utterance. In order to maintain the overall nat-

uralness of the utterance, we perform pitch based
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Fig. 3. Block diagram of the proposed system. The input signal with masked phonemes is converted into a spectrogram. A binary

mask is generated to partition the spectrogram into its clean and noisy parts. The spectrogram and the mask are fed to the missing data

ASR. Based on recognition results, trained word templates are activated corresponding to the words whose phonemes are masked. The

masked frames are synthesized by dynamically time warping the templates to the noisy words. These frames are then pitch

synchronized with the rest of the utterance. Notice that the information flows bottom-up leading to recognition and then top-down

leading to restoration.
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smoothing. The last stage of the model is the over-
lap and add method of resynthesis. Resynthesized

waveforms are used for informal listening and per-

formance evaluation.
3. Feature extraction and mask generation

The first stage of our model extracts spectral
and cepstral features from the signal and also gen-

erates a binary time–frequency (T–F) mask.

3.1. Feature extraction

The acoustic input is analyzed by the feature

extraction stage which generates 512 DFT coeffi-

cients every frame. Each frame is 20ms long with
10ms frame shift. Frames are extracted by apply-

ing a running Hamming window to the signal. Fi-

nally, log compression is applied to the power

spectrum. Thus the input signal is converted into

a time–frequency representation, suitable for use

by the missing data ASR and subsequent res-

toration by the synthesis stage. Additionally, the
spectral coefficients are converted to cepstral coef-
ficients via the discrete cosine transform (Oppen-

heim et al., 1999). The cepstral coefficients are

sent to the mask generation stage and also to the

masked frame synthesis stage.

3.2. Missing data mask generation

The missing data recognizer and the phonemic
synthesis stage, both require information about

which T–F regions are reliable and which are unre-

liable. Thus a binary mask, corresponding to the

spectrogram, needs to be generated. A T–F unit

is deemed reliable and labeled 1 if in this unit,

the speech energy is greater than noise energy

and otherwise deemed unreliable and labeled 0.

Spectral subtraction is frequently used to generate
such binary masks in missing data applications

(Cooke et al., 2001; Drygajlo and El-Maliki,

1998). Noise is assumed to be long-term stationary

and its spectrum estimated from frames that do

not contain speech (silent frames containing back-

ground noise). In phonemic restoration, noise is

usually short-term stationary at best and masks
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frames containing speech (corresponding to one

or more phonemes). Hence, for phonemic restora-

tion, estimation of noise spectrum followed by

spectral subtraction cannot be used to generate

the binary mask.
We propose a two-step process for generation

of the mask. In all our experiments, we use broad-

band noise sources as maskers (see Section 5).

Hence, as a first step, only a frame-level decision

of reliability is made. A frame is labeled 1 if it is

dominated by speech, else labeled 0. The individ-

ual T–F units of a frame labeled 0 are further ana-

lyzed in the second step. The spectral trajectory of
the noisy speech signal is tracked using a Kalman

filter. We compare the spectral coefficients of the

noisy and the filtered signals. If the difference be-

tween them is small, we treat these coefficients as

reliable and label them 1 and 0 otherwise. Fig.

4(a) shows the spectrogram of the word �Five�.
White noise is used to mask the approximant /j/

in the diphthong /aj/ and the resulting spectrogram
is shown in Fig. 4(b). From the figure, we can see

that there is a strong spectral continuity (especially

for the formants) from the /a/ part to the /j/ part.

We seek to recover these regions of spectral conti-

nuity and label them 1. Accurate estimation of

pitch is difficult, if not impossible, due to the low

SNR in the masked frames. Under these condi-

tions, the harmonics of speech in the masked
frames may not be reliably recovered through

pitch based simultaneous grouping. Hence, the

spectral continuity cue is needed to recover the

harmonics. Spectral continuity can be tracked

and recovered using a Kalman filter (Masuda-

Katsuse and Kawahara, 1999).

As the first step, at each frame, we generate two

features for classification by assuming noise to be
broadband and short-term stationary. The first

feature is a spectral flatness measure (SFM) (Jay-

ant and Noll, 1984), defined as the ratio of geomet-

ric mean to arithmetic mean of the power spectral

density (PSD) coefficients:
SFM ¼

QN
k¼1

Sxxðk; nÞ
� �1

N

1
N

PN
k¼1

Sxxðk; nÞ
; ð1Þ
where Sxx(k,n) is the kth power spectral density

coefficient of the noisy speech signal in a frame

�n�. Consistent with the feature extraction stage,

N is set to 512. This measure is known to provide

good discrimination between voiced frames and
other frames (unvoiced and silent) across various

speakers in clean speech (Yantorno et al., 2001).

Additionally, SFM is related to predictability of

speech (Herre et al., 2001; Jayant and Noll,

1984). Specifically, low values of SFM imply high

predictability. This property is indirectly used in

the second step to refine the mask generated at

the frame-level.
The second feature used is the normalized en-

ergy (NE). It is defined as

NE ¼ 10 log

PN
k¼1

Sxxðk; nÞ

max
n

PN
k¼1

Sxxðk; nÞ

0
BBB@

1
CCCA: ð2Þ

As in (1), N is set to 512. Normalization is

done to make the energy value independent of

the overall signal energy. The log operation is

used to expand the range of NE to provide better

discriminability amongst frames. Unvoiced, silent

and masked frames have high values of SFM but

unvoiced and silent frames have low values of

NE. Thus, SFM and NE are sufficient to classify
a frame as being masked or clean. We use two to-

kens of isolated word utterances from each of the

50 randomly chosen speakers in the training por-

tion of the TIDigits corpus (Leonard, 1984) to

train a perceptron classifier. One phoneme in each

utterance is masked by mixing with white noise to

yield a local SNR of �1dB on average. Higher

SNR values are not used as the intrusion needs
to be strong enough to mask the phoneme (War-

ren, 1999). Lower SNR values will not affect the

model performance. Due to the large variability

in the values of SFM and NE in clean speech

and distortion in noise, the two classes are found

to be linearly inseparable. Hence, we train a one-

hidden-layer (2-2-1) perceptron classifier (Principe

et al., 2000). The inputs are SFM and NE and
outputs are two class labels: 1 (reliable) and 0

(unreliable). The ratio in (1), by definition, is con-

strained as 0 6 SFM 6 1. NE, as defined in (2), is



Fig. 4. (a) The spectrogram of the word �Five�. (b) The spectrogram obtained from (a) when white noise masks the approximant part /j/

in the diphthong /aj/. (c) The distribution of frame-level features and frame-level labels for this utterance (1-reliable and 0-unreliable).

Spectral flatness measure (SFM) and normalized energy (NE) are used to generate the frame-level labels. (d) The spectrogram obtained

from (b) with only reliable frames. (e) The labels of each T–F unit in the spectrogram. (f) The spectrogram with only reliable T–F units.

Unreliable units are marked white.
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in the range �80 to 0dB. The transfer functions

of all the neurons are log-sigmoid. The network

is trained using backpropagation, optimized by

the Levenberg–Marquardt algorithm (Principe
et al., 2000). The network is trained for 1000 epochs.

Fig. 4(c) shows how the two features, SFM and

NE, are distributed for the utterance �Five� with
the masked phoneme /aj/. For the purpose of

comparison with SFM, NE is shown without the

application of the log operation and the mul-
tiplication factor. The spectral flatness measure is

high for masked frames, silent frames and frames

corresponding to the fricatives /f/ and /v/. The

normalized energy though is high only for frames
corresponding to the masked phoneme /aj/. Since

the masked phoneme is a vowel, the energy in

the masked frames is reliably high and we get a per-

fect frame-level labels of reliability. The resulting

spectrogram with only reliable frames is shown in

Fig. 4(d).
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As the second step, we use Kalman filtering

to further analyze the spectral regions in frames

labeled 0 by the first stage. For this we adapt the

Kalman filter model of Masuda-Katsuse and

Kawahara (1999). Kalman filtering is used to pre-
dict the spectral coefficients in the unreliable

frames from the spectral trajectories of the reliable

frames. In the frames labeled as 0 by the first step,

we compare the spectral values of the filtered and

original noisy signal. If there is true spectral conti-

nuity, the magnitude of the difference between the

spectral values of the filtered and original signal

will be small. This can be restated as a local
SNR criterion. Let Sff(k,n) denote the kth power

spectral density coefficient of the filtered signal in

a frame �n�. Then each T–F region can be labeled

using a threshold d as

label ¼ 1 if 10 log
Sff ðk;nÞ

Sxxðk;nÞ�Sff ðk;nÞ P d

0 otherwise:

(
ð3Þ

The choice of d represents a trade-off between pro-

viding more T–F units with reliable labels to the

missing data ASR (Section 4.1) and preventing

wrong labeling of T–F units (Renevey and Dry-

gajlo, 2001). The optimal value of d is also depend-
ent on the local SNR (Renevey and Drygajlo,

2001; Seltzer et al., 2003). For simplicity we set d
to be a constant. The value of d = 5 dB is found

to give the best recognition performance on the

training data and is used for all the data during

testing.

Cepstral coefficients in each order are regarded

as a time series and are modeled as a second order
auto-regressive (AR) process as suggested by Ma-

suda-Katsuse and Kawahara (1999). This process

is predicted and tracked by a Kalman filter and

thus used to interpolate the cepstral coefficients

in the masked frames from clean frames. The state

space model of this system is

xðnÞ ¼ F ðnÞxðn� 1Þ þ GvðnÞ; ð4Þ

yðnÞ ¼ HxðnÞ þ wðnÞ: ð5Þ

In the equations above, y(n) is the observed ceps-

tral coefficient at time-frame n and the filtering

problem is to find the information about the state

of the system, x(n) (the true value of the cepstral
coefficient), at this time. Since the cepstral coeffi-

cients follow a second order AR model,

F ðnÞ ¼
a1ðnÞ a2ðnÞ
1 0

� �
; ð6Þ

where a1(n) and a2(n) are the first and second order

AR coefficients at time-frame n.We letG ¼ ½ 1 0 �T
and H ¼ ½ 1 0 � as suggested by Masuda-Katsuse

and Kawahara (1999). The system white noise

v(n) is zero mean with covariance Q(n). The obser-
vation white noise w(n) is zero mean with covari-

ance R(n). Hence, the model in (4)–(6), has four

unknown parameters that need to be estimated at

each frame, a1(n), a2(n), Q(n) and R(n).

Let h = (a1(n),a2(n),Q(n)). The log likelihood of

the model given h and initial state mean vector xð0Þ
is as follows:

lðh; xð0ÞÞ ¼
XN
n¼1

log f ðyðnÞ j Y ðn� 1Þ; h; xð0ÞÞ:

ð7Þ

f ðyðnÞ j Y ðn� 1Þ; h; xð0ÞÞ
¼ NðHxðn j n� 1Þ;HV ðn j n� 1ÞHT þ RðnÞÞ;

where Y(n � 1) = (y(1), y(2), . . . , y(n � 1)) (Kato

and Kawahara, 1998). The conditional state mean

x(njn � 1) and the error covariance V(njn � 1) are
estimated by the Kalman predictor:

xðn j n� 1Þ ¼ F ðn� 1Þxðn� 1 j n� 1Þ;

V ðn j n� 1Þ ¼ F ðn� 1ÞV ðn� 1 j n� 1ÞF Tðn� 1Þ
þ GQðn� 1ÞGT:

The filtered estimates are computed by the Kal-
man filter.

xðn j nÞ ¼ xðn j n� 1Þ þ KðnÞðyðnÞ � Hxðn j n� 1ÞÞ;

V ðn j nÞ ¼ ðI � KðnÞHÞV ðn j n� 1Þ;

where K(n) is the Kalman gain computed as

KðnÞ ¼ V ðn j n� 1ÞHTðHV ðn j n� 1ÞHT þ RðnÞÞ�1
:

The parameter h is updated at each frame by the

maximum likelihood estimate conditioned on the

present and past observed cepstral values. We
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use a numerical subroutine, DALL (Ishiguro and

Akaike, 1999), to estimate h by maximizing (7).

The variance of the noise in the observation mod-

el, R(n), is set to 1.0 if the cepstral coefficients be-

long to a frame previously labeled 1. It is set to a
high value otherwise. Hence, R(n) acts as a factor

that balances the tracking and predicting roles of

the Kalman filter. The discrete change in the value

of R(n) causes the Kalman filter to switch from a

predominantly tracking phase to a predominantly

predicting one.

Since processing is performed off-line, the

cepstral coefficients at all times are available for
processing, enabling a smoothing operation. To

mitigate the effects of binary transition in the var-

iance of the observation noise, we perform one

step backward Kalman smoothing (Anderson

and Moore, 1979). As smoothing additionally

uses the cepstral coefficients of the reliable

frames, available after the masked frames, it re-

sults in a more accurate estimation of the coeffi-
cients in the masked frames. Finally, the

cepstral coefficients are converted back to spec-

tral coefficients Sff(k,n) via inverse discrete cosine

transform (Oppenheim et al., 1999) and exponen-

tiation. The spectral coefficients are used in (3) to

generate the labels for each frequency unit. Fig.

4(e) shows the labels generated for the noisy

utterance �Five�. The spectrogram with only the
reliable T–F units is shown in Fig. 4(f). It is seen

that using Kalman filtering, most formant regions

corresponding to the masked part of the diph-

thong /aj/ are recovered and labeled 1. The re-

gions exhibiting no strong spectral continuity

are labeled 0.
4. Recognition and synthesis of masked phonemes

A missing data speech recognizer is used to rec-

ognize the input utterance as words based on the

T–F units labeled 1. The word template corre-

sponding to the noisy word in the input is then

warped to the noisy word. The T–F units of the

noisy signal labeled 0 (previously corrupted by
noise) are then replaced by the corresponding T–

F units of this template. The restored frames are

then pitch synchronized with rest of the utterance.
4.1. The missing data speech recognizer

The performance of conventional ASR systems

in the presence of acoustic interference is very

poor. The missing data ASR (Cooke et al., 2001)
makes use of the spectro-temporal redundancy in

speech to make optimal decisions about lexical

output units. Given a speech observation vector

x, the problem of word recognition is to maximize

the posterior P(xijx), where xi is a valid word se-

quence. When parts of x are masked by noise or

other distortions, x can be partitioned into its reli-

able and unreliable constituents as xr and xu,
where x = xr [ xu. The missing data ASR treats

the T–F regions labeled 0 as unreliable data during

recognition. One can then seek a Bayesian decision

given the reliable features. In the marginalization

method, the posterior probability using only the

reliable features is computed by integrating over

the unreliable constituents. Furthermore, if the

range for the true value of the unreliable feature
is known, it provides bounds (limits) over which

the unreliable feature is integrated. This bounded

marginalization method is shown to have a better

recognition score than the regular marginalization

method (Cooke et al., 2001), and is hence used in

all our experiments. In missing data methods, rec-

ognition is typically performed using spectral en-

ergy as feature vectors. If x represents spectral
magnitude and sound sources being additive, the

unreliable parts can be constrained as 0 6

x2u 6 x2. This bound provides some additional

information about the unreliable features. For

example, a low value of x2 would provide evidence

against the high energetic states (e.g. states corre-

sponding to vowels).

We use the 10-state continuous density HMM
as suggested by Cooke et al. (2001). The task do-

main is recognition of connected digits. Thirteen

(1–9, a silence, very short pause between words,

zero and oh) word level models are trained. All ex-

cept the short pause model have 10 states. The

short pause model has only three states. The emis-

sion probability in each state is modeled as a mix-

ture of 10 gaussians with a diagonal covariance
structure. Training and testing are performed on

the male speaker dataset in the TIDigits database.

Note that recognition is performed in the spectral
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domain. A HMM toolkit, HTK (Young et al.,

2000) is used for training. During testing, the deco-

der is modified to use the missing data mask for

marginalizing the unreliable spectrograhic fea-

tures. The decoded output from ASR represents
the lexical knowledge in our model.

4.2. Word template training by dynamic time

warping

A template corresponding to each of the

HMMs is trained using DTW. From the training

portion of the TIDigits corpus, we randomly select
50 speakers (Section 3.2). Two tokens of isolated

word utterances from each of the speakers are used

to train each speaker-independent (SI) word tem-

plate. Assuming all tokens are consistent, we find

their warped cepstral average. For this purpose,

these tokens are time normalized by DTW. The

distortion measure used in the dynamic program-

ming cost function is the cepstral distance. The
local continuity constraint used is the Itakura

constraint (Rabiner and Juang, 1993). Isolated

word utterances corresponding to one test speaker

in the test database are used to train a speaker-
Fig. 5. (a) and (b) The speaker-independent templates of the words

speaker-dependent templates.
dependent (SD) template. Utterances of this

speaker can then be used for testing. We include

SD templates to test whether the use of such tem-

plates can further enhance the performance. To-

gether the two sets of templates form word
schemas. Fig. 5 shows the SI and SD templates

for two words in the lexicon, �Five� and �Eight�.
The templates in Fig 5(a) and (c) show good repre-

sentation of formants and frication, including

formant transitions into the fricatives. In addition

to the formants, the onset and spectra of the burst

(corresponding to the stop, /t/) are also adequately

represented (Figs. 5(b) and (d)). Also note that the
SI templates possess substantial details for use in

restoring phoneme spectra, though not as detailed

and clean as the SD templates.

4.3. Phonemic synthesis

A maximum of two phonemes are masked in

each utterance by mixing with noise to yield a local
SNR of �1dB on average. We use three broad-

band noise sources: white noise, clicks and coughs.

Consistent with experiments on phonemic restora-

tion, all transitions into and out of the phoneme
�Five� and �Eight�, respectively. (c) and (d) the corresponding
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are masked too. The signal and the mask are sent

to the missing data recognizer which provides the

most likely word sequence. Additionally the recog-

nizer provides time end points of the recognized

words in the signal. We then choose the word tem-
plates corresponding to the noisy word and warp

them to the noisy word segment in the input signal

by DTW. Specifically, the word template is nor-

malized to span the time end points of the noisy

word. The T–F units of the template correspond-

ing to the masked T–F units (with label 0) then re-

place the masked units. Our restoration in this

stage is thus a top-down schema-based process.
Recall that some T–F units which exhibit good

(bottom-up) spectro-temporal continuity have al-

ready been recovered during the mask generation

process (Section 3.2). Figs. 6(a) and (b) show the

restoration of the masked phoneme /t/ using SI

and SD templates respectively. The phoneme is

clearly seen to be restored with good spectral qual-

ity. Notice that the lack of spectral continuity of
the masked phoneme /t/ with the preceding pho-

neme, has not prevented its effective restoration.

After spectral restoration, the utterance is

resynthesized from the spectral coefficients using

the overlap and add method (Oppenheim et al.,

1999). Since we used a Hamming window during

the analysis stage (Section 3.1), we use a rectangu-

lar window during the synthesis stage. Also note
that the spectral restoration is performed only in

the power or magnitude domain. The phase infor-

mation in the corrupted frames is not restored.

Hence, we use noisy phase information during

resynthesis.
Fig. 6. (a) The restoration of the masked phoneme /t/ in the word �Eig
using the speaker-dependent template.
The word templates are average representation

of each word. Hence, the restored information is

generally not attuned to the speaking style and

the speaking rate of the test utterance. The use

of DTW for restoration helps to prevent any sig-
nificant change in the speaking rate after restora-

tion. To explicitly compensate for co-articulation,

the restored frames are manipulated by pitch syn-

chronous overlap and add (PSOLA) techniques,

which use interpolated pitch information. In par-

ticular, we consider PSOLA (Moulines and Char-

pentier, 1990) and linear prediction coding (LPC)

PSOLA (Moulines and Charpentier, 1988), which
are speech synthesis techniques that modify the

prosody by manipulating the pitch of the speech

signal as required. The former works directly on

the speech waveform while the latter on excitation

signal of the linear prediction analysis. Praat

(Boersma and Weenink, 2002) and a local spectral

smoother are used for synchronization.

Fig. 7 shows the pitch track formed by the
resynthesized utterance �Five� after two different

stages of restoration. The pitch track formed by

the SI restoration after the use of PSOLA is con-

tinuous and relatively smooth, indicating the natu-

ralness of the restored phoneme. Restoration

without the use of PSOLA yields only a discontin-

uous pitch track. For comparison, the pitch track

of the clean speech signal (before masking of the
vowel /aj/) is also shown. We can see that the pitch

track after the use of PSOLA is close to the pitch

track of the clean speech signal. The LPC-PSOLA

technique improves the listening experience com-

pared to PSOLA, but is not better than PSOLA
ht� using the speaker-independent template. (b) The restoration
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Fig. 7. Comparison of pitch information under various methods of restoration of the diphthong /aj/ in the word �Five�. (a) and (b) The

pitch information extracted from the resynthesized signal using speaker-independent restoration, with and without pitch

synchronization respectively. For comparison, the pitch information corresponding to the original clean speech utterance is also

shown in (c).
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as measured by the objective criteria discussed in
Section 5. Consequently only the results of syn-

chronization using the PSOLA technique are used

in the assessment of the results. The pitch synchro-

nized utterances are used for informal listening

tests and in measuring the performance using the

objective criteria outlined in Section 5.
5. Evaluation results

Informal listening by two listeners to the re-

stored signals show that masked voiced and un-

voiced phonemes are clearly restored. The listeners

also indicate that the restored signal without the

use of PSOLA is slightly ‘‘hoarse’’ or ‘‘raspy’’,

and the use of PSOLA alleviates this problem
greatly. Indeed, they report that the restored signal

after the use of PSOLA sounds very natural.

To evaluate the performance of the proposed

model objectively, we use two measures: Cepstral
and COSH distances. The rms log spectra model
the speech spectra very well, but are hard to

compute because of the problem of estimating

the power spectral density accurately (Stoica

and Moses, 1997). The related cepstral and the

COSH distances are much easier to compute as

they can be derived directly from the AR coeffi-

cients of speech and thus avoid the power spec-

tral density estimation problem (Gray and
Markel, 1976). The cepstral distance is the most

commonly used distortion measure in speech rec-

ognition (Rabiner and Juang, 1993). The COSH

distance provides the most accurate estimate of

spectral envelope of real speech (Wei and Gib-

son, 2000). Additionally the cepstral distance

bounds the rms log spectral distance from below

and the COSH distance from above (Gray and
Markel, 1976).

The cepstral distance measures the log spectral

distance between the original clean signal and the

phonemically restored signal:
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dC ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC1;0 � C2;0Þ2 þ 2

XK
n¼1

ðC1;n � C2;nÞ2
" #vuut ; ð8Þ

where C1,n are the cepstral coefficients derived

from AR coefficients of the original signal and

C2,n are the corresponding coefficients of the

phonemically restored signal. We set K = 20. Addi-

tionally, the COSH distance (Gray and Markel,

1976) between the power spectra of the two signals
is computed. Specifically, let ps1 and ps2 denote the

power spectra of the original signal and the phone-

mically restored signal respectively. The COSH

distance is defined as

1

2p

Z p

�p
cosh log

ps1
ps2

� �� �
� 1

� �
dh:

The distance can be calculated conveniently in its

discrete form as

1

2N

XN
n¼1

ps1ðxnÞ
ps2ðxnÞ

þ ps2ðxnÞ
ps1ðxnÞ

� 2

� �
: ð9Þ

Consistent with the feature extraction stage, N is

set to 512.
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Fig. 8. Long-term spectra of the noise sources. (a) The spectrum of wh
Three different classes of phonemes are consid-

ered for restoration: vowels, voiced and unvoiced

consonants. The vowels possess strong temporal

continuity. The spectral continuity of some voiced

consonants, e.g. /l/, changes smoothly but faster
than vowels. Unvoiced consonants, especially

stops, do not have good temporal continuity (Ste-

vens, 1998). We use 100 tokens of isolated word

utterances from the training portion of the TIDig-

its corpus to train each speaker-independent word

template. The two isolated word utterances (for

each word) of the test speaker are used to train

each speaker-dependent template. The remaining
55 utterances of the test speaker form the test

set. In choosing the number of isolated word utter-

ances used to derive a speaker-dependent template,

we are limited by the number of utterances availa-

ble for the test speaker in the TIDigits database.

Using additional utterances for training would re-

duce the number of utterances available for test-

ing. The noise sources used for masking are
white noise, clicks and coughs. Fig. 8 shows the

magnitude spectra of the noise sources. White

noise is spectrally flat as shown in Fig. 8(a). The
(b)
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spectra of a click and cough deviate in varying de-

grees from the spectral flatness assumption of the

noise sources. The spectrum of a click in Fig.

8(b) shows some narrow peaks in the mid-and

high-frequency regions. From Fig. 8(c), we can
see that the spectrum of cough exhibits narrow

peaks in low-and mid-frequency regions. As stated

previously, phonemes are masked by overlaying

them with each noise source at a local SNR of

�1dB. The length of burst in each noise source

is varied to yield the desired masking of the pho-

neme. As the duration of a click is typically shorter

than that of a phoneme, clicks are repeated to
form a click train of duration equal to that of

the phoneme being masked. Note that we do not

consider forward masking effects in this study.

Some amount of noise energy leaks into both the

preceding and succeeding phonemes due to the
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Fig. 9. Performance of the proposed method for phonemic restoration

noisy speech signal from the clean signal. SD refers to the performan

speaker-independent templates. The left column shows the average cep

distance. The top row shows the results corresponding to vowels, the

consonants. For comparison, the results of the Kalman filter model (
use of the short-time Fourier transform. This effect

though does not extend beyond two frames on

either side of the phoneme being masked and does

not cause recognition degradation.

Fig. 9 shows the performance of our model as
measured by the aforementioned objective criteria

with white noise as the masker, using the speaker-

dependent and the speaker-independent templates.

The left column shows the average cepstral dis-

tance and the right column shows the average

COSH spectral distance between the original and

the phonemically restored signals. For compari-

son, the distances between the clean and the noisy
signals are also shown. In the top row we display

the results of restoration for vowels. The middle

row gives the results for voiced consonants, and

the bottom row for unvoiced consonants. The re-

sults shown are the average of all signals in each
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, with white noise as the masker. N refers to the distance of the

ce of our model with speaker-dependent templates and SI with

stral distance and the right column the average COSH spectral

middle row voiced consonants, and the bottom row unvoiced

KF) described in Section 6, are also shown.
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class in the test set. The data exclude those signals

which are incorrectly recognized by the missing

data ASR; recognition accuracy is 89.9%. To am-

plify the differences between various methods of

restoration, the distance measures in Fig. 9 are
plotted to different scales for the three different

classes of phonemes. If a phoneme is perfectly re-

stored, the distances of the restored signal from

the original clean signal are 0 in both measures.

Low values of the distance measures after the resto-

ration of voiced phonemes indicate high quality

synthesis. The restoration of the unvoiced conso-

nants, especially with the use of speaker-dependent
templates, is also good. Note that the performance

is similar across both themeasures. As evident from

the figure, the overall performance of the model

with speaker-independent template is not signifi-

cantly worse than that with speaker-dependent

template. The two listeners who participated in

informal listening tests report improved sound

quality with the use of speaker-dependent template.
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Fig. 10. Phonemic restoration results with clicks as
Fig. 10 shows the corresponding performance

with clicks as the masker. With the use of clicks

as the masker, restoration of vowels is slightly bet-

ter compared to that with white noise but the res-

toration of voiced consonants is slightly worse.
The performance in restoring unvoiced consonants

is similar to that with white noise. From Fig. 10,

we can also see that clicks are less effective in

masking phonemes than white noise, as is evident

from the corresponding distances of the noisy

speech signals from the original clean signals.

The accuracy of the missing data recognizer is

89.2% with clicks as the masker.
Fig. 11 shows the corresponding performance

of our model with cough as the masker. Vowels

are restored to very high quality. The performance

in restoring consonants is similar to that with

clicks. Comparing Figs. 10 and 11, we can see that

cough is a weaker masker than clicks, especially

for voiced phonemes. The accuracy of the missing

data recognizer is 92.9% with cough as the masker.
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the masker. See Fig. 9 caption for notations.
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Fig. 11. Phonemic restoration results with cough as the masker. See Fig. 9 caption for notations.
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The results also indicate that the performance in

restoring consonants is best when white noise acts

as the masker. This is not surprising; the percep-

tron classifier used for frame-level labeling of reli-

ability is trained with white noise as the masker

(Section 3.2) and hence performs best on the sub-

set of the test signals which use white noise for

masking too. As indicated by the COSH spectral
distance, the performance in restoring vowels is

better when clicks and cough are the maskers than

when white noise is the masker. This indicates that

the spectral tracking and smoothing operations are

most effective for clicks and cough. This also illus-

trates that the distance in (9) is more sensitive to

the smoothing action than that in (8). Finally, the

performance is better when cough is used as the
masker than when clicks are used. This might be

due to cough being a weaker masker of speech

than clicks, especially for voiced phonemes.

In summary, the results indicate that the model

is able to restore all classes of phonemes, with
a spectral quality close to that of the original

signal.

5.1. Contribution of spectro-temporal continuity

and PSOLA to restoration

Our model of phonemic restoration has three

contributing parts; bottom-up spectro-temporal
continuity based restoration, top-down schema-

based restoration, and pitch synchronization using

PSOLA. In order to examine the contribution of

each part in detail, we evaluate the performance

of our system without one of these parts. First,

the use of T–F masks of reliability based on spec-

tro-temporal continuity results in an increase in

the accuracy of recognition. Accuracy with only
frame-level labels is 86.2% with white noise as

the masker, 89.1% with cough as the masker and

86.3% with clicks as the masker. This is because

the missing data ASR when using frame-level

masks for decoding (Section 4.1), treats all fre-
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quency units in a frame labeled 0 as unreliable.

The additional recovery of reliable T–F units in

a frame labeled 0 increases the accuracy by

3.46% on average, or decreases the error rate by

27.6%. Since PSOLA is applied on the restored
frames, it does not affect the recognition results.

We next examine the effects of spectro-temporal

continuity and PSOLA on the distance measures

of (8) and (9). We select one of the masking noise

sources, white noise, for illustration. Fig. 12 shows

the influence of spectro-temporal continuity on the

performance of our model. Similar to Fig. 9, the

two distances in Fig. 12 are plotted to different
scales for different classes of phonemes. This helps

to amplify the differences in the performance of

our model with and without the use of spectro-

temporal continuity. Restoration of all classes is

almost always better with the use of T–F masks

of reliability based on spectro-temporal continuity.

The biggest gain occurs in the case of restoration of
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Fig. 12. Influence of spectro-temporal continuity (CO) on the perform

white noise. ‘‘–CO’’ refers to the performance of our model without
vowels. This is as expected because the vowels pos-

sess the strongest spectro-temporal continuity.

We next examine the effect of PSOLA. Though

our explicit motivation for using PSOLA is to pro-

vide pitch synchronization, it also affects the spec-
trum of the synchronized frames and hence affects

the two distance measures. Fig. 13 shows the influ-

ence of PSOLA on the performance of our model.

The performance is almost always better with the

use of PSOLA. As observed with the use of spec-

tro-temporal continuity, the biggest gain occurs

in the case of restoration of vowels. The periodic-

ity property of vowels is less corrupted by the addi-
tion of masking sources, compared to properties of

consonants. Hence the use of PSOLA, which uti-

lizes interpolated pitch information, works best

for vowels. We also evaluate the performance

without the use of either PSOLA or spectro-tem-

poral continuity to examine the contribution of

schema-based restoration alone. Note that the
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ance of the proposed method in restoring phonemes masked by

the use of spectro-temporal continuity.
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Fig. 13. Results of excluding PSOLA (PS) after restoration. ‘‘�PS’’ refers to the performance of our model without the use of PSOLA.
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effects of PSOLA and spectro-temporal continuity

are not always additive. Fig. 14 shows the com-

bined influence of PSOLA and spectro-temporal

continuity on the performance of our model. The

performance is always better with the use of both

spectro-temporal continuity and PSOLA. The big-

gest gain occurs in the case of restoration of vowels

due to the aforementioned reasons. Figs. 12–14 to-
gether show that the contribution of spectro-tem-

poral continuity and PSOLA to restoration are

much smaller compared to the contribution of

schema-based restoration.

5.2. Results with ideal binary masks

To reveal the full potential of the proposed
model and additionally evaluate our mask genera-

tion methods, we test our model with the use of

ideal frame-level and T–F binary masks. We again

use white noise as the masker for illustration. The

performance with ideal frame-level binary masks is

shown in an earlier study (Srinivasan and Wang,
2003). An ideal frame-level mask assigns 1 to those

frames that have stronger speech energy and as-

signs 0 otherwise. Recognition accuracy is 87.5%

with ideal frame-level masks, a reduction in error

rate of 9.4%. Fig. 15 shows the performance of

our model using the estimated and ideal frame-le-

vel masks. Notice that the performance with the

use of estimated masks is close to that with the
use of ideal masks in the case of unvoiced conso-

nants while the difference is higher for the restora-

tion of voiced phonemes. This is probably due to

SFM of noisy frames not being consistently high

enough at the SNR considered in this study.

We now consider the performance with the use

of ideal T–F binary masks. An ideal T–F binary

mask is obtained from (3) by substituting the
power spectral density coefficient of the clean

speech signal for the power spectral density coeffi-

cient of the filtered signal. Recognition accuracy is

92.6% with ideal T–F masks, a reduction in error

rate of 26.7%. Fig. 16 shows the performance of

our model using the estimated and ideal frame
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T–F masks. As shown by the reduction in error

rate, the performance improvement is significant

with the use of ideal T–F masks when compared

to the performance with the use of estimated T–

F masks. This is probably due to a number of fac-

tors, including tracking by Kalman filtering not

being perfect and the use of a constant value for

d. Also note that all classes of phonemes are re-
stored to a very high quality, when using the ideal

T–F masks, highlighting the potential of our

approach.
6. Comparison with a Kalman filter model

We compare the performance of our model with
the Kalman filter based model of Masuda-Katsuse

and Kawahara (1999), which is a systematic study

on phonemic restoration and produces good re-

sults. They use cepstral tracking with Kalman fil-
tering according to the model in (4) and (5) to

predict and restore the masked frames. The vari-

ance of the noise in the observation model of (5)

is estimated to be proportional to the reliability

of results from a previous simultaneous group-

ing process (based on the harmonicity cue) for

the voiced speech signal. This strategy can not be

employed when speech additionally contains un-
voiced components. For the purpose of compari-

son with our model, we therefore use the same

values for this variable as described in Section

3.2. Additionally, as described in our mask gener-

ation stage, we perform one step backward

Kalman smoothing. Figs. 9–11 show the perform-

ance of the Kalman filter for various classes of re-

stored phonemes.
Under both objective criteria discussed in Sec-

tion 5, our method outperforms the Kalman filter-

ing model significantly. Notice that except in

restoring vowels, our model outperforms the
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Kalman filter model even without the use of PSO-

LA (Figs. 9 and 13). Similarly, except in restoring

vowels, the performance of our model is better with

the use of frame-level masks alone (Figs. 9 and 15).

Note that vowels are effectively restored by the

Kalman filter with sufficient spectral quality, but

the restoration may not be very natural. Fig. 17(a)
shows the resulting pitch track after restoration

of the approximant part /j/ in the diphthong

/aj/ in the utterance �Five� using the Kalman filter

model. The pitch track is discontinuous. This illus-

trates that the spectral magnitude restoration by

Kalman filtering alone may reduce the naturalness

of speech, just as the spectral magnitude restora-

tion by our model without the use of PSOLA (see
Section 4.3).

Unvoiced consonants have weak spectro-tem-

poral continuity with neighboring phonemes and

need prior knowledge for their restoration. Hence,

our method performs substantially better than the
Kalman filter model in restoring them. Fig. 18(a)

shows the results of restoration of the unvoiced

stop consonant /t/ using the Kalman filter model.

As there is no spectro-temporal continuity between

this phoneme and the preceding phoneme, the Kal-

man filter model is unable to restore the stop con-

sonant. The rapid change in the spectrum causes
inaccurate estimation of the AR parameters and

hence tracking by the Kalman filter breaks down.

The performance of our method in restoring

voiced consonants is also superior to that of the

Kalman filter. The performance of the Kalman fil-

ter model improves when clicks and cough are

used as maskers (Figs. 10 and 11). This shows that

errors in the identification of the noisy regions af-
fects our model slightly more than it does the Kal-

man filter model. Our model restores only those

frames which are labeled unreliable in the mask

generation stage (Section 3.2). Kalman filter affects

the information in not only the frames marked 0
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but also the neighbors of such frames. This is due
to the smoothing action of the Kalman filter.

Thus, if the neighbor of an unreliable frame is
noisy and the mask generation stage mislabels it
as 1, then the backward Kalman smoothing re-

duces the noise in this frame too.



Fig. 18. (a) The restoration of the masked phoneme /t/ in the word �Eight� by the Kalman filter model. For comparison, the restoration

using the speaker-independent (SI) template, is also shown in (b).
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7. Discussion

We have presented a schema-based model for
phonemic restoration, which performs signifi-

cantly better than a Kalman filtering model. As

stated earlier, the problem for any filtering/inter-

polation method occurs when the speech spectrum

changes rapidly. Hence, such methods perform

best for voiced phonemes (especially vowels) and

worst for unvoiced consonants. Models based on

temporal continuity cannot restore a phoneme
that lacks continuity with its neighboring pho-

nemes. Our model is able to restore such phonemes

by top-down use of word schemas. Hence, for pho-

neme reconstruction, we suggest that learned sche-

mas should be employed. Such schemas represent

prior information for restoration.

Our model also considers bottom-up continuity

in restoration by tracking and filtering the cepstral
coefficients. This is similar to the sequential group-

ing process in the model of Masuda-Katsuse and

Kawahara (1999). The difference primarily is in

the use of filtered output. Specifically, their model

uses the filtered output in all frequency units of a

noisy frame. Their approach works well when

speech is fully voiced. When speech additionally

contains unvoiced consonants, the filtered output
may be significantly different from the desired out-

put. In contrast, our model predicts which fre-

quency units in a noisy frame, after filtering,

might be close to the desired output and uses only

those units for bottom-up restoration.

A system using a speech recognizer for restora-

tion has been described previously by Ellis (1999).
His study, however, does not address key issues

concerning recognition of masked speech, identifi-

cation of dominant speech regions in the noisy
speech input, and resynthesis of speech (from

ASR output labels) for restoration of noisy speech

regions. Our model utilizes bottom-up properties

of noise to identify the noisy regions in the input

signal and applies missing data techniques for rec-

ognition based on reliable regions. The use of

missing data ASR results in high accuracy of

recognition, critical for any system using a speech
recognizer for restoration. The use of dynami-

cally time warped templates (based on results of

recognition) for restoration followed by pitch syn-

chronization results in high fidelity of the resynthe-

sized phonemes.

Our model of phonemic restoration addresses

sequential integration using both bottom-up spec-

tral continuity and top-down schemas. We have
shown that the use of bottom-up spectral continu-

ity increases the recognition accuracy and given

the recognition results, the top-down use of sche-

mas enhances the original noisy signal for possible

use in the following applications. The model can

be used in conjunction with existing, predomi-

nantly bottom-up, CASA systems to recover

masked data and, especially, to group unvoiced
speech with voiced speech. Schemas, when acti-

vated, can provide top-down construction in these

systems. The model may also be used for restoring

lost packets in mobile and Internet telephonic

applications. Though the motivation behind mask-

ing entire phonemes is to be consistent with exper-

iments on phonemic restoration (Warren, 1999),
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real-world noise may corrupt only parts of a pho-

neme or several phonemes at the same time. Our

model can handle these conditions well as long

as the masking of the speech data does not cause

recognition errors. This is because the system nei-
ther makes use of the knowledge that a complete

phoneme is masked nor knows the number of

masked phonemes.

The model is able to simulate certain aspects of

phonemic restoration by humans. First, the spec-

tral quality of restored phonemes by our model

is close to that of phonemes in clean speech. This

is consistent with the observation that perceptually
restored phonemes are indistinguishable from real

ones (Warren and Obusek, 1971). Second, our

schema-based model depends on correct recogni-

tion of the word containing the masked phoneme.

Hence no improvement in recognition accuracy ac-

crues due to restoration. This is in accordance with

findings that phonemic restoration does not en-

hance intelligibility of words lacking sentential
context (Bashford et al., 1992; Miller and Lickli-

der, 1950).

On the other hand, studies have shown that

phonemic restoration can help improve intelligibil-

ity of sentences (Bashford et al., 1992; Verschuure

and Brocaar, 1983; Warren, 1999). We have not

addressed this issue in this paper. A small

improvement in recognition results is obtained
due to restoration of some unreliable T–F units

by utilizing bottom-up spectral continuity. Further

increase in recognition accuracy might be obtained

by increasing the role of bottom-up cues in our

model. The energy in the unreliable T–F units

plays an important role in phonemic restoration

(Samuel, 1981). The spectral shape of the noise is

related to its ability to mask a phoneme. There is
also an optimal level of noise energy which results

in most effective phonemic restoration (Bashford

et al., 1992; Warren, 1999). However, the missing

data ASR employed here treats all these as coun-

ter-evidence for recognition of certain models. A

more effective use of the information in the

masked regions could help increase the accuracy

of the ASR. For example, the information in the
masked regions may be used to score a select num-

ber of recognizer-generated hypotheses of the

missing phoneme.
The model has been currently tested on digit se-

quences, not on meaningful sentences. To extend

to sentences, one would expand the missing data

recognizer to include a language model to provide

constraints based on syntax and other high-level
information (Young, 1996). In this view, meaning-

ful sentences provide contextual information to

improve automatic speech recognition, which is

otherwise made more difficult by the use of less

constrained vocabularies than that of digits.

There are different views on whether human

phonemic restoration involves ‘‘top-down’’ syn-

thesis of the masked phoneme. While Warren
et al. (1994) suggest that phonemic restoration rep-

resents auditory induction through top-down syn-

thesis, others argue that actual synthesis does not

occur and identification of the missing phoneme

is the end result of phonemic restoration (Breg-

man, 1990; Repp, 1992). Our model explicitly aims

to synthesize the spectral information (and subse-

quently the waveform) of a masked phoneme,
and hence our model is in accordance with the

auditory induction explanation.

Our method of estimating the mask for missing

data recognition is relatively simple, as it is based

on only 2 frame-level and 1 intra-frame features,

and masks may be more accurately estimated

using a large number of features (Seltzer et al.,

2000). How to generate a binary mask for missing
data recognition, when maskers are band-limited

and last longer than a single phoneme, also needs

to be addressed. Future work will attempt to alle-

viate these problems by integrating the model with

existing CASA systems (see e.g., Hu and Wang,

2004). The distribution of spectral tokens in words

such as ‘‘Eight’’ may have more than one mode.

Robust training of templates may not be adequate
for such words. Template training by clustering

should further enhance the ability of the generated

templates to handle the variability in speaking

style. Also, our model is based on recognition

and hence not applicable when recognition fails.

Combining recognition with top-down restoration

and bottom-up cues should help address this prob-

lem. When recognition is successful, the top-down
use of schemas can supplement bottom-up

enhancement. With online detection of recognition

failures (Huang et al., 2003), bottom-up processing
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may be prominently applied when recognition

fails. More generally, schema-based restoration

and bottom-up segregation should probably inter-

act in some iterative manner.
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