A model for multitalker speech perception
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A listener’s ability to understand a target speaker in the presence of one or more simultaneous
competing speakers is subject to two types of masking: energetic and informational. Energetic
masking takes place when target and interfering signals overlap in time and frequency resulting in
portions of target becoming inaudible. Informational masking occurs when the listener is unable to
distinguish target and interference, while both are audible. A computational model of multitalker
speech perception is presented to account for both types of masking. Human perception in the
presence of energetic masking is modeled using a speech recognizer that treats the masked
time-frequency units of target as missing data. The effects of informational masking are modeled as
errors in target segregation by a speech separation system. On a systematic evaluation, the
performance of the proposed model is in broad agreement with the results of a recent perceptual

study. © 2008 Acoustical Society of America. [DOI: 10.1121/1.2982413]

PACS number(s): 43.71.An, 43.72.Dv, 43.72.Ne [DOS]

I. INTRODUCTION

In everyday listening conditions, the acoustic input
reaching our ears is often a mixture of multiple sound
sources. In such situations, the human ability to perceive a
target source is susceptible to the effects of masking, which
is defined as the increase in the audibility threshold of the
target (Mayer, 1876). In particular, our ability to attend to
and understand a target speaker in the presence of other com-
peting speakers is affected by energetic and informational
masking (Tanner, 1958; Brungart er al., 2001). Energetic
masking refers to the phenomenon in which a stronger signal
masks a weaker one within a critical band (Fletcher, 1940).
Recently, the term informational masking has been used to
refer to the perceptual degradation caused by the listener’s
inability to segregate a target signal from interference (Car-
hart et al., 1969; Pollack, 1975) (for a review, see Watson,
2005). Informational masking, therefore, depends on the
similarity of segregation cues such as voice characteristics
(Brungart et al., 2001) and spatial locations (Freyman et al.,
1999) associated with individual signals. In this paper, we
propose a model for recognizing target speech in the pres-
ence of both energetic and informational masking under
monaural conditions.

Spectrotemporal overlap between target and interference
is a prime cause of energetic masking. Portions of a target
signal subject to energetic masking become inaudible at the
periphery of the auditory system and are unavailable for sub-
sequent processing. A missing-data speech recognizer
(Cooke et al., 2001) is therefore used to model speech per-
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ception under energetic masking conditions. When target
speech is contaminated by additive interference, some time-
frequency (T-F) regions are dominated by target energy
while some of the rest are dominated by interference. The
missing-data method treats the former T-F units as reliable
and the latter T-F regions as missing or unreliable during
recognition.

The missing-data recognizer requires a T-F mask (typi-
cally binary) that provides information about which T-F re-
gions of the mixture signal are reliable and unreliable. The
task of generating such a mask is akin to the task of segre-
gating the target from the mixture. The process by which the
human auditory system is able to organize the acoustic input
into components that correspond to individual sources in the
input is known as auditory scene analysis (ASA) (Bregman,
1990). Therefore, informational masking is closely related to
ASA. Hence, we adapt a monaural computational ASA
(CASA) system to estimate a binary mask that selects those
T-F regions of the mixture where the target is stronger than
the interference (Hu and Wang, 2004). The system of Hu and
Wang (2004) is a voiced-speech segregation system that uti-
lizes differences in periodicity between target and interfer-
ence. The similarities between target and interference char-
acteristics degrade the performance of the CASA system and
therefore contribute to informational masking in our model.

Lippmann and Carlson (1997) used a priori reliabilities
of T-F regions to examine the effects of noise, low- and
high-pass filtering, and interruptions by periodic silent gaps
on the performance of a missing-data recognizer on a digit
recognition task. This is then compared to human perfor-
mance on a consonant-vowel-consonant syllable recognition
task. Cooke (2006) also used a missing-data recognizer to
model the effects of energetic masking on listeners’ percep-
tion in babble noise. His model uses a priori knowledge of
target-dominant T-F regions or “glimpses.” In addition to
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modeling energetic masking, Barker and Cooke (2004) mod-
eled informational masking by performing grouping using
trained speech models in a top-down manner (see Barker et
al., 2005). The present study addresses the problem of mod-
eling the effects of both energetic and informational masking
on multitalker speech perception by combining speech seg-
regation based on a priori pitch and missing-data recognition
(see Srinivasan and Wang, 2005a for an earlier version).

The model proposed here could also serve as an archi-
tecture for robust speech recognition in the presence of in-
terfering speech sources. It is well known that the perfor-
mance of automatic speech recognizers (ASRs) degrades
rapidly in the presence of other sound sources (Huang er al.,
2001; Srinivasan, 2006). Speech recognizers are typically
trained in an environment containing a single speech source
and face a problem of mismatch when used in conditions
where target speech occurs simultaneously with other
sources. To mitigate the effect of this mismatch on recogni-
tion, “noisy” speech is typically preprocessed by speech
separation systems. However, in many realistic applications,
the output of typical speech segregation algorithms contains
distortions in segregated speech not seen during ASR train-
ing. These distortions cause substantial degradation in recog-
nition performance (Cooke er al., 2001). Researchers have
previously shown that combining binaural speech segrega-
tion with missing-data methods can improve target speech
recognition under multitalker conditions (Roman et al.,
2003; Palomaki et al., 2004). Unlike these binaural systems,
the model presented here combines monaural target segrega-
tion and missing-data recognition. Our evaluations show that
the proposed model can improve robust speech recognition
under monaural multitalker conditions.

Models such as the articulation index (Fletcher, 1953)
and the speech-transmission index (Steeneken and Houtgast,
1980) predict speech intelligibility in the presence of noise
and other certain distortions. As pointed out by Cooke
(2006), the use of an ASR system as a component in a model
of human speech recognition additionally enables it to
predict listener responses on a per-utterance basis. The
purpose of the present study is twofold. First, similar to
Cooke (2006), the proposed system is used to model listener
performance on a per-utterance basis using a common mul-
titalker speech corpus. Second, the proposed model is in-
tended to serve as a potential paradigm for automatic speech
recognition in multitalker situations.

The rest of the paper is organized as follows. In the next
section, we briefly review a recent study that systematically
examined the degradation in speech perception caused by
energetic and informational masking using a binary masking
procedure (Chang, 2004; Brungart et al., 2006). Section III
contains a detailed presentation of our proposed model. The
model has been systematically evaluated on the same task
used in the perceptual study presented in Sec. II. The evalu-
ation results and a comparison with listener performance are
presented in Sec. IV. Finally, conclusions are given in Sec. V.
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Il. ENERGETIC AND INFORMATIONAL MASKING
EFFECTS IN MULTITALKER SPEECH PERCEPTION

A recent study (Chang, 2004; Brungart et al., 2006) uses
binary T-F masks to isolate the effects of energetic and in-
formational masking on the intelligibility of a target speech
signal in the presence of one or more competing speech sig-
nals. Specifically, Brungart et al. (2006) utilized an ideal
binary mask that is obtained from premixed target and inter-
ference as follows. A unit in the ideal binary mask is as-
signed a value 1 if the signal-to-noise ratio (SNR) within the
corresponding T-F unit exceeds a predefined local SNR cri-
terion (LC) value; it is labeled 0 otherwise. To generate this
mask, target and interfering signals are first analyzed using a
128-channel gammatone filterbank whose center frequencies
are quasilogarithmically spaced from 80 Hz to 5 kHz
(Patterson et al., 1988). The energy at the output of each
filter is calculated every frame for both target and interfer-
ence. Each rectangular frame is 20 ms long with a 10 ms
frame shift (a frame rate of 100 Hz). The ideal binary mask
is used to resynthesize a signal by retaining only those T-F
units in the mixture where the local SNR exceeds the speci-
fied LC value. Specifically, the gammatone filter responses of
a mixture are weighted by the binary mask and summed
across frequencies (after accounting for across-filter phase
shifts) to yield a resynthesized signal. The resynthesized sig-
nal is then used in a series of experiments to study the effects
of the number of interfering talkers and their sex on the two
types of masking.

The speech corpus used by Chang (2004) and Brungart
et al. (2006) is the coordinate response measure (CRM) cor-
pus (Bolia er al., 2000). This corpus consists of utterances
from four male and four female speakers produced according
to the grammar, “READY ($call-sign) GO TO ($color)
($digit) NOW.” There are eight call signs, four colors, and
eight numbers (Bolia et al., 2000) and the target utterance
always contains the call sign. “BARON;” e.g., “READY
BARON GO TO RED ONE NOW.” The interference utter-
ance consists of a call sign, a color, and a number different
from that of the target. Figure 1 shows the effect of applying
the ideal binary mask to a mixture of two speech utterances
from this corpus. Figures 1(a) and 1(b) show the cochlea-
grams of a target speech utterance and an interference utter-
ance, respectively. A cochleagram is a T-F representation of a
signal analogous to a spectrogram and is generated using the
gammatone filterbank decomposition of a signal as described
before (see Wang and Brown, 2006). The target signal cor-
responds to a male speech utterance, “‘READY BARON GO
TO BLUE ONE NOW.” The interference corresponds to a
female utterance, “READY ARROW GO TO RED THREE
NOW.” Figure 1(d) shows the cochleagram of a mixture of
target and interference at 0 dB SNR. The ideal binary mask
for this mixture corresponding to a LC value of 0 dB is
shown in Fig. 1(c). T-F units labeled 1 in the mask are shown
in black and white represents the T-F units labeled 0. This
mask is applied to the mixture in Fig. 1(d) and the results are
presented in Fig. 1(e). Note that the application of the binary
mask results in the removal of the interference-dominant T-F
units from the mixture.
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FIG. 1. An illustration of the ideal binary mask for a mixture of a male target utterance and a female interference. (a) The cochleagram of the male target
utterance. (b) The cochleagram of the female interference utterance. (c) An ideal binary mask at 0 dB LC value. The target-dominant T-F units are marked
black and the interference-dominant T-F units are marked white. (d) The cochleagram of the mixture. (e) The cochleagram obtained from (d) by applying the

ideal mask in (c).

Using signals resynthesized by applying such ideal bi-
nary masks to multitalker speech mixtures, Brungart et al.
(2006) asked listeners to identify the keywords (the color and
the number) in the target phrase. The target-to-masker ratio
(TMR) in the mixtures was fixed at O dB. While SNR refers
to the ratio of target energy and combined interference en-
ergy, TMR refers to the ratio of target energy and energy of
one interference in the mixture (interference signals have
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equal energy) (Brungart et al., 2001). Figure 2 shows the
effects of varying the number of competing talkers on the
correct identification of keywords in the target phrase as a
function of the LC value. The results are shown in terms of
accuracy of recognizing both the color and the number in the
target phrase at different LC values, ranging from —60 to
+30 dB in steps of 3 dB. A control, “no mask™ condition, is
also included to assess listener performance directly on the
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FIG. 2. Percentage of trials in which the listeners identified the keywords in
the target phrase correctly (from Brungart ez al., 2006). The error bars rep-
resent 95% confidence intervals. The figure shows the effect of varying the
number of competing talkers on listener performance as the LC value is
varied in steps of 3 dB.

mixture in each multitalker condition. In other words, the
signals generated in this control condition did not undergo
any binary mask processing.

Based on the results in Fig. 2, Brungart er al. (2006)
reached the following main conclusion. The information lost
in the target signal due to energetic masking is argued to be
approximately the same as that resulting from the resynthesis
using an ideal binary mask with a LC value of 0 dB. Note
that this mask removes all interference-dominant T-F units
and, despite distortions caused by the removal of certain T-F
regions of the mixture, the resulting intelligibility is quite
high. Brungart et al. (2006) also suggested that the signal
resynthesized from an ideal binary mask with a positive LC
value of & dB (region I) causes energetic masking equivalent
to that by a mixture with SNR of —& dB [see also Fig. 9(a)].
Therefore, the decrease in listener performance in region I as
LC increases shows the increase in the deleterious effects of
energetic masking. On the other hand, decreasing the LC
value below 0 dB allows for the progressive introduction of
interference energy in the resynthesized signal. This leads to
an increase in the level of informational masking. Hence,
energetic masking effects dominate listener perception in re-
gion I, while informational masking effects dominate in re-
gion III of Fig. 2. The signals employed in region II include
some T-F units dominated by interference. However, listener
performance seems to be largely unaffected by the interfer-

ence contained in those units. Incidentally, region II, where
near perfect performance is obtained, is centered at a LC
value of —6 dB.

lll. A COMPUTATIONAL MODEL

Listener performance gradually degrades as the LC
value decreases in region III of Fig. 2. We propose to at-
tribute this degradation to performance limitations of ASA.
In other words, listeners use differences in the voice charac-
teristics of target and interfering talkers to segregate the tar-
get speaker with varying degrees of success. Additionally,
region II demonstrates the robust performance of listeners in
the presence of energetic masking as isolated by the use of
ideal binary masks. These observations motivate our model
for multitalker speech perception shown in Fig. 3. The pro-
posed model is a two-stage system that combines a CASA
system with a missing-data ASR. The input to the model in
Fig. 3 is a mixture of target and interference, sampled at
20 kHz. We use the same auditory filterbank decomposition
of the input signal as used by Brungart ef al. (2006) (see Sec.
II). The output is used to generate feature vectors for recog-
nition and as input to a monaural CASA system (Sec. III A).
In our model, the monaural CASA system of Hu and Wang
(2004) is adapted to segregate target from interference. The
computational goal of the CASA system is an ideal binary
mask (Wang, 2005). Human perception in the presence of
energetic masking is modeled using a missing-data ASR that
treats the masked T-F regions as missing. The similarities
between target and interference cause, however, deviations in
the estimation of the ideal binary mask by the CASA system.
This corresponds to simulated informational masking in our
model.

Figure 4 illustrates the effect of errors in the estimation
of the ideal binary mask. Figure 4(a) shows the cochleagram
of the same mixture shown in Fig. 1(d). Figure 4(b) shows
the ideal binary T-F mask generated at the LC value of O dB.
As mentioned before, this mask removes all interference-
dominant T-F units. Figure 4(c) shows an estimated binary
mask produced by the CASA system. Due to errors in target
segregation, this mask contains many interference-dominant
T-F units. Application of this mask to the cochleagram in
Fig. 4(a), therefore, retains some interference energy in the
masked mixture as shown in Fig. 4(e). Figure 4(d) shows the
cochleagram obtained from (a) by applying the ideal mask in

SN .11, FS
Informational Masking Energetic Masking
_p| Auditory | Pitchbased | | _ | Missing-data
Multitalker mixture filterbank | Grouping | Binary Mask o ASR

E

FIG. 3. Schematic of the proposed model. The input mixture signal is analyzed by an auditory filterbank in successive time frames. The output is fed to a
monaural CASA system that uses pitch tracks of the individual sources in the mixture to produce a binary mask that selects the T-F regions in the mixture
where target dominates interference. This mask is used by the missing-data recognizer to decode the input.
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FIG. 4. An illustration of informational masking caused by deviations in target segregation via binary mask estimation. (a) The cochleagram of the mixture.

(b) The ideal binary mask at 0 dB LC value.

(c) An estimated binary mask. The target-dominant T-F units in (b) and (c) are marked black and the

interference-dominant T-F units are marked white. (d) The cochleagram obtained from (a) by applying the ideal mask in (b). (e) The cochleagram obtained

from (a) by applying the estimated mask in (c).

(b). The degradation in the model performance when using
the cochleagram in Fig. 4(e) compared to the one in Fig. 4(d)
is attributed to informational masking.

A. Pitch-based segregation of target

Under monaural conditions, the human auditory system
is believed to segregate a target speech source from various
interferences using several primitive cues, including differ-

J. Acoust. Soc. Am., Vol. 124, No. 5, November 2008
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ences in pitch (Bird and Darwin, 1997; Bregman, 1990;
Brokx and Nooteboom, 1982) and onset, as well as prior
knowledge (Bregman, 1990). Pitch has been successfully
used for segregation of voiced speech in many CASA sys-
tems (Brown and Cooke, 1994; Hu and Wang, 2004). Here,
we adapt the speech separation system by Hu and Wang
(2004) to segregate target from interference. This system is
chosen as it shows robust performance when tested with a
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variety of intrusions. This system has two main stages: seg-
mentation and grouping. In segmentation, the input signal is
decomposed into a collection of contiguous T-F regions that
are dominated by only one sound source. During grouping,
the segments that likely belong to the same source are
grouped together.

Consistent with psychophysical studies (Bird and Dar-
win, 1997), the system of Hu and Wang (2004) applies dif-
ferent processing strategies in the low- and high-frequency
ranges. It has been shown that when neighboring channels
respond to the same source, their autocorrelation responses
are similar (Brown and Cooke, 1994; Wang and Brown,
1999). Therefore, cross correlation between adjacent chan-
nels indicates whether the filter channels respond to the same
source. Hence, in the low-frequency range (<800 Hz), the
system generates segments based on temporal continuity and
cross-channel correlation. At higher frequencies, due to its
wider bandwidth relative to harmonic spacing, a gammatone
filter responds to multiple harmonics. Hence, the system uses
the envelope characteristics of gammatone filter responses in
the high-frequency range. Specifically, the cross-channel cor-
relation of envelopes is used for segmentation along with
temporal continuity.

For grouping segments, the system uses similarity in pe-
riodicity. The autocorrelation of a filter response in a frame
encodes the periodicity within the corresponding T-F unit.
Hence, if in a T-F unit the maximum autocorrelation value
within the plausible pitch range has a lag consistent with the
pitch lag of the target source in that frame, it is labeled as
target-dominant (or 1); it is labeled interference dominant (or
0) otherwise (Hu and Wang, 2004). Furthermore, at high fre-
quencies, a response envelope fluctuates at a rate consistent
with the frequency of the dominant pitch, and amplitude
modulation rates are therefore used for grouping (see also
Cooke, 1993). To illustrate the potential of the proposed ap-
proach for segregation, pitch tracks and pitch strengths are
derived a priori from premixed target and interfering signals
using PRAAT (Boersma and Weenink, 2002). Note that robust
multipitch tracking of two or more sources is currently a
challenging problem (Wang and Brown, 2006).

Hu and Wang (2004) utilized only target pitch contours
for grouping. However, listeners appear to utilize the pitch
information of interfering sources too (de Cheveigne, 1997).
In particular, the results of Culling er al. (2005) suggest that
the auditory system can “perceptually remove” the harmonic
components of at least one interference. Therefore, we adapt
the system of Hu and Wang (2004) by expanding the group-
ing procedure as follows. First, we use the system of Hu and
Wang (2004) to group segments based on the dominant pitch
in a time frame. The dominant pitch in a frame is the one that
has the highest associated pitch strength, which is measured
as the height of the normalized autocorrelation value at the
pitch lag. Second, the identity of the dominant pitch is then
used to derive the final binary T-F mask in the following
fashion. If the dominant pitch at a particular frame belongs to
the interferer, we discard the grouped segments in that frame.
Specifically, the grouped segments in that frame are set to 0
in the mask and the rest of the T-F units are set to 1 (see also
de Cheveigne, 2005 for alternate approaches). On the other
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hand, if the dominant pitch belongs to the target, the grouped
T-F units are retained. In this case, the grouped T-F units are
labeled 1 in the mask, and other T-F units in that frame are
labeled 0. We find that the proposed system performs better
than the original system of Hu and Wang (2004). The perfor-
mance improvement is especially significant when the origi-
nal mixture SNR is high. In this case, canceling harmonic
portions of interference helps retain more target-dominant
T-F units than grouping harmonic portions of target alone.
Figure 5 shows a comparison between the proposed system
and the system of Hu and Wang (2004). The results are gen-
erated using the same target and interference in Figs. 1(a)
and 1(b), mixed at a SNR of 20 dB. Figure 5(a) shows the
binary mask containing the segregated voiced portions by
primarily canceling the interference-dominant T-F units. The
segregated T-F units are shown in black. All other T-F units
are shown in white. Figure 5(b) shows the mask generated by
the system of Hu and Wang (2004). For comparison, the
ideal binary mask corresponding to this mixture, generated at
0 dB LC value, is shown in Fig. 5(c). Notice that the system
of Hu and Wang (2004) wrongly labels some target-dominant
T-F units as 0.

Figure 6 shows how the binary mask corresponding to
the target is generated by using pitch strengths of both target
and interference. Figure 6(a) shows a binary mask containing
the segregated voiced portions corresponding to the domi-
nant pitch in each frame. The segregated T-F units are la-
beled 1 and shown in black. All other T-F units are labeled 0O
and shown in white. This mask is generated by using the
mixture in Fig. 1(d) as input to the proposed CASA system.
The dominant pitch in a frame may correspond to either
target or interference. Figure 6(b) shows how pitch strengths
of target and interference vary in the mixture. If the pitch
strength of the interference is higher in a frame, mask labels
are flipped; they are retained otherwise. The resulting mask
is shown in Fig. 6(c). Currently, we do not process unvoiced
frames. For such frames, all frequency units are labeled 0.
The output of the CASA system in the form of a binary mask
is then used by the missing-data ASR to recognize target
speech.

B. Missing-data recognition

The feature vectors for the missing-data recognizer con-
sist of the instantaneous Hilbert envelope at the output of
each gammatone filter, smoothed using a first-order filter
with 8 ms time constant and log compressed as suggested by
Cooke et al. (2001). The missing-data recognizer is an
HMM-based ASR that makes use of spectrotemporal redun-
dancy in speech to recognize a noisy signal based on its
target-dominant T-F units. Given a speech observation se-
quence X, the problem of word recognition is to maximize
the posterior P(W|X), where W is a valid word sequence.
When parts of X are masked by noise or other distortions, a
binary T-F mask can be used to partition X into its reliable
and unreliable constituents as X, and X, where X=X, UX,,.
The missing-data ASR treats the T-F regions labeled O as
unreliable data during recognition. Specifically, it modifies
the computation of the observation probability in a state of

S. Srinivasan and D. Wang: A model for multitalker speech perception
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FIG. 5. An illustration of improved segregation using the proposed approach. (a). The binary mask generated by the proposed system. T-F units determined
to be target-dominant are shown in black. T-F units consistent with the interference pitch are canceled and shown in white. (b) The binary mask produced by

the system of Hu and Wang (2004). (c) The ideal binary mask.

an HMM (hidden Markov model) based ASR to handle miss-
ing or unreliable data (Cooke et al., 2001). The observation
density in an ASR is typically modeled using a mixture of
Gaussians as follows:

M

p(xlg) = 2 pklg)p(xlk.q), (1)
k=1

where x is the spectral energy feature vector in a frame, M is
the number of mixture components, k is the mixture index, ¢
is an HMM state, p(k|qg) is the mixture weight, and
px|k,q)=N(x; py 424 ). Note that Nx;uy,,2,) denotes
that x follows a normal (Gaussian) distribution with mean
My, and variance X . When parts of x are corrupted by
interference, the missing-data ASR marginalizes unreliable
feature dimensions in the computation of the likelihood in
Eq. (1). Typically, the various dimensions of the feature vec-
tors are modeled as independent given a mixture. Theoreti-
cally, this is a good approximation if an adequate number of
mixtures are used (McLachlan and Basford, 1988). Hence, in
the presence of unreliable data, the computation of the ob-
servation density is modified as
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p(xlg) =2 pklp 1 p(x,

k=1 j

k’ q)dxu,i’

k’ CI) H J p(xuj
(2)

where x,; and x,; correspond to the spectral energies in a
reliable (j) and an unreliable (i) feature dimension, respec-
tively. Note that p(x,,_,-\k,q):./\/(x,.,_,-;p,kyqyj,oﬁ.q,j).

Furthermore, if the range for the true value of the unre-
liable feature is known, it provides bounds (limits) over
which the unreliable feature is integrated. Under additive in-
terference conditions, the true speech value X, ;, in the unre-
liable part, may be constrained as 0<X,;<y,,; (Cooke et al.,
2001; Srinivasan and Wang, 2007), where y,, ; is the observed
(mixture) spectral energy. This constraint is then used as
bounds on the integral in Eq. (2) as

M
p(x|q) = EP(HC])H p(xr,j k»q)dxu,i'
k= J

1

ko) Il f » Wp(xu,i
i 0
(3)

This bounded marginalization method is shown in Cooke
et al. (2001) to have a better recognition score than the
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FIG. 6. An illustration of target segregation based on the dominant pitch. (a) The binary mask generated by the CASA system using the pitch cue. The input
to the system is the mixture shown in Fig. 1(d). If the periodicity of a gammatone filter response is consistent with the dominant pitch in that frame, it is shown
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simple marginalization method, and is hence used in all our
experiments.

IV. EVALUATION RESULTS

To facilitate comparison with the behavioral data from
Chang (2004) and Brungart er al. (2006), we have also
evaluated our model using the CRM corpus (Bolia er al.,
2000). Twenty-three (“Ready,” “Baron,” “Charlie,” “Arrow,”
“Laker,” “Hopper,” “Ringo,” “Tiger,” “Eagle,” “Goto,”
“Blue,” “Green,” “Red,” “White,” “Now,” and the numbers
1-8) speaker-independent, word-level HMMs are trained. All
models have eight states, whose output distribution is mod-
eled as a mixture of ten Gaussians with diagonal covariance.
The models are trained using 1792 utterances from 3 male
talkers (talkers 1-3) and 4 female talkers (talkers 4—7) in this
database chosen arbitrarily. The testing data consist of utter-
ances from a male talker (talker 0) not utilized during train-
ing and containing the call sign “BARON.” Similar to the
experiments by Brungart et al. (2006), one, two, and three
utterances from the same talker are added to target as inter-
ference at 0 dB TMR. Thus the SNRs corresponding to two,
three, and four talker mixture conditions are 0, -3, and
—4.8 dB, respectively. Interference utterances contain call
signs, numbers, and colors different from the target one.
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Each testing condition comprises 256 mixture utterances. An
HMM toolkit, HTK (Young et al., 2000), is used for training.
For testing, a decoder incorporating the missing-data method
is used. The task is to recognize both color and number in the
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FIG. 7. Percentage of utterances in which the model identified the keywords

in the target utterance correctly. The figure shows the model’s performance
with respect to the LC value under various multitalker conditions.

ol
No Mask

S. Srinivasan and D. Wang: A model for multitalker speech perception



Region Il Region |

Region Il
100 T i

©
3 80
[,
o w L
O3 60
= C
c o 401
8>
2
o 2 oo 1
a8 20

0 | | | | | I | |

-60 -50 -40 -30 -20 -10 0 10 20 30
e
o
(9]
=
o
O~
€3
(2]
g S -@- Same Talker L
o 20F - Same Sex L

—p— Different Sex

ol I I I I ! ! I I
—60 -50 —40 -30 -20 -10 0 10 20 30

LC Value (dB)
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mance with two talkers as a function of the LC value. The top panel shows
the performance of listeners in correctly identifying the keywords in the
target utterance (from Chang, 2004). The bottom panel shows the perfor-
mance of the proposed model on the same task.

target utterance as described in Sec. II. We recognize the
contents of the target utterance in the mixture by using the
following grammar: “READY BARON GOTO ($color)
($digity NOW.” Recognition performance on the target-only
test-data input is 100%. Note that the chance performance on
this task is 3.125%.

Similar to the procedure employed by Brungart et al.
(2006), the multitalker mixture is resynthesized using ideal
binary masks with varying LC values (see also Sec. II). The
resynthesized signal is used as input to the proposed model.
Figure 7 shows the performance of the proposed model as a
function of the LC value under different multitalker condi-
tions. Similar to the evaluation used by Brungart et al.
(2006), performance in Fig. 7 is shown in terms of percent-
age of utterances in which the model correctly identified all
the keywords in the target phrase.

While the absolute recognition rates at some LC values
differ from human performance, the model is able to simu-
late the general pattern of systematic listener performance
seen in Fig. 2. As in Fig. 2, informational masking can be
seen to have a larger effect on the recognition performance.
The model saturates to the ceiling performance in region II.
The improvement compared to the no mask condition shows
that the removal of interference-dominant T-F units from the
input contributes to substantial performance gains. As in Fig.
2, the peak performance is obtained in an interval of LC
values approximately around —6 dB. As the number of talk-
ers in the mixture increases, both model and human perfor-
mance significantly degrade in region IIl. In comparison,
smaller differences are seen in region I across the different
multitalker conditions. Overall, the comparison with Fig. 2
shows that the proposed model is able to replicate listener
perception under various multitalker conditions in the pres-
ence of both energetic (region I and parts of region II) and
informational masking (region III).

Figure 8 shows the results of a second experiment in
which the effects of voice characteristics of an interfering
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talker are examined. The top panel in Fig. 8 shows listener
performance under three different interference conditions:
Same talker, a different talker of the same sex, and a differ-
ent sex talker (Chang, 2004). The bottom panel shows the
performance of our model. In evaluating the model perfor-
mance under the “same sex” condition, interference utter-
ances are chosen randomly from talkers 1 to 3. For the “dif-
ferent sex” condition, interference utterances are chosen
from talkers 4 to 7. The results of evaluation of our model
and the human data show that the differences in voice char-
acteristics between target and interference have only minor
effects on the performance in regions I and II. The peak
performance in both cases exhibits a plateau in region II.
Recall that the SNR is the same across the three interference
conditions. However, as with human listeners, the proposed
model is able to utilize the larger differences in voice char-
acteristics to obtain improved performance under the same
sex and the different sex conditions in region III. Also, the
model performance in the different sex condition is better
that in the same sex condition. These indicate that the model
is able to simulate the dependency of informational masking
on the similarities in voice characteristics of target and inter-
ference.

Brungart er al. (2006) additionally examined the percep-
tion of a target speech utterance in the presence of nonspeech
interferences. In this experiment, they considered two inter-
fering sources: a continuous noise and a modulated noise.
The continuous noise was generated by filtering a Gaussian
noise source with the average long-term spectrum of all ut-
terances in the CRM corpus. The modulated noise source
was generated by further modulating the continuous noise
masker with the envelope of a randomly chosen utterance in
the CRM corpus (Brungart et al., 2006). The resulting lis-
tener performance at various SNR and LC values is shown in
Fig. 9(a). In “method 1,” the SNR is fixed at 0 dB and the
LC value is varied in steps of 3 dB. In “method 2,” the LC
value is kept constant at O dB and the SNR is varied from
0 to 27 dB in steps of 3 dB. Additionally, Brungart et al.
(2006) performed a control experiment in which the listener
performance was assessed without any binary mask process-
ing at the aforementioned SNRs (equivalent to the no mask
condition described in Sec. II), referred to as “unsegregated”
in Fig. 9(a). The results in Fig. 9(a) were also used to vali-
date the assumption that a 6 dB increase in the LC value at a
fixed SNR in region I in Fig. 2 is equivalent to a decrease in
mixture SNR of —§ dB at a fixed LC value. Figure 9(b)
shows the model performance in the continuous and the
modulated noise conditions. Note that for both model and
listeners, the performances in method 1 and method 2 con-
ditions are quite similar. While the model performance in the
unsegregated condition is well below the listener perfor-
mance, the model is able to simulate the increased intelligi-
bility in the modulated noise condition compared to that in
the continuous noise condition. Additionally, the model per-
formance is still better than a direct recognition of mixture
speech. For example, at 0 dB SNR, the model achieves 16%
and 17% absolute improvements in accuracy over the base-
line recognition performance. The mask estimated by the
proposed CASA system incorrectly labels many interference-
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dominant T-F units as reliable, causing insufficient target
segregation. This is the cause of the performance gap (com-
pared to human listeners) in the unsegregated condition.

As described in Sec. I, the second objective of the
present study is to examine the efficacy of the proposed
model for robust speech recognition under multitalker con-
ditions. In Fig. 7 and in the bottom panel of Fig. 8, the no
mask condition represents a control condition in which the
mixture signal is used directly as input to the model. The
model performance with this input, therefore, shows the im-
provement over the baseline recognition performance. Table
I shows the performance of the proposed model in the no
mask condition. Performance is again reported in terms of
the percentage of utterances in which the model correctly
identified both keywords spoken by the target speaker. As
mentioned before, the interference consists of one, two, and
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three utterances from the same talker as target at a TMR of
0 dB. Table I also shows the baseline performance obtained
by using the mixture directly as input to the ASR. Note that,
by performing segregation based on a priori pitch, the model
is able to improve significantly over the baseline perfor-
mance across all multitalker conditions. The performance

TABLE I. Keyword recognition accuracy (%) of the proposed model with
respect to the number of talkers in the mixture. For comparison, the baseline
accuracy is also shown.

No. of talkers Baseline performance Model performance

2 15.6 43.6
3 6.2 16.9
4 43 8.7

S. Srinivasan and D. Wang: A model for multitalker speech perception



TABLE II. Keyword recognition accuracy (%) of the proposed model across
various interference conditions. For comparion, the baseline accuracy is also
shown.

Interference type Baseline performance Model performance

Same talker 15.6 43.6
Same sex 17.9 52.3
Different sex 21.2 69.9

improvement is especially substantial in the two talker con-
dition. This is because the SNR in the two talker condition is
higher. Also, with additional talkers, the mixture becomes
more similar to babble and segregation based on dominant
pitch deteriorates.

Similarly, Table II compares the model and the baseline
performance under same talker, same sex and different sex
conditions. There are two talkers in the mixture at an SNR of
0 dB. The pitch-based grouping component of the model is
able to utilize the larger differences between target and inter-
ference pitch contours under same sex and different sex con-
ditions to produce better segregation results. This leads to a
substantial improvement in the performance of the missing-
data recognizer. In contrast, the baseline performance only
changes slightly under those conditions.

V. DISCUSSION

We have presented a model for monaural multitalker
speech perception that is able to account for the effects of
both energetic and informational masking in multitalker con-
ditions. We have conducted a systematic comparison be-
tween the model performance and listener results on a com-
mon speech corpus and shown that the performance of the
proposed model is in broad quantitative agreement with be-
havioral data. We have also shown that differences between
target and interference pitch ranges contribute to a reduction
in informational masking (see also Oh and Lutfi, 2000) by
improving target speech segregation. Hence, the performance
of the model is better in the same sex and the different sex
conditions compared to that in the same talker condition.
Notice that the best performance, for both human listeners
and the proposed model, is obtained under the different sex
condition. This is expected due to the difference in voice
characteristics between target and interference being largest
under this condition.

Our study also demonstrates that combining target
speech segregation via CASA and missing-data recognition
can provide significant improvement over baseline recogni-
tion performance. Hence, the proposed model shows poten-
tial for robust speech recognition under multitalker condi-
tions. The present study, therefore, confirms previous
findings that the harmonicity of voiced speech can be suc-
cessfully exploited to estimate masks for missing-data recog-
nition of monaural noisy speech mixtures (Seltzer et al.,
2000; Brown et al., 2001; van Hamme, 2004). Additionally,
our study extends previous studies to multitalker conditions.

The results of the present study could be used in con-
junction with the findings of Brungart er al. (2006) and
Chang (2004) to design appropriate binary masking thresh-
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olds for CASA systems. Note that CASA systems must esti-
mate the ideal T-F mask directly from the mixture. As in the
present study, the computational goal of most current CASA
systems is an ideal binary mask generated an LC value of
0 dB. The results of Brungart et al. (2006) and Chang (2004)
suggest that speech segregated by using a —6 dB LC value
may be a better choice for improving speech intelligibility
for human listeners. However, our results indicate that for
missing-data recognition, this choice of LC value may only
be appropriate in the two talker condition. For more than two
talkers, the peak performance is centered at a value higher
than —6 dB.

Our model utilizes only pitch information for grouping
and obtains large improvements in recognition accuracy. The
use of other ASA cues including common onset should help
further enhance segregation, especially for unvoiced speech
(Hu and Wang, 2005, 2007). These primitive grouping
mechanisms may also be supplemented by schema-based,
top-down segregation (Barker et al., 2005; Srinivasan and
Wang, 2005b, 2005c). For example, top-down processing
may play an important role in segregation of unvoiced con-
sonants. Top-down processing may also help in segregation
of voiced speech when SNR is low. In general, top-down
processing provides prior information for grouping, and in a
complete system, top-down and bottom-up CASA should
probably interact for maximal performance gains.

The model also needs to address sequential grouping of
sources across time (Bregman, 1990). In our current work,
we have avoided this problem by utilizing the a priori pitch
information and the target grammar. While solutions based
on speech or speaker models have been proposed (Barker et
al., 2005; Shao and Wang, 2006), such solutions are cur-
rently limited to mixtures of one talker and nonspeech inter-
ference or mixtures of two talkers. Future work needs to
develop a general solution for arbitrary speech mixtures.

Note that for use as a robust speech recognition system,
the main limitation is the assumption of a priori pitch tracks.
While algorithms for forming multiple continuous pitch con-
tours exist (Wu et al., 2003), the problem of sequential
grouping of pitch contours into pitch tracks has been little
addressed and presents a major challenge for CASA systems.
Recall that the performance improvements reported in this
study come despite not segregating unvoiced speech. Segre-
gation of unvoiced speech, as mentioned above, should fur-
ther improve recognition results. Additional improvements
can also be obtained by using binary T-F masks in an uncer-
tainty decoding approach to robust speech recognition (Srini-
vasan and Wang, 2007).
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