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Abstract

Listeners’ ability to understand a target speaker in the presence
of one or more simultaneous competing speakers is subject to
two types of masking: Energetic and informational. Energetic
masking occurs when target and interfering signals overlap in
time and frequency resulting in portions of target becoming in-
audible. Informational masking occurs when the listener is un-
able to segregate the target from interference, while both are
audible. We present a model of multitalker speech perception
that accounts for both types of masking. Human perception in
the presence of energetic masking is modeled using a speech
recognizer that treats the masked time-frequency units of target
as missing data. The effects of informational masking on the
recognizer are modeled using the output of a speech segrega-
tion system. On a systematic evaluation, the performance of the
proposed model is in broad agreement with perceptual results.

1. Introduction
In everyday listening conditions, the acoustic input reaching our
ears is often a mixture of multiple sound sources. In such situ-
ations, the human ability to perceive a target source is degraded
by the effects of masking, which is defined as the increase in
the audibility threshold of the target caused by the presence of
other sources in the environment [1]. In particular, our ability
to attend to and understand a target speaker, in the presence of
simultaneous competing talkers, is affected by at least two types
of masking: Energetic and informational. Energetic masking
refers to the phenomenon in which a stronger signal masks a
weaker one within a critical band [1]. Informational masking
refers to the perceptual degradation caused by listeners’ inabil-
ity to segregate audible portions of target from interference [2].
In this paper, we propose a model for recognizing the contents
of a target speech signal subject to both types of masking under
monaural conditions. Apart from modeling related psychophys-
ical data, the proposed model can also serve as a paradigm for
automatic speech recognition in multitalker situations.

Spectro-temporal overlap between target and interference is
a prime cause of energetic masking. Portions of target subject
to energetic masking become inaudible at the periphery of the
auditory system and are unavailable for subsequent processing.
A missing-data speech recognizer [3] is therefore used to model
listener perception under energetic masking conditions. When
target speech is contaminated by additive interferences, some
time-frequency (T-F) regions will contain predominantly target
energy (reliable) and the rest are subject to energetic masking
by interference. The missing data method will be used to treat
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tter T-F regions as missing or unreliable during recogni-
The missing data recognizer requires a binary T-F mask
rovides information about which T-F regions, of the mix-
ignal, are reliable and which are unreliable. The task of
ating such a mask is akin to the task of segregating the tar-
om the mixture. The process by which the auditory system
e to organize the acoustic input into components that cor-
nd to individual sources in the input is known as auditory
analysis (ASA) [4]. Therefore, informational masking is

wined with ASA. Hence, we adapt a monaural computa-
auditory scene analysis (CASA) system [5] to estimate a

y mask that selects T-F regions of the mixture where tar-
minates interference. The similarities between target and

erence characteristics affect the performance of the CASA
and therefore contribute to informational masking in our

l. Cooke also used a missing-data recognizer to model
ers’ perception in babble noise [6]. His model used a pri-
nowledge of speech-dominant T-F regions.

he model proposed here can also serve as an architecture
bust speech recognition in the presence of multiple inter-
speech sources. It is well known that the performance

omatic speech recognizers (ASRs) degrades rapidly in the
nce of interfering sound sources [7, 8]. Speech recogniz-
e typically trained in an environment containing a single
h source and face a problem of mismatch when used in
tions where target speech occurs simultaneously with other
sources. To mitigate the effect of this mismatch on recog-

, “noisy” speech is typically preprocessed by speech sep-
n systems. However, in many realistic applications, the
t of typical speech segregation algorithms contains distor-
in segregated speech not seen during ASR training. These
tions cause substantial degradation in recognition perfor-
e [3]. Target speech distortions, even in the case of perfect
gation is similar to the energetic masking. Additionally,
sk of target speech segregation itself is directly related to
formational masking problem as mentioned above. Hence
el that accounts for both types of masking should should

mprove the robustness of ASRs.

he rest of the paper is organized as follows. A recent study
ined the degradation in listeners’ perception caused by en-
c and informational masking using a binary masking pro-
e [9, 10]. This study is briefly reviewed in the next section.
n 3 contains a detailed presentation of the proposed model.
odel has been systematically evaluated on the same task as
10]. The evaluation results and a comparison with listen-
erformance is presented in Section 4. Finally, conclusions
ture work are given in Section 5.



Figure 1: Percentage of trials in which the listeners identified the
keywords in the target phrase correctly (from [9, 10]). The error
bars represent 95% confidence intervals. The figure shows the
effect of number of competing talkers on listener performance.

2. Energetic and informational masking in
multitalker speech perception

A recent study [9, 10] used ideal binary T-F masks to isolate
the effects of energetic and informational masking on the in-
telligibility of a target speech signal in the presence of one or
more competing speech signals. An ideal binary mask is ob-
tained a priori, from premixing target and interference. An unit
in the ideal binary mask is assigned a value 1 if the signal to
noise ratio (SNR) calculated from the corresponding T-F units
of target and interference exceeds a predefined local SNR crite-
rion (LC) value; it is labeled 0 otherwise. To generate this mask,
target and interfering signals are first analyzed using a 128 chan-
nel gammatone filterbank whose center frequencies are quasi-
logarithmically spaced from 80 Hz to 5 kHz [5]. The energy at
the output of each filter is calculated every frame for both target
and interference. Each frame is 20 ms long with 10 ms frame
shift. The ideal binary mask is used to resynthesize a signal by
retaining only those T-F units in the mixture where the local SNR
exceeds the specified LC value [9]. The resynthesized signal is
then used in a series of experiments to study effects of number
of interfering talkers and their sex on the two types of masking.

The speech corpus used in [9, 10] is the CRM corpus [11].
This corpus consists of utterances from 4 male and 4 female
speakers produced according to the grammar, “READY ($call-
sign) GO TO ($color) ($digit) NOW”. There are 8 call signs, 4
colors and 8 numbers [11] and the target utterance always con-
tains the call sign “BARON”; e.g., “READY BARON GO TO
RED ONE NOW”. The interference utterance consists of a call
sign, a color and a number different from that of the target. The
task for the listener is to identify the color and number in the
target phrase. The target-to-masker ratio (TMR) was fixed at 0
dB [9]. While TMR is used to refer to the ratio of target to each
interference in the mixture, SNR is used to refer to the ratio of
target to combined interference energy [2]. Fig. 1 shows the ef-
fects of varying the number of competing talkers on the correct
identification of both color and number in the target phrase as a
function of the LC value [9, 10]. The information lost in the tar-
get signal due to energetic masking is proposed to be the same as
the one resulting from the resynthesis using an ideal binary mask
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LC value of 0 dB [9, 10]. Note that this mask removes all
erence dominant T-F units. The signal resynthesized from
eal binary mask with a positive LC value of δ dB is also
n to cause energetic masking equivalent to that caused by a
re with TMR of −δ dB. Further, decreasing the LC value
0 dB allows for the progressive introduction of interfer-

nergy in the resynthesized signal. This leads to an increase
level of informational masking [10]. Energetic masking

s therefore dominate listeners’ performance in Regions I
, while informational masking effects dominate in Region
Fig. 1 [9, 10].

3. A computational model
radual degradation in listener performance when LC value
ases in Region III (Fig. 1), can be attributed toASA. Listen-
e able to use the characteristics of the interfering talkers to
gate the target speaker with varying degrees of success. The
rmance limitations of ASA are manifest as informational
ing. Additionally, Region II and parts of Region I demon-
the robust performance of listeners in the presence of ener-
masking as isolated by the use of ideal binary masks. The

observations motivate our model for multitalker speech
ption as shown in Fig. 2. A monaural CASA system [5] is
ed to segregate a target from interfering sources. Perfect
gation by the CASA system will result in a binary mask
an be used to remove all interference dominant T-F re-
from the mixture [5], in other words a binary mask that

es energetic masking of target [9, 10]. Hence, listener per-
n in the presence of energetic masking is modeled using a

ng-data ASR that treats masked data as missing target-data.
imilarities between target and interference characteristics
deviations in the estimation of the binary mask by the
system. This contributes to informational masking in

odel.
he input to the model is a mixture of target and interference,
led at 20 kHz. We use the same auditory filterbank decom-
on of the input signal as used in [9, 10] (see Section 2). The
t is used to generate feature vectors for recognition and as
to a monaural CASA system. Under monaural conditions,
man auditory system can segregate a target speech source
various interference using several cues, including differ-
in pitch and onsets [4]. Pitch has been successfully used for

gation of voiced speech in several CASA systems [12, 5].
e, we adapt the speech separation system in [5] to segre-
arget from interference. This system is chosen as it shows
t performance when tested with a variety of intrusions.
ystem is based on two main stages: 1) segmentation and
uping. In segmentation, the input signal is decomposed
collection of contiguous T-F units that are dominated by

ound source. During grouping, those segments that are
to belong to the same source are grouped together. In the

requency range, the system generates segments based on
ral continuity and cross-channel correlation, and groups
based on periodicity similarity. For high-frequencies, the
l envelope fluctuates at the pitch rate and amplitude modu-
rates are used for grouping [5]. To illustrate the potential
proposed approach for segregation, pitch tracks and pitch
ths are derived a priori from premixing target and inter-

ce signals using Praat [13]. Robust multipitch tracking of
than two sources is a challenging problem currently [14].
that the system in [5] utilizes only the target pitch contour
ouping. However, psychoacoustic evidence suggests that



listeners are able to utilize the pitch information of interference
sources too [4]. Therefore, we adapt the system in [5] to group
segments based on the dominant pitch at a given time-frame. If
the dominant pitch at a particular time belongs to interference,
we discard the grouped T-F units in that frame. On the other
hand, if the dominant pitch belongs to the target, the grouped
T-F units are retained. We do not current process the unvoiced
regions. The output of the CASA system is therefore an estimate
of a binary mask that labels the target-dominant regions in the
mixture as reliable (1) and the rest as unreliable (0). This mask
is then used by the missing-data ASR to recognize target speech.

The input to the missing-data recognizer is the instanta-
neous Hilbert envelope at the output of each gammatone fil-
ter, smoothed using a first-order filter with 8 ms time con-
stant and log compressed as suggested in [3]. The miss-
ing data recognizer [3] makes use of spectro-temporal redun-
dancy in speech to recognize a “noisy” signal based on its
target dominant T-F units. Given an observed speech vector
Y , the word recognition problem is to maximize the posterior
P (ωi|Y ), where ωi is a valid word sequence according to the
grammar for the recognition task. When parts of Y are masked
by interference, Y can be partitioned into its reliable and unreli-
able constituents as Yr and Yu. In the marginalization method,
the posterior probability using only the reliable constituents is
computed by integrating over the unreliable ones [3]. If Y rep-
resents spectral magnitude and sound sources are additive, the
unreliable parts can be constrained as 0 ≤ Y 2

u ≤ Y 2. This
bounded marginalization method is shown in [3] to have a better
recognition score than the simple marginalization method, and
is hence used in all our experiments.

4. Experimental results
To facilitate a comparison with listeners’ performance from [9,
10], we have evaluated our model also using the CRM cor-
pus [11]. Sixteen (ready, baron, goto, blue, green, red, white,
now and the numbers 1-8) speaker-independent word-level
HMM models are trained. All models have 10 states, whose
output distribution is modeled as a mixture of 2 Gaussians. The
models are trained using 224 utterances from 3 male talkers
(Talkers 1-3) and 4 female talkers (Talkers 4-7) in this database
that contain the call sign “BARON”. The testing data consists
of utterances from a male talker (Talker 0), not utilized during
training and containing the call sign “BARON”. Similar to the
experiments in [9, 10], 1, 2 and 3 utterances from the same talker
are added to target as interference. The TMR is 0 dB. Interfer-
ence utterances contain call signs, numbers and colors different
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e 3: Percentage of utterances in which the model identified
ywords in the target utterance correctly. The figure shows
odel’s performance with respect to the LC value under
us multitalker conditions.

target. Each testing condition comprises of 256 utterances.
M toolkit, HTK [15] is used for training. During testing,
coder is modified to incorporate the missing data meth-
he task is recognition of both the color and number in the
utterance. Recognition performance on the target-only
is 100%. The baseline recognition performances on the
re data with 2-, 3- and 4-talkers are 15.6%, 6.2% and 4.3%
ctively.

o compare with the listener performance from [9, 10], the
re-data is resynthesized using ideal binary masks with
g LC values (see Section 2). The resynthesized signal
d as input to the proposed model. Fig. 3 shows the per-
nce of our model as a function of the LC value. While
solute recognition rates are lower, the model is able simu-
e general pattern of listeners’ performance seen in Fig. 1.
[9, 10], informational masking can be seen to dominate

cognition performance. “No Mask” represents the control
tion in which the mixture signal is used directly as input.
odel performance with this input shows a small but consis-
provement over the baseline recognition performance for
f the three conditions. Since interference utterances come

the same speaker, target and interference pitch contours are
to each other. This is the cause for the limited success of
based segregation and hence missing-data ASR.
Informational Masking

Multitalker mixture

Pitch tracks

Binary Mask

Energetic Masking

Missing-data

ASR

Pitch-based

Grouping

Auditory

filterbank

Figure 2: Block Diagram of the proposed model. The input mixture signal is analyzed by an auditory filterbank in successive time
frames. The output is fed to a monaural CASA system that uses pitch tracks of the individual sources in the mixture to produce a binary
mask that selects T-F regions in the mixture where target dominates interference. This mask is used by the missing-data recognizer to
decode the input.



Figure 4: The effect of voice characteristics on listener and
model performance with 2-talkers as a function of the LC value.
The top panel shows the performance of listeners in correctly
identifying the keywords in the target utterance (from [9, 10]).
The bottom panel shows the proposed model’s performance on
the same task.

Fig. 4 shows the results of a second experiment in which
the effects of voice characteristics of an interfering talker are ex-
amined. The top-panel shows listener performance under three
different interference conditions: Same talker, a different talker
of the same sex and a different sex talker [9, 10]. The bottom-
panel shows the performance of our model. For the “Same Sex”
condition, interference utterances are chosen from Talkers 1-3.
For the “Different Sex” condition, interference utterances are
chosen from Talkers 4-7. The baseline recognition performance
for the former condition is 17.9%, while for the latter condition
is 21.2%. The pitch-based grouping component of the model
is now able to utilize the larger differences between target and
interference pitch contours to produce better segregation results.
This improves the ASR performance. Note that for both model
and listeners, differences in voice characteristics between target
and interference have only a negligible effect on the performance
in Regions I and II. In both cases, the peak performance exhibits
a plateau for LC values in the range -9 dB to 0 dB.

5. Conclusions

We have presented a model for monaural multitalker speech per-
ception that is able to account for the effects of both energetic
and informational masking. Using this model we have simulated
several aspects of listeners’ performance including the differen-
tial effects of energetic and informational masking on multitalker
perception. We have also shown that differences between target
and interference pitch ranges contribute to a reduction in infor-
mational masking by improving target speech segregation. The
use of other ASA cues including common onset should help fur-
ther enhance segregation, especially for unvoiced speech [16].
Note that as in [9, 10], we have only addressed simultaneous
masking in the present study. The proposed model provides
significant improvement over baseline recognition performance
and hence shows potential for robust speech recognition. Future
work will attempt to improve the performance of the missing-
dataASR to help bridge the gap between our model performance
and that of listeners.
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