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ABSTRACT
Phonemic restoration refers to the synthesis of missing phonemes
in speech when sufficient lexical context is present. Current mod-
els for phonemic restoration however, make no use of any lexi-
cal knowledge. Such models are inherently inadequate for restor-
ing unvoiced phonemes and may be limited in their ability to re-
store voiced phonemes too. We present a predominantly top-down
model for phonemic restoration. The model uses a missing data
speech recognition system to recognize speech utterances as word
sequences and activates word templates corresponding to the words
containing the masked phonemes. An activated template is dynam-
ically time warped to the noisy word and is then used to restore the
speech frames corresponding to the masked phoneme, thereby syn-
thesizing it. The model is able to restore both voiced and unvoiced
phonemes. Systematic testing shows that this model performs bet-
ter than the Kalman-filter based model.

1. INTRODUCTION

Auditory scene analysis [1] brings to the fore the ubiquitous pres-
ence of noise in the everyday auditory environment. To listen in
these conditions, the auditory system must be robust to such noisy
intrusions. Though primitive auditory scene analysis is known
to be an innate mechanism for separating speech from interfer-
ing sound sources; schema-based stream segregation and grouping
supplements the process and sometimes provides the only basis
for auditory organization. At the beginning of the

�������
century,

Bagley [2] reported a series of results, which we now know as
phonemic restoration. Phonemic restoration is the perceptual syn-
thesis of missing phonemes when masked by appropriate sounds
and when contextual knowledge about the misssing phonemes is
available. In 1970, Warren found that when a masking sound
replaced the first “s” of the word “legislatures” in the sentence,
“The state governors met with their respective legislatures conven-
ing in the capital city,” listeners had the impression of hearing the
phoneme [3]. They were also unable to localize the masking sound
within the sentences accurately. Subsequent studies have shown
that phonemic restoration depends largely on the linguistic skills
of the listeners and the characteristics of the masking sound [4, 5].
Phonemic restoration is a case of auditory induction, a subjective
illusion of auditory continuity in noise [6].

Phonemic restoration is a natural way to bring in features of
schema-based processing like memory and attention into compu-
tational auditory scene analysis (CASA). In speech separation, it
may also provide a strong grouping cue for integrating unvoiced

consonants. Additionally, phonemic restoration can help restore
lost packets in speech transmission systems. Previous attempts
to model phonemic restoration have been only partly successful.
Cooke and Brown [7] utilize Bregman’s four rules for auditory
induction [1] as dynamic programming cost functions for restora-
tion. The restoration itself is defined to be a weighted linear in-
terpolation. In its use of temporal continuity for restoration, it is
similar to the work of Masuda-Katsuse and Kawahara [8], who
use Kalman filtering to predict spectral trajectories in those time-
frequency regions that are dominated by noise. The biggest prob-
lem for a filtering/inter-polation
system for predicting missing speech segments occurs when tem-
poral continuity of speech frames becomes weak or even absent.
This typically occurs with unvoiced speech. In absence of
co-articulation cues, it is impossible to restore the missing por-
tions; in such cases knowledge must be employed. Ellis [9] uses
the knowledge of stored acoustic waveforms in the form of a speech
recognizer to recognize (hypothesize) the information in the miss-
ing regions. The information from the recognizer corresponding
to the hypothesis is then projected back to the signal space via fea-
ture reconstruction and inverse transformation. Though this idea
is promising, few implementation results are presented.

We present a model of phonemic restoration which employs
lexical knowledge in the form of a speech recognizer and a sub-
lexical representation in word templates performing the role of
speech schemas. A hidden Markov model (HMM) based missing
data speech recognizer [10] is used to recognize the input sounds
as words based on the reliable portions of the speech signal. The
word template corresponding to the recognized word is then used
to “induce” relevant acoustic signal in the spectro-temporal regions
occupied by noise. The templates are formed by averaging (along
a dynamic time warped path) tokens of each word.

Section 2 decribes the details of our model. The model has
been tested on both voiced and unvoiced phonemes and the test
results are presented in section 3. Finally, conclusions and future
work is addressed in section 4.

2. MODEL DESCRIPTION

We present a multi-state model for phonemic restoration as shown
in Fig. 1. Utterances with words containing masked phonemes are
first converted into a spectrogram by Fourier analysis. The missing
data ASR recognizes the utterance as word sequences. Word tem-
plates corresponding to the noisy words are then chosen based on
the results of recognition. A template thus activated, is used to syn-
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Fig. 1. Block Diagram of the proposed system. The input signal with masked phonmes is converted into the spectral domain and is fed
to the missing data ASR, which activates trained word templates corresponding to the words whose phonemes are masked. The masked
frames are synthesized by dynamically time warping the templates to the noisy words. These frames are then pitch synchronized with the
rest of the utterance.

thesize the frames of the masked phoneme by using dynamic time
warping (DTW). These synthesized frames are pitch synchronized
to maintain the overall intonational structure of the utterance.

2.1. Feature Extraction

Speech signal with phonemes masked by noise is fed to the fea-
ture extraction stage which outputs 513 DFT coefficients, calcu-
lated every frame. Each frame is 20ms long with 10 ms overlap
between consecutive frames. Frames are extracted by applying a
running Hamming window to the signal. The magnitude spectrum
thus extracted is converted to the dB scale and is fed to the missing
data ASR (see section 2.2) for recognition. Additionally, it is also
sent to the synthesis stage (section 2.4) after undergoing diagonal-
ization via the discrete cosine transform [11].

2.2. The Missing Data Speech Recognizer

Traditional ASR systems do not work well in the face of noisy in-
trusions and other distortions. The missing data ASR [10] makes
use of the spectro-temporal redundancy in speech to make optimal
decisions about lexical output units. Given a speech observation
vector � , the problem of word recognition is to maximize the pos-
terior �
	���
�� ��� , where ��
 is a valid word sequence according to the
grammar for the recognition task. When parts of � are masked by
noise or other distortions, � can be partitioned into its reliable and
unreliable constituents as ��� and ��� , where ������������� . One can
then seek the Bayesian decision rule given the reliable features. In
the marginalization method of [10], the posterior probability us-
ing only the reliable features is computed by integrating over the
unreliable constituents. Since the feature vector � represents the
observed spectral energy and sound sources being additive, the un-
reliable parts can be constrained as

��� ��� � � . This bounded
marginalization method is shown in [10] to have a better recogni-
tion score than the simple marginalization method.

We use the 10 state continuous density HMM as suggested by
Cooke et al. [10]. The task domain is connected digits’ recogni-
tion. Thirteen (1-9, a silence, very short pause between words,
zero and oh) word level models are trained. All except the short
pause model have 10 states, whose output distribution is modeled
as a mixture of 10 gaussians. The short pause model has only three
states. The TIDigits [12] database’s male speaker data is used for
both training and testing. A HMM toolkit, HTK [13] is used for
training and a modified decoder is used for testing.

2.3. Word Template Training by Dynamic Time Warping

Cooke et al. [10] suggest that for resotoration, one can use the
maximum likelihood estimate of the output distribution of the win-
ning states. Winning states are obtained during recognition by
Viterbi decoding of the hidden state sequence. We find that such
a restoration is hardly optimal and degrades with increasing num-
ber of frames that need to be restored. This is not suprising, the
missing data ASR has only 10 states to model each acoustic to-
ken and hence state based imputation is an ill-posed one-to-many
projection problem.

On the other hand, template based speech recognizers use spec-
tral templates to model each word. These templates could be used
as a base fro restoration. We use 100 tokens of isolated word ut-
terances from the training portion of the TIDigits corpus to train
each speaker-independent (SI) word template. Assuming all to-
kens are consistent, we find their cepstral average. For this pur-
pose, these tokens are time normalized by DTW. The distortion
measure used in the dynamic programming cost function is the
cepstral distance. The local constraint used is the Itakura con-
strainst [14]. Isolated word utterances corresponding to one test
speaker in the test database are used to train a speaker-dependent
(SD) template. Utterances of this speaker would be used for test-
ing. Together the two sets of templates form word schemas.

2.4. Phonemic Synthesis

A maximum of 2 phonemes are masked in each utterance of the
test speaker by overlaying with white noise. Any transistions into
and out of the phoneme are masked too. The phonemes are ran-
domly chosen. Masking yielded a local SNR of -1dB on average.
To test the full potential of the proposed model, we use an a pri-
ori binary mask to differentiate the reliable data from the unre-
liable ones. The signal and the mask is sent to the missing data
ASR which provides the most likely word sequence. Addition-
ally the ASR provides time end points of the recognized words in
the signal. We then choose the word templates corresponding to
the noisy word and warp them to the speech segment correspond-
ing to the noisy word by DTW. The frames of the template cor-
responding to the masked frames then replace the masked frames.
Our restoration approach is thus knowledge based. To compensate
for co-articulation, the imputed frames are manipulated by pitch
synchronization techniques (which use interpolated pitch informa-
tion), PSOLA [15] and LPC-PSOLA [16]. Praat [17] and a local
spectral smoother is used for synchronization. The LPC-PSOLA
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technique improves the listening experience compared to PSOLA,
but is not better than PSOLA as measured by the objective criteria
discussed in section 3. Consequently only the results of synchro-
nization using the PSOLA technique is used in the asessement of
the results.

3. RESULTS

Informal listening to the restored signal shows that masked voiced
and unvoiced phonemes are clearly restored. To measure the per-
formance of the proposed model objectively, two measures are
used. The cepstral distance measures the log spectral distance
between the original clean signal and the phonemically restored
signal:� � � !""# $ 	&%('*) +-,.%�/0) +1� /32 �546798 ' 	&%('*) 7 ,:%�/0) 7 � /*;�< (1)

where % '*) 7 are the cepstral coefficients derived from AR coeffi-
cients of the original signal and %=/0) 7 are the corresponding co-
efficients of the phonemically restored signal. We set >?� ���

.
Additionally, the cosh distance [18] between the power spectra of
the two signals is computed from (3). Let @�A�' and @�A1/ denote the
power spectra of the original signal and the phonemically restored
signal respectively. The cosh distance is defined asB�1CEDGFH FJI3KML AONEP QSR9T�P @�A '@�A / UVU , BXW ��Y�Z

(2)

The distance can be calculated conveniently in its discrete form asB��[]\67�8 ' P @�A9'^	�� 7 �@�A / 	�� 7 � 2 @�A1/_	�� 7 �@�A ' 	�� 7 � , � U Z
(3)

Both measures possess desirable properties of a metric, including
symmetry and positive definiteness. The rms log spectra models
the log speech spectra very well, but are hard to compute. The cep-
stral distance and the cosh distance are much easier to compute.
Additionally the cepstral distance bounds the rms log spectral dis-
tance from below and the cosh distance from above [18].

Three classes of phonemes are considered for restoration: vow-
els, voiced and unvoiced consonants. The vowels possess strong
temporal continuity. The spectral continuity of some voiced conso-
nants, e.g. /l/, changes smoothly but faster than vowels. Unvoiced
consonants, especially stops, do not have good temporal continu-
ity [19]. Two isolated word utterances from each of 50 randomly
chosen speakers in the training database of the TIDigits corpus are
used to train each speaker-independent template. The 2 isolated
word utterances (for each word) of the test speaker are used to train
each speaker-dependent template. The remaining 55 utterances of
the test speaker form the test set.

The results indicate that the model is able to restore all classes
of phonemes, with a spectral quality very similar to the original
clean signal. Fig. 2 shows the performance of our model as mea-
sured by the objective criteria. The results shown are the average
of all signals in each class in the test set. If a phoneme is perfectly
restored, the distances of the restored signal from the original clean
signal are 0. Low values of the distance measures after the restora-
tion of voiced phonemes indicate stet synthesis. The restoration
of the unvoiced consonants, especially with the use of speaker-
dependent templates, is also good. The data exclude those signals

which are incorrectly recognized by the missing data ASR; recog-
nition accuracy is 87.5%. As evident from the figure, the overall
performance of the model with speaker independent template is
close to that with speaker dependent template. Improved listening
experience though is observed with the use of speaker dependent
template.
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Fig. 2. Performance of the proposed method for phonemic restora-
tion. The above figure shows the performance of the proposed
model in restoring the phonemes. SD refers to the performance
of our model with speaker dependent templates and SI refers to
the performance with speaker independent templates. The top row
shows the results corresponding to the restoration of vowels, the
middle row the restoration of voiced consonants and the bottom
row the restoration of unvoiced consonants. The figures on the
left show the average cepstral distance of the restored signal from
the original clean signal and the figures on the right show the cor-
responding average cosh spectral distance. The small distances
illustrate good spectral restoration. For comparison, the results
of the Kalman filter model (KF) described in Section 4, is also
shown . Notice that in restoring unvoiced consonants, our model
is substantially better than the Kalman filter model. Restoration of
voiced consonants is also better. The performance of our model is
similar to that of the Kalman filter in restoring vowels.

4. COMPARISON WITH A KALMAN FILTER MODEL

We compare the performance of our model with the Kalman filter
based model of Masuda-Katsuse and Kawahara [8]. They regard
cepstral coefficients in each order as a time series that follows a
second order auto-regressive (AR) model, which can be predicted
and tracked by a Kalman filter. The parameters of the AR model
are updated at each frame by a maximum likelihood estimate con-
ditioned on the present and past observed cepstral values. The
variance of the noise in the observation model is estimated to be
proportional to the reliability of the results from a previous simul-
taneous grouping process for the speech signal. For the purpose
of comparison with our model, we assume prior knowledge of this

3



variable. This is similar to the assumption of a priori mask in our
model (see Section 2.4). Additionally, we perform one step back-
ward Kalman smoothing. This improves the performance slightly.
Fig. 2 also shows the performance of the Kalman filter for various
classes of restored phonemes.

In summary, under both objective criteria discussed in Sec-
tion 3, our method outperforms the Kalman filtering model signif-
icantly. Note that vowels are effectively restored by the Kalman
filter. Unvoiced consonants have weak temporal continuity with
neighboring phonemes and need knowledge for their restoration.
Hence, our method performs substantially better in restoring them.
The rapid change in the spectrum causes inaccurate estimation of
the AR parameters and hence the tracking by the Kalman filter
breaks down. The performance of our method in restoring voiced
consonants is also superior to that of the Kalman filter.

5. CONCLUSION

We have presented a top-down based model of phonemic restora-
tion, which performs better than the Kalman filtering model. As
stated earlier, the problem for any filtering method is that temporal
continuity in speech is not always present. Thus, their performance
is best for voiced phonemes (especially vowels) and worst for un-
voiced consonants. Hence for phoneme reconstruction, one needs
learned schemas. Such schemas represent prior information for
restoration.

The model can be used in conjunction with CASA systems to
recover masked features and to group unvoiced speech with voiced
speech. It can used in restoring lost packets in mobile and inter-
net telephony applications. Our model currently does not consider
any bottom-up cues for phonemic restoration. How to generate a
binary mask for the missing data recognition also needs to be ad-
dressed. Future work would attempt to alleviate both the problems
by integrating the model with existing CASA systems (e.g. [20]).
Our model is based on recognition and hence fails when recogni-
tion fails. Combining recognition with top-down restoration and
bottom-up cues should help address this problem.
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