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Abstract—A human listener has the ability to follow a speaker’s
voice while others are speaking simultaneously; in particular,
the listener can organize the time–frequency energy of the same
speaker across time into a single stream. In this paper, we focus
on sequential organization in cochannel speech, or mixtures of
two voices. We extract minimally corrupted segments, or usable
speech, in cochannel speech using a robust multipitch tracking
algorithm. The extracted usable speech is shown to capture
speaker characteristics and improves speaker identification (SID)
performance across various target-to-interferer ratios. To utilize
speaker characteristics for sequential organization, we extend
the traditional SID framework to cochannel speech and derive
a joint objective for sequential grouping and SID, leading to a
problem of search for the optimum hypothesis. Subsequently we
propose a hypothesis pruning algorithm based on speaker models
in order to make the search computationally efficient. Evaluation
results show that the proposed system approaches the ceiling SID
performance obtained with prior pitch information and yields
significant improvement over alternative approaches to sequential
organization.

Index Terms—Auditory scene analysis, cochannel speech,
model-based approach, sequential organization, speaker identifi-
cation (SID), usable speech.

I. INTRODUCTION

COCHANNEL speech is a combination of speech utter-
ances from two talkers, usually produced when two speech

signals are transmitted over a single communication channel.
Unlike conversations, talkers from different channels are not
aware of each other in cochannel speech. Consequently, speech
from both channels has large overlap, which presents a consid-
erable challenge to automatic speaker and speech recognition.
On the other hand, for a cochannel recording that has compa-
rable energies from both talkers [e.g., target-to-interferer ratio
(TIR) is zero], human listeners can readily select and follow one
speaker’s voice [6]. Even in worse scenarios, such as a cocktail
party, listeners can select and follow the voice of a particular
talker as long as the signal-to-noise ratio is not exceedingly low
[4], [8], [12]. Bregman [4] describes this process of auditory per-
ception as auditory scene analysis, which is composed of simul-
taneous organization and sequential organization. The former
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integrates concurrent sound components and the latter integrates
components across time into the same perceptual stream. Most
of the existing computational auditory scene analysis systems,
e.g., [5] and [13], address only simultaneous organization. It
is well known that human listeners use speaker characteristics,
such as pitch and vocal tract information to identify a speaker’s
voice [23] and such characteristics have been incorporated in
models of automatic speaker recognition [1], [10], [17], [20],
[21].

In this paper, we study how to use speaker characteristics,
particularly speaker models, for sequential organization of
time–frequency energy of the same speaker into a single stream
in cochannel speech. As a result of successful sequential
organization, speaker recognition from cochannel mixtures
should improve. Hence, we also study the potential benefits
of sequential organization for cochannel speaker identification
(SID).

Research has been carried out for decades to extract one of
the speakers from cochannel speech by either enhancing target
speech or suppressing interfering speech [18], [19]. Zissman
and Seward [32] examined pitch continuity in cochannel
speech and assigned pitch contours to a corresponding talker
by polynomial contour fitting when pitch contours from two
speakers cross. Their results suggest that a method based
purely on pitch information is not sufficient. Morgan et al.
[18] estimated the dominant pitch and then reconstructed the
speech components of both stronger and weaker talker frame
by frame using frequency-domain filtering according to the
estimated pitch; speech signals are further enhanced by the
formants estimated for the stronger talker. Afterward, a speaker
assignment algorithm using a maximum-likelihood criterion is
applied to group recovered signals into two speaker streams,
one for the target and the other for the interferer. The assign-
ment algorithm groups the individual frames by examining the
pitch and spectral continuity for consecutive voiced frames, and
comparing the spectral similarity of the onset frame of a voiced
segment with recently assigned frames using the divergence
measure proposed by Carlson and Clement [7], which is the
symmetrized Kullback–Leibler divergence [15]. Because of the
short-term processing, the spectral comparison is biased toward
the comparison of phonetic information contained in a frame
instead of speaker characteristics. Therefore, to capture speaker
characteristics, it is desirable to base comparison on speaker
homogeneous segments, which consists of a number of time
frames dominated by one speaker.

In automatic speaker recognition, as pointed out in [16], the
intelligibility and quality of extracted speech are not impor-
tant. What the system needs are portions of the speech that
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contain speaker characteristics unique to an individual speaker,
classifiable and long enough for the system to make identifi-
cation or verification decisions. These portions of speech, or
segments, are defined as consecutive frames of speech that are
minimally corrupted by interfering speech and are, thus, called
usable speech [16].

Previous studies [14], [16] find that voiced segments con-
tain most of the information for SID and have developed cri-
teria such as frame-level TIR and spectral autocorrelation ratio
to extract usable speech in cochannel mixtures. Results show
that a significant amount of cochannel speech can be consid-
ered usable for SID. Frame TIRs are easily calculated with pre-
mixing speech utterances, and usable speech extracted based
on a TIR threshold produces frames in which energy from one
speaker is much stronger than that of the other. Spectral auto-
correlation ratio estimates the ratio between dominant peak and
valley in the autocorrelation of the spectrum in order to decide
whether a frame is well structured (single-speaker speech) or
unstructured (corrupted speech). Finally, the extracted usable
segments are grouped using frame-level TIRs. It is a simple
and effective method and shows a substantial improvement in
SID performance. However, frame-level TIRs are hard to es-
timate from mixture speech. A further study in [27] explored
a maximum-likelihood decision in an attempt to determine the
speakers that generate usable speech segments.

Studies have been conducted on speaker detection and
tracking in multispeaker environments such as conversational
speech and broadcast news (see, e.g., [9] and [31]). Various
methods, supervised or unsupervised, have been explored.
A typical method [9] is to use log-likelihood ratio scores,
calculated from trained Gaussian mixture models (GMM)
for speakers and a universal background model, to partition
a recording into homogeneous segments and then cluster
the segments. However, such methods cannot be applied to
cochannel speech because, as mentioned earlier, cochannel
talkers strongly overlap, resulting in very short speaker-ho-
mogenous segments. In the case of 0-dB TIR, such segments
typically last 30–300 ms, far shorter than the optimal segment
length of around 2.5 s and the typical minimum length of 1 s
for speaker clustering [9]. As pointed out in [16], a speaker rec-
ognizer’s ability to identify talkers based on pooled frame-level
scores is sharply reduced if available observation frames are
limited in number, especially when the overall length is less
than 500 ms. To verify this, we have explored segment clus-
tering for sequential grouping ourselves; specifically, segments
are iteratively clustered based on distance measures in the
feature space, such as cepstral coefficients. The result is barely
above the chance level of 50%, which is obtained by randomly
putting each segment into one of the two clusters.

In this paper, we propose to sequentially organize automat-
ically extracted usable speech, i.e., speaker-homogeneous seg-
ments, into streams. Our method employs a robust multipitch
tracking algorithm proposed recently [28] for extraction. We
develop a computational objective for joint cochannel SID and
sequential grouping, or speaker assignment, of usable speech.
Our formulation leads to a search problem to find an optimal
hypothesis in the joint speaker and grouping space. Exhaustive
search finds the optimal hypothesis though it is computationally

Fig. 1. Schematic diagram of the proposed system. First, cochannel speech is
passed through a multipitch tracking algorithm and pitch contours are obtained.
Then, usable speech segments are extracted based on the pitch information.
Finally, a model-based sequential grouping algorithm organizes segments into
two streams and corresponding speaker identities are also produced.

extensive. We propose a hypothesis pruning method, which it-
eratively removes hypotheses with low probabilities and, thus,
reduces the search space and computation time greatly. We show
that the pruning method achieves a performance level close to
that of exhaustive search.

Our system is introduced in Section II. We describe how to
extract usable speech using multipitch tracking in Section III. In
Section IV, we develop the computational goal by extending the
probabilistic framework of traditional SID to cochannel speech
and detail our method to achieve the objective. Evaluation re-
sults and comparisons are given in Section V. Section VI con-
cludes the paper.

II. SYSTEM OVERVIEW

In this section, we give an overview of the processing stages
of our system. As shown in Fig. 1, the proposed system consists
of three stages. First, the multipitch tracking algorithm [28] is
adapted and applied to cochannel speech and pitch contours for
both speakers are produced. The algorithm filters the mixture
signal into multiple frequency channels through an auditory fil-
terbank; it then selects “clean” channels and peaks within each
clean channel as pitch candidates at each time frame. Multiple
pitch hypotheses are formed; the hypotheses are further inte-
grated across the frequency channels. Afterwards, pitch con-
tours are decoded as a sequence of most likely pitch hypotheses
using a hidden Markov model (HMM) framework.

The second stage is used to extract usable speech from a
cochannel mixture based on the pitch information [24]. Due to
the nature of human voice, a speech utterance contains voiced
portions, unvoiced portions and silence. Therefore, there are
some portions (segments) of cochannel speech that contain only
one speaker’s voiced part or one speaker’s voiced part plus an-
other speaker’s unvoiced part, the latter usually having much
lower energy. The voiced spectra of these frames are minimally
corrupted, and can be used to derive speaker features for SID.
So, they form usable speech and are retained, while the portions
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with overlapping pitch contours as well as silent portions are re-
moved, resulting in a set of usable speech segments.

For any two segments in the usable speech set, whether
they are from the same speaker is unknown. In the third stage,
our model-based sequential grouping algorithm groups the
segments into two speaker streams by searching for the op-
timal hypothesis in the joint speaker and grouping space. Our
formulation is extended from the traditional SID probabilistic
framework. Exhaustive search in the space is computationally
extensive. Thus, we propose a hypothesis pruning algorithm
to remove hypotheses of low likelihoods, which reduces com-
putation time while resulting in comparable performance with
exhaustive search. As a byproduct, speaker identities are also
determined.

III. USABLE SPEECH EXTRACTION VIA MULTIPITCH TRACKING

We employ and adapt a recent multipitch tracking algorithm
proposed by Wu et al. [28] for usable speech extraction. We
chose this algorithm because it is designed to track two over-
lapping pitch contours, which fits our needs, and produces very
good results.

First, an input mixture is passed through a bank of 128
gammatone filters in order to obtain a cochlear spectrogram, or
cochleogram, representation. The envelopes in high-frequency
channels (center frequency greater than 800 Hz) are calculated
and normalized correlograms (autocorrelations) are computed
for each frequency channel. The peaks of the correlogram in
a frequency channel indicate the periodicity of the signal, but
some peaks are inconsistent with the pitch because of pitch
dynamics and the fact that harmonics are unresolved in high
frequency channels. Also, in noisy conditions, the peaks in
corrupted channels do not agree with the pitch. In order to
minimize the effects introduced by these false peaks, corrupted
channels are removed and the peaks are further selected in the
retained clean channels.

A statistical model of pitch contours given the observed
peaks is constructed as follows. A mixture of a Laplacian and
a uniform distribution is employed to model the distribution
of time-lag difference between the true pitch period and the
closest peak in a selected channel. The distribution parameters
are estimated from clean speech by maximum likelihood.
Thus, the probability of a frequency channel supporting a
pitch hypothesis is formulated. An integration method is then
used to produce the conditional probability of observing the
selected peaks in all selected channels in a time frame given
a hypothesized pitch period. A continuous HMM is used to
model dynamic pitch contours. HMM states represent possible
pitch states in every time frame and the transitions represent the
probabilistic pitch dynamics, which models the pitch change
in time and the jumps between zero-pitch, one-pitch, and
two-pitch spaces. The observation probability is the observed
conditional probability described above.

Fig. 2 shows an example of multipitch tracking. The
cochannel speech is created by mixing two female utterances.
The prior pitch points are obtained using Snack [26] (an open
source version of ESPS/waves+) from premixing utterances.

Fig. 2. Estimated pitch contours from multipitch tracking compared with
single-speaker pitch points. The solid lines represent the pitch contours
obtained from a female–female cochannel mixture using the multipitch
tracking algorithm. The triangles and circles represent the pitch points obtained
from the premixing utterances using Snack.

The algorithm produces the pitch contours that fit well the
true pitch points, even though these two utterances have the
same pitch range. It is evident from the figure that, in the
mixture, there are portions that contain only one speaker’s
voiced speech and portions that contain both speakers’ voiced
speech. There are also portions considered by the algorithm to
contain one speaker’s voiced speech but they actually contain
both speakers’ voiced speech. A typical reason for this mistake
is that one speaker’s voiced energy is much lower than that of
the other. This kind of mistake, however, is rather benign as far
as usable speech extraction is concerned.

Usable speech extraction means to determine what segments,
i.e., sequences of frames containing only a single speaker’s in-
formation, are usable for SID. Pitch contours overlap from time
to time due to the nature of cochannel speech. Pitch-overlapping
segments are not usable for SID because the energies of both
talkers are strong, leading to the corruption of single-speaker
features used in SID. In such a frame, more precisely, the
harmonics and formants from both talkers are added together
in the power spectrum domain and ruin the second frequency
analysis process (discrete cosine transform) in the derivation
of commonly used cepstral features. Speech enhancement
methods such as spectral subtraction [3] are not effective
here because human speech is highly nonstationary. Thus, we
remove pitch-overlapping segments from cochannel speech.

For the segments with only one speaker’s voiced speech, the
other speaker is either silent or producing unvoiced speech. In
the former case, the power spectrum is intact; in the latter case,
usually the energy of unvoiced speech is much lower than voiced
speech and the voiced power spectrum is contaminated much
less than in the voiced–voiced situation. Thus, we consider these
segments with single-pitch contours as usable speech. The re-
maining segments are considered unusable and removed. To en-
sure the homogeneity of a usable speech segment, if estimated
pitch values of neighboring frames change abruptly, we con-
sider that a speaker change occurs. Specifically, if this change is
above 10 Hz, the segment is split into two shorter segments.
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IV. MODEL-BASED SEQUENTIAL ORGANIZATION

Maximum-likelihood classification is well established for
SID [20]. However, in order to recognize talkers in cochannel
speech, the traditional probability framework for a single
speaker needs to be extended to multiple speakers.

A. Speaker Identification

Given a set of reference speaker models
, the goal of SID is to find the

speaker model that maximizes the posterior probability for
an observation sequence . Cepstral
features, such as mel-frequency cepstral coefficients (MFCCs),
are widely used as observations for speech signals. The SID
decision rule is

(1)

Applying the Bayesian rule, we have

(2)

Typically, prior probabilities of speakers are assumed equal,
and the maximization over is not affected by . Hence,

and can be dropped. Using pretrained speaker
models and assuming independence between observations at
different times, (2) can be rewritten as

(3)

after taking the log operation. Here, indexes observations.
is the standard Gaussian mixture model estimated from

training speech of specific talkers using the EM algorithm [20].
In the following experiments, speakers are modeled as 16-mix-
ture GMMs, which are tested to be sufficient for the data, and the
observations or features used are MFCCs and their first-order
dynamic coefficients [30]. Note that no background model is
used.

B. Extension to Cochannel Speech

Cochannel SID aims to find two speaker models that max-
imize the posterior probability for the observations. For a
cochannel mixture, our usable speech extraction method ex-
tracts speech segments, ,
each of which is a segment of consecutive speech frames,

, with a single-pitch contour. Given , (1) can be
modified as follows:

(4)

which is to find a pair of speaker models, and , from the
speaker set that maximize the posterior probability given
usable speech segments. As mentioned earlier, the single-pitch
segments must be organized into two speaker streams be-
cause in cochannel speech one speaker can dominate in some
portions and be dominated in other portions. For example,
a possible segment assignment (grouping) may look like

, where superscripts, 0 and 1, do not
represent the speaker identities but only denote that the seg-
ments marked with the same label are from the same speaker.
Therefore, the joint computational objective of sequential
grouping and SID may be stated as finding a pair of speaker
models, and , together with a segment assignment, , that
jointly maximize the posterior probability

(5)

where is the assignment space, which includes all possible
assignments (labelings) of the segments.

C. Derivation

The posterior probability in (5) can be rewritten as

(6)

Since the assignment is independent of specific models,
becomes , which, without prior knowledge

on segment assignment, we assume to be uniformly distributed.
Assuming the independence of speaker models and using the
same assumption from traditional SID that prior probabilities of
speaker models are the same, we insert (6) into (5) and remove
the constant terms. The objective then becomes finding two
speakers and an assignment that have the maximum probability
of assigned usable speech segments given the corresponding
speaker models as follows:

(7)

Note the conditional probability is essentially the joint SID
score of assigned segments. Given , the labeling, we denote

as the subset of usable speech segments labeled 0, and
the subset labeled 1. Since and are complementary, the
probability term in (7) can be written as follows:

(8)

The term is dropped from the above equation because the two
subsets already incorporate the labeling information.

Assuming that any two segments, and , are independent
of each other given the speaker models and that segments with
different labels are produced by different speakers, the condi-
tional probability in (8) can be written as

(9)

The probability of having a segment from a pretrained speaker
model is the product of likelihoods of that speaker model gen-
erating each individual observation of the segment, assuming
the observations are independent of each other. In other words

(10)
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D. Computational Method

The computational objective in (7) is to find two speakers
and one assignment that yield the maximal probability using
(8)–(10). Given the extracted usable speech segments and indi-
vidual speaker models trained from clean speech, the maximiza-
tion amounts to a search for the globally optimal hypothesis in
the joint speaker and assignment space and .

The brute-force way to find the maximum is exhaustive
search. For a cochannel mixture file, this involves calculating
the probability of the assigned segments given a pair of speaker
models, , for every possible pair out of
speakers in and every assignment in . Let the calculation of

take a unit time, then total computation time is
on the order of . However, according to (7)–(10),
once an assignment is given, the likelihood maximization is
simply finding the best speaker for each segment subset, and
corresponding likelihood values are then multiplied, resulting
in a complexity of . Similarly, for a given pair of
speakers, the likelihood maximization leads to finding the best
assignment for each segment, and the overall probability is the
product of these segment likelihood values. The speaker pair
with the highest probability gives the search result together with
its associated segment assignment. This way, the complexity of
search is reduced to .

In the search space, some hypotheses have very low proba-
bilities. Therefore, if these hypotheses could be identified and
pruned from further consideration, the computation time could
be greatly reduced. The results of exhaustive search indicate
peaky distributions with each peak occupied by several assign-
ment hypotheses in the search space. Thus, keeping a small
number of hypotheses could be sufficient. If we associate two
states with each segment, representing the hypotheses that the
segment is labeled as 0 or 1, a trellis is formed from the first
segment to the last one, whose paths represent all the possible
assignments of the segments. This way, the search amounts to
finding the best path in the trellis, and the hypotheses with low
probabilities can then be pruned. We propose an iterative hy-
pothesis pruning algorithm to keep only the two best hypotheses
in each iteration. More specifically, the first segment is arbi-
trarily labeled and starting from the second segment, only two
hypothesis states are retained corresponding to the current seg-
ment being labeled as either 0 or 1. The better path (out of the
two) leading to each state is selected, and path selection is based
on SID scores in (7) given the partial assignment. After the last
segment is labeled, the best out of the two hypothesis states is
then chosen; the best path from the first segment to the last is
constructed from the chosen paths at all preceding iterations.
Appendix I gives the details of the algorithm. The algorithm
can be viewed as finding the best path via Viterbi decoding. The
evaluation results in the next section show that the proposed al-
gorithm achieves a level of performance close to that of exhaus-
tive search.

For each unlabeled segment, it retains two hypotheses, each
of which calculates twice in the worst case,
resulting in the polynomial time complexity on the order of

. The computation time could be further reduced by
skipping the pairs of speakers whose partial scores are below a
threshold or much lower than others.

Fig. 3. Target SID correct rate before and after usable speech extraction. SID is
considered correct when the target speaker is identified from cochannel speech.
Sequential grouping is done using a priori pitch information.

V. EVALUATION AND COMPARISON

A. Data Preparation

As in Lovekin et al. [16], we employ the evaluation data
from the TIMIT speech corpus. The speaker set consists of 38
speakers from the “DR1” dialect region, 14 of which are fe-
male and the rest are male. Each speaker has ten utterance files,
ranging from about 1.5 to 6.2 s in length. For each speaker,
five out of ten files are used for training and the remaining five
files are used to create cochannel mixtures for testing. For each
speaker deemed as the target speaker, one out of five test files
is randomly selected and mixed with randomly selected files
of every other speaker, which are regarded as interfering utter-
ances. For each pair, the overall TIR of the speech mixture is
calculated as the ratio of the target speech energy over the inter-
fering speech energy

(11)

in which and are the speech samples of target and inter-
fering speakers in the time domain. The interfering utterance is
either cropped or concatenated with itself to match the length
of the target utterance. Speech is scaled to create the mixtures at
different TIRs: 20, 10, 5, 0, 5, 10, and 20 dB. For example,
0 dB TIR means that the target speech overall energy is equal
to that of the interfering speech. Thus, for each TIR, a total of
1406 cochannel mixture files are created for the testing purpose.

B. Usable Speech Evaluation

Our first experiment evaluates how the new method works
for usable speech extraction. To show the effectiveness of our
method, SID on usable speech is performed after the extracted
segments are ideally assigned. In many situations, one is inter-
ested in the target speaker, and the speech signal from the other
speaker is considered noise. Hence, we choose the target speaker
SID as our evaluation criterion (see [25] for SID results on rec-
ognizing either speaker). Fig. 3 gives the target speaker recog-
nition rate under various TIRs. As a baseline, a conventional
SID system is applied to the cochannel speech to recognize the
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TABLE I
CORRECT ASSIGNMENT RATE FOR SEQUENTIAL ORGANIZATION AND COCHANNEL SPEAKER IDENTIFICATION CORRECT RATE

target speaker. The baseline performance documents the top two
identified speakers. The correct rate degrades sharply when TIR
decreases because the target speech is increasingly corrupted.
Yantorno et al. [29] obtained comparable results in a similar
study to understand how cochannel speech impacts SID perfor-
mance. As a comparison, usable speech segments are extracted
from cochannel mixture as described previously. Here, we as-
sume that pitch information of individual speakers is known a
priori and segments are ideally grouped into speaker streams
based on a priori pitch. Specifically, a segment takes the label
that is taken by the majority of the frames in it, which is deter-
mined by comparing the detected pitch with the a priori pitch.
The first observation from Fig. 3 is that, under cochannel sit-
uations, usable speech extraction improves SID performances;
the average improvement is about 12% in terms of absolute cor-
rect rate. Second, the improvements are consistent across all TIR
levels. Improvement decreases at higher TIRs because the desig-
nated target speaker dominates the mixture. However, the target
speaker is dominated by the interferer at lower TIRs, resulting
in better performance after usable speech extraction.

C. Sequential Grouping Evaluation

Here, we evaluate the performance of our model-based se-
quential organization approach. For this evaluation, we only
consider cochannel mixtures with overall TIR equal to 0 dB to
simulate real cochannel situations. To facilitate a better under-
standing and comparison, we combine the evaluation results into
a single table, Table I, including the results from the alternative
methods we will describe in the following sections.

The second column in Table I shows the correct rate of
speaker assignment by counting correctly assigned frames.
To calculate the ratio, the denominator is the total number of
extracted usable speech frames. To find the numerator, the two
sets of usable frames labeled by the system as 0 and 1 are
compared with the two ideal sets labeled with single-speaker
pitch points derived from premixing utterances. There are two
possible correspondences between the two system-labeled sets
and the two ideal sets, and for each correspondence the number

of matching frames is recorded. The larger number out of
the two correspondences is used as the numerator. Note that
the SID performance does not impact the speaker assignment
results.

The third and fourth columns in Table I present the SID per-
formances with two different criteria. Like the evaluation in the
preceding section, the speaker from a specified channel—target
speaker—can be of interest. Thus, the first criterion measures
target identification correct rate. The second criterion records
the percentage of mixtures where both speakers are correctly
identified; this is the more stringent criterion (see [25] for an-
other criterion based on recognizing either speaker).

In Table I, the baseline rate of correct grouping corresponding
to random labeling of each usable frame is 50.0%. The second
row shows that ideal assignment by prior pitch achieves 94.1%
correct rate. Note that ideal assignment is applied at the segment
level: A segment takes the label of a majority of the frames in the
segment, where each frame is labeled by comparing the detected
pitch with the prior pitch before mixing. The less-than-perfect
result reflects that a single-pitch segment does not always con-
tain frames from the same speaker, which is expected consid-
ering the nature of cochannel speech.

Exhaustive search achieves 77.4% correct assignment rate.
It reflects the effectiveness of using speaker characteristics for
sequential organization. From the derivation, it is evident that
exhaustive search places an upper limit on the performance
of model-based sequential grouping. Our proposed hypothesis
pruning method achieves 76.2% correct rate, approaching the
upper-limit set by exhaustive search.

In terms of SID accuracy, the baseline performance is taken
to be identification accuracy by recognizing individual speakers
directly (see the next subsection for a method of recognizing
speaker pairs using combined GMM). In this case, the two SID
criteria document the top two identified speakers. Ideal assign-
ment produces much higher SID performance though it is not
100% correct because of imperfect assignment and limited seg-
ment lengths. For the model-based approach, exhaustive search
approaches the ceiling SID performance with ideal assignment,
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and the hypothesis pruning method performs almost as well as
exhaustive search, while cutting the overall computation time
from an average of 0.491 to 0.037 s/file on a Pentium III work-
station (the computation time for the exponential version of ex-
haustive search is on average 7 min/file). Since the search is
based on SID scores, the performance gap between the model-
based method and ideal assignment is smaller than that of se-
quential grouping performance.

In the formulation of sequential organization and SID, we as-
sume both speaker models are available—a closed-set situation.
To test how the algorithm functions in an open-set situation, we
apply the hypothesis pruning algorithm on cochannel speech
where one speaker is not registered. This is a task of identi-
fying a familiar speaker in cochannel mixtures where no model
is available for the interfering speaker. For this experiment, the
same mixture files are used as in previous evaluations. Specifi-
cally, for each test mixture, we remove the corresponding inter-
ferer model from the speaker set. In this case, only the SID crite-
rion for target speaker is applicable. The corresponding results
are 73.0% for correct assignment and 68.4% for target speaker
identity (see also Table I). These results are not much worse
than in the closed-set situation. We suspect that the coherence
of speaker features in an utterance enables the selection of a
speaker model from the registered speakers that is closest to the
unregistered speaker. Of course, when none of the two speaker
models are known, it would not make sense to use a model-
based approach and other methods such as pitch-based organi-
zation introduced in Section V-E should be explored instead.

While comparing average results of different methods, it is
useful to note statistical significance. With 1406 test utterances,
a one-tailed test for the recognition accuracy at around, say,
68.8% requires about 2.9% difference for statistical significance
at 5% level [11]. This suggests, for example, that the perfor-
mance difference in target speaker recognition between the hy-
pothesis pruning algorithm and exhaustive search is not statisti-
cally significant. For speaker assignment performance, it is more
difficult to construct a statistic for the hypothesis test because
frame-level decisions are not independent within segments.

D. Alternative Methods

We have explored a number of variations of our hypothesis
pruning algorithm. Because the algorithm prunes certain paths,
it resembles beam search [22]. In the simplest case where the
beam width is 1, the algorithm keeps only one hypothesis at each
iteration. In this case, beam search obtains the correct assign-
ment rate of 66.0% and the SID results are presented in Table I.
The results are significantly worse than the proposed algorithm.
In the case where the beam width is 2, it is very similar to the
proposed algorithm except that the latter already keeps two pos-
sible labels at each iteration. The results are given in Table I, and
they are indeed very close to those obtained by the hypothesis
pruning algorithm.

If the main objective is cochannel SID, rather than sequential
organization, a comprehensive approach is to directly identify
speaker pairs from a closed set. One way of formulating the
problem is to omit the assignment variable in (5) and replace
usable speech segments by mixture itself. This may be viewed

as integrating over the speaker assignment variable and, hence,
can produce the maximum SID performance. To reduce the
computational complexity associated with training speaker-pair
models, one approximation is to model a speaker-pair model
by simply merging two corresponding single-speaker models:

. In other words, the
joint likelihood of a mixture utterance is taken to be the av-
erage of the likelihoods given by each constituent model. This
method is denoted as combined GMM, and its SID performance
is given in Table I. It achieves SID performance higher than the
proposed method that considers speaker assignment. Part of the
reason for the better performance is that usable, or single-pitch,
frames may still contain energy from both speakers and forcing
a decision of one speaker may degrade identification perfor-
mance. Of course, correct recognition of a speaker pair does not
lend itself to sequential organization directly. However, with
the recognized speaker pair, each usable speech frame can be
classified into the two speaker sets by comparing its likelihood
values given the speaker models. This way, the combined GMM
method achieves 68.2% correct assignment rate, lower than that
of the hypothesis pruning method.

E. Comparison

We have shown the system’s ability to extract usable speech
and improve both cochannel SID and sequential organization
performance. In this section, we compare with alternative se-
quential grouping methods, namely one that employs pitch dy-
namics and one based on spectral divergence.

One reasonable alternative is to utilize pitch information, par-
ticularly since pitch contours have already been obtained. Pre-
vious studies have demonstrated the importance of pitch con-
tours for speaker recognition, e.g., [1]. We collect pitch differ-
ences between the end-point of a segment and the start point
of the following segment from the training data. Considering
that the longer is the gap between two segments the less likely
they belong to the same speaker, we multiply the difference
by the time lag between them. The resulting product describes
the pitch change dynamics between neighboring segments. A
Gaussian-like peak can be observed centered on 0 in the his-
togram and maximum-likelihood estimation is employed to ob-
tain the statistics of the distribution, which is modeled as a mix-
ture of Gaussian and uniform distribution [28]. When grouping,
for each segment from to , the pitch dynamics product
is obtained and a local decision is made regarding whether the
current segment comes from the same speaker as the previous
segment by comparing the likelihoods of the dynamics feature
given the distribution. After the assignment is done, a search for
the two most probable speakers is applied. So, it is obvious that
the computational complexity is for this method. From
the results given in Table I, this method clearly performs worse
than the pruning algorithm, but gives a significant improvement
over the baseline case without usable speech processing.

We have also compared our algorithm with a spectrum-based
method, specifically the speaker assignment algorithm of
Morgan et al. [18] that also addresses sequential organization.
Their system aims to enhance cochannel speech by separating
two talkers and subsequently assigning separated speech com-
ponents to two speaker streams. The assignment of intermittent
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Fig. 4. Illustration of the hypothesis pruning algorithm. The algorithm is executed segment by segment. Every segment is hypothesized to be either H or H
and labeled with 0 or 1, respectively, except that S is identified with hypothesis H . Path records the best label path. For either hypothesis of the segment to
be considered, the better label path from the preceding iteration is chosen by comparing L(:) defined in (12), and its label path is copied to the current path. The
algorithm repeats until the last segment is processed.

voiced components, essentially the beginning frames of seg-
ments, is based on a frame-level spectral comparison with 50
recently assigned frames using the spectral divergence measure
of Carlson and Clement [7]. Since our system considers a
usable segment to belong to one speaker, we adapt and employ
the algorithm to perform only speaker assignment; that is,
segments are organized using their spectrum-based method.
Specifically, the initial 50 frames of each speaker stream are
a priori assigned, and then the subsequent segments are se-
quentially assigned according to their divergence measure. The
assignment result is shown in Table I. With 66.2% correct rate,
the spectral method is comparable in performance to the pitch
dynamics method, but it is less effective than our proposed
method. As a result the SID results are not shown.

VI. CONCLUDING REMARKS

Sequential organization groups sound components of the
same source across time into the same stream. In this paper,
we have proposed a model-based approach for sequential
organization, to assign the extracted usable speech segments
into speaker streams. Our usable speech extraction method
produces segments useful for cochannel SID across various
TIR conditions. We have shown that the proposed hypothesis
pruning algorithm achieves SID performance close to the
ceiling performance with prior pitch information or exhaustive
search, and it performs significantly better than alternative
approaches to speaker assignment.

It is worth noting that our sequential grouping algorithm
can handle the situation where only one speaker is present in a
cochannel mixture. Since segments may all take the same label
after assignment, our algorithm can produce only one speaker
identity. Also, when evaluating the likelihood of assigned seg-
ments in (7), the same speaker model could be two top choices
for both subsets, which signals that only one speaker is present.

The probabilistic framework proposed in here can be extended
to situations with more than two speakers in a mixture.

By extracting voiced speech as usable speech, the speaker in-
formation carried in unvoiced speech segments is removed. How
much does usable speech extraction impact the performance
of single-speaker recognition? For the trained GMMs and the
test corpus described in Section V, the SID correct rate is about
99.5% without usable speech extraction. After the extraction of
single-pitch segments, the SID correct rate by performing SID
on extracted segments only degrades to 92.4%. Lovekin et al.
[16] reported similar degradation when voiced speech is tested
on normal-trained speaker models. We note that speaker models
could be trained with extracted usable speech directly instead of
entire speech files as suggested in [16], which could not only im-
prove SID performance but also reduce the amount of training
data. The study in [16] observed some SID improvement by
doing so. This will be investigated in future work.

The speech decoding model of Barker et al. [2] also addresses
sequential integration, and their formulation is extended from
the statistical framework of automatic speech recognition. Their
model searches for the most likely word sequence and addition-
ally determines the set of signal fragments that compose the
speech signal, leaving the rest as the noise background. Our
model is analogous to theirs in the emphasis of recognition-
based organization. However, the domain of cochannel speaker
recognition where our model is derived differs from their speech
recognition domain, and as a result the computational methods
used in the two models are very different. It is not clear, for
example, how their model can address the cochannel situation
where the interfering noise is also speech.

APPENDIX I
HYPOTHESIS PRUNING ALGORITHM

We give the detailed algorithm below. See Section IV-D for
notations.
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Step 0) Order the segments in se-
quentially in time.

Step 1) Label in with 0 (assign it to ). This initial
assignment is arbitrary.

Step 2) For in , form two hypotheses: , , and
create a label path for each of them. assumes
that the current segment belongs to set , and
assumes that the current segment belongs to .
The label paths are

records assignment labels for the past
segments and the hypothesized assignment

of the current segment.
Step 3) For an unprocessed segment , , form

and . Then expand the label path for and
as follows:

where the function, as defined below, estimates
the joint SID score by considering the best partial
segment assignment from 1 to

(12)

or 1, refers to the hypothesized labeling for
the current segment.

Step 4) Repeat Step 3) until the last segment is pro-
cessed. For , compare the likelihood values
returned by for and . The final winning
hypothesis is the one with the higher likelihood.
Obtain the corresponding two speaker identities
that maximize (12) and the segment assignment for
this hypothesis.

The function in (12) is the same as (7) in the main text ex-
cept that only considers the partial segment assignment from

to . Fig. 4 gives an illustration of this iterative algorithm.
Since every usable segment could be produced by either of two
speakers in the mixture, it is hypothesized as either or
and labeled with 0 or 1, respectively ( , is initialized to hypoth-
esis ). The two hypothesis states bifurcate iteratively and our
pruning algorithm always retains the best path to a state and is
recorded in . For each state, we compare the partial SID
scores, considering the label paths recorded with the preceding
hypothesis states. The SID score is defined by the function in
(12). The better path is then chosen. The algorithm repeats until
the last segment is processed.
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