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Abstract

A human listener has the ability to follow a speaker’s voice over time in the presence of other talkers and non-speech interference. This
paper proposes a general system for sequential organization of speech based on speaker models. By training a general background model,
the proposed system is shown to function well with both interfering talkers and non-speech intrusions. To deal with situations where
prior information about specific speakers is not available, a speaker quantization method is employed to extract representative models
from a large speaker space and obtained generic models are used to perform sequential grouping. Our systematic evaluations show that
grouping performance using generic models is only moderately lower than the performance level achieved with known speaker models.
� 2009 Elsevier B.V. All rights reserved.
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1. Introduction

A daily auditory scene typically comprises multiple
sound sources. Usually there is a target source that one is
listening to, such as a radio host or a piece of music. Mean-
while, there are acoustic events from other sound sources
that are of little interest to the listener, such as a ventilation
fan in an office or a car passing by on the street. Cochannel
speech, for example, is a combination of utterances from
two speakers transmitted over a single communication
channel (Quatieri and Danisewicz, 1990). Unlike conversa-
tions, speakers are usually not aware of each other under
cochannel conditions, leading to large speech overlaps that
present a considerable challenge to applications such as
automatic speaker or speech recognition. On the other
hand, for a cochannel mixture that has comparable ener-
gies from both talkers, human listeners can readily select
and follow one speaker’s voice (Brungart, 2001). Even in
0167-6393/$ - see front matter � 2009 Elsevier B.V. All rights reserved.

doi:10.1016/j.specom.2009.02.003

* Corresponding author. Tel.: +1 614 292 7402; fax: +1 614 292 2911.
E-mail addresses: shao.19@osu.edu (Y. Shao), dwang@cse.ohio-

state.edu (D. Wang).
more adverse scenarios such as a cocktail party, listeners
can segregate the voice of a particular talker as long as
the signal-to-noise ratio (SNR) is not exceedingly low
(Helmholtz, 1863; Cherry, 1953; Bregman, 1990). Accord-
ing to Bregman (1990), the human ability to function well
in complex acoustic environments is due to a perceptual
process termed auditory scene analysis (ASA), which pro-
duces a perceptual representation of an individual source
in an acoustic mixture.

Organization in ASA, according to Bregman (1990),
takes place in two main processes: segmentation and
grouping. Segmentation decomposes an auditory scene into
groups of contiguous time–frequency (T–F) units or seg-
ments, each of which primarily originates from a single
sound source (Wang and Brown, 2006). A T–F unit
denotes the signal at a particular time frame and frequency.
Grouping combines the segments that likely arise from the
same source together into a single stream. Thus, each of the
formed streams gives a perceptual representation of a
sound source. Grouping itself is composed of simultaneous
and sequential organization. Simultaneous organization
groups segments that overlap in time, and sequential
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organization refers to grouping across time. A computa-
tional auditory scene analysis (CASA) system that segre-
gates target speech is desirable for many applications. We
address sequential grouping in this paper.

Previous systems utilize speech models from automatic
speech recognition for speech organization (Barker et al.,
2005; Ellis, 2006). However, by listening to a cochannel
mixture, one seems to be able to follow the voice of either
speaker even when they are speaking in a foreign language
as concluded in an informal listening test reported by
Wang (2006). In the test, subjects listened to cochannel
mixtures of equally loud utterances in languages totally
unknown to them, and the tested languages included
French, German, Hindi, Japanese, Mandarin, and Spanish.
We recently proposed a model-based system that employs
voice characteristics and performs sequential organization
in cochannel mixtures (Shao and Wang, 2006). This system
maximizes the likelihood of grouped speech segments given
a set of speaker models. It is reasonable to assume, under
some conditions, that models of all the speakers that can
appear in an input scene are available in advance. This is
known as a close-set situation. Under some other condi-
tions, a system can only assume familiarity with the voice
that it is supposed to segregate. This presents an open-set
situation where only the target speaker model is available.
Furthermore, listening to foreign language mixtures indi-
cates that a listener may not need any knowledge of the
talkers to attend to a target voice (Wang, 2006). This is a
completely open-set condition where none of the speaker
models in the input are available. A major limitation of
our previous model-based sequential grouping system is
the requirement that input speakers come from a closed
set of registered speakers. We seek to extend the grouping
system to handle open-set conditions.

Our strategy is to model characteristics of unknown
speakers in a systematic way when only target models are
available. In speaker verification studies, a universal back-
ground model, typically constructed from a large number
of speaker models to form a non-target model, has proven
to be effective for facilitating the decision of whether the
input signal is produced by a claimed speaker (Reynolds
et al., 2000; Bimbot et al., 2004). Here, we employ a back-
ground model to incorporate a number of intrusion types
so as to contrast with a target speaker for sequential
grouping.

When target speaker models are not available, we can
select speakers that are similar to those unregistered ones.
In speaker indexing tasks, the latter processing is called
generic modeling (Kwon and Narayanan, 2005). Similar
to speaker detection and tracking studies (Dunn et al.,
2000), speaker indexing determines who is talking at a par-
ticular time in an audio stream. Such a task uses unsuper-
vised methods when there is no prior information about
speakers in the input. Typical methods first use a general-
ized likelihood ratio test (Rice, 1995) to obtain speaker
homogenous segments (Dunn et al., 2000; Kwon and
Narayanan, 2005), which are then clustered to index under-
lying speakers in an audio stream and construct corre-
sponding models. However, these systems usually require
segments with a minimum length of one second (Dunn
et al., 2000) and shorter segments do not represent a
speaker well (Kwon and Narayanan, 2005). The data pau-
city problem caused by short segments usually propagates
clustering errors in the indexing process. To tackle this
problem, a number of methods have been proposed to cre-
ate generic models from a large number of speakers and
employ such models for unsupervised indexing (Kwon
and Narayanan, 2004; Kwon and Narayanan, 2005). One
way to obtain generic models is to quantize a speaker set
(Kwon and Narayanan, 2005). This method clusters
speaker models based on the symmetrized Kullback–Lei-
bler (K–L) divergence (Kullback, 1968). Within each clus-
ter, a speaker is randomly selected as a generic model that
represents the cluster.

In this paper, we systematically study sequential organi-
zation of speech in mixtures that contain speech and non-
speech intrusions. As a special case, we first describe
model-based sequential grouping that organizes simulta-
neous streams under cochannel conditions. Simultaneous
streams are obtained by a voiced speech segregation system
that performs segmentation and simultaneous grouping
(Hu, 2006; Hu and Wang, 2006). Such streams primarily
contain T–F energy from a single speaker within a short
time period and they are separated in time. We then extend
the model-based sequential organization framework from
cochannel speech to mixtures that contain more than one
interfering talker and non-speech interference. The exten-
sion incorporates background models that account for
known and unknown interferences. We show that the sys-
tem is able to function well when only target speaker models
are available. Finally, we generalize the system to deal with
unregistered target and interfering speakers. More specifi-
cally, we employ a speaker quantization method to derive
generic models and use them for sequential organization
under these open-set conditions. This quantization method
performs clustering in a large speaker space based on the K–
L divergence measure. Our grouping system then replaces
individual speaker models with obtained generic models
for sequential organization. Evaluations show that group-
ing performance using generic models is only moderately
lower than that achieved with individual speaker models.

The rest of the paper is organized as follows. Section 2
describes the proposed organization system including
extraction of simultaneous streams, model-based sequen-
tial grouping, background modeling, and generic modeling.
Sequential organization evaluations are presented in Sec-
tion 3. Section 4 concludes the paper.

2. Sequential organization

As described earlier, in the ASA account, the goal of
sequential organization is to integrate separated speech
from the same speaker across time. From the CASA per-
spective, the separated speech refers to simultaneous
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Fig. 1. Diagram of the proposed CASA system for sequential organization of speech.
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streams, each of which is composed of segments of contig-
uous T–F units that primarily originate from a single
source. These streams are extracted from the mixture input
by segmentation and simultaneous grouping. Thus, the
goal of sequential organization in CASA is to organize
simultaneous streams into their corresponding sources. In
other words, it amounts to assigning simultaneous streams
to their sources.

Fig. 1 presents a diagram of the proposed system. First,
a voiced speech segregation system generates binary T–F
masks that represent simultaneous streams. Then, sequen-
tial grouping searches for optimal assignment of simulta-
neous streams and organizes them into corresponding
source streams. For the situations when only the target
speaker models are available, the grouping system employs
background modeling to handle multi-talker mixtures and
mixtures with non-speech intrusions. In the case when none
of the speakers in the input are registered, the system uti-
lizes generic models derived by a speaker quantization
method for grouping.

2.1. Segmentation and simultaneous grouping

To obtain simultaneous streams, we employ a pitch-
based speech segregation system (Hu, 2006; Hu and Wang,
2006). We adopt this system because it makes relatively few
assumptions about underlying noise and has been shown to
significantly improve the SNR of segregated speech under
various noisy conditions. The speech segregation system
decomposes input signals into the T–F domain through a
bank of gammatone filters (Patterson et al., 1988). This sys-
tem performs segmentation by merging T–F units using
cross-channel correlation and temporal continuity (Hu,
2006; Hu and Wang, 2006). Specifically, in the low fre-
quency range, segments are formed by merging neighboring
T–F units with sufficiently high cross-channel correlation in
a correlogram, which consists of autocorrelations of filter
responses (Wang and Brown, 2006). Since a gammatone fil-
ter responds to multiple harmonics in the high frequency
range, segments are constructed on the basis of cross-chan-
nel correlation of response envelopes in high frequency.
For simultaneous grouping of obtained T–F segments,
the speech segregation system estimates pitch contours
based on the aforementioned correlogram since pitch is a
primary cue for grouping (Bregman, 1990; Wang and
Brown, 2006). A segment is grouped into a simultaneous
stream that corresponds to a pitch contour if more than
half of its T–F units exhibit periodicities that are consistent
with the pitch contour. In the low-frequency range where
harmonics are resolved, a T–F unit is labeled as consistent
if it shows a large response at the estimated pitch period;
otherwise it is labeled as inconsistent. For high-frequency
channels, the consistency is determined by checking
whether the envelope of a unit response shows a variation
at a rate close to the estimated pitch period (Hu and Wang,
2006). Subsequently, a simultaneous stream is further
expanded to include neighboring units that have the same
label.

The speech segregation system outputs simultaneous
streams as binary T–F masks, which are estimates of an
ideal binary T–F mask (Wang, 2005). As a computational
goal of CASA (Wang, 2005), the ideal binary mask is 1 if
target energy is stronger than interference energy in the
corresponding T–F unit and 0 otherwise. The ideal binary
mask is motivated by the human auditory masking phe-
nomenon (Moore, 2003), and under certain conditions
provides the maximum SNR gain of all the binary masks
(Hu and Wang, 2004). Since a simultaneous stream con-
sists of contiguous T–F regions dominated by a speaker,
a binary mask produced by the segregation system is an
estimate of the ideal binary mask for the underlying
speaker within the corresponding time interval of the
stream. Thus, given a speech mixture, the segregation sys-
tem generates a group of binary T–F masks, which repre-
sent simultaneous streams. Fig. 2b shows a collection of
such streams obtained from a cochannel mixture in
Fig. 2a by the speech segregation system. The background
is shown in white, and the different gray regions represent
different simultaneous streams. These segregated streams
have been grouped across frequency, but they are yet to
be grouped in time, which is the task of sequential
grouping.
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Fig. 2. Illustrations of noisy speech and estimated simultaneous streams.
Plot (a) shows a cochleagram of a two-talker utterance mixed at 0 dB
SNR. Darker color indicates stronger energy within the corresponding
time–frequency unit. Plot (b) presents simultaneous streams derived from
utterance in (a). White color shows the background. Different gray-
colored regions indicate simultaneous streams that have been grouped
across frequency but not across time.
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2.2. Model-based sequential organization

In this section, we briefly describe our speaker-model
based sequential grouping framework (Shao and Wang,
2006). We derive a computational objective in the context
of cochannel speaker recognition. Assume that there are
a set of K registered speaker models K = {k1, k2, . . . ,kK},
and they are constructed as Gaussian mixture models
(GMM) using an EM algorithm (Reynolds, 1995). Given
a cochannel input, CASA is used to generate N simulta-
neous streams, Y = {S1, S2, . . . ,Si, . . . ,SN}, each of which
is deemed to primarily originate from a single speaker
and represented by a binary T–F mask.

In cochannel speech, simultaneous streams must be
organized into two speaker streams by sequential organiza-
tion. For example, a possible stream assignment (grouping)
may look like fS0
1; S

1
2; . . . ; S1

i ; . . . ; S0
Ng, where superscripts, 0

and 1, do not represent the speaker identities but only
denote that those simultaneous streams marked with the
same label are from the same speaker. Therefore, we for-
mulate the joint computational objective of sequential
grouping and speaker identification (SID) as finding a pair
of speaker models k̂I and k̂II together with a simultaneous
stream assignment ĝ that jointly maximize the posterior
probability:

ĝ; k̂I; k̂II;¼ arg max
kI;kII2K;g2G

P ðg; kI; kIIjY Þ; ð1Þ

where G is the assignment space, which includes all possible
assignments (label sequences) of the simultaneous streams.

Assuming that the assignment is independent of specific
models and that speaker models are independent of each
other, it has been shown that (1) becomes (Shao and Wang,
2006)

ĝ; k̂I; k̂II ¼ arg max
kI;kII2K;g2G

PðY jg; kI; kIIÞ: ð2Þ

The computational objective in (2) is to find the optimal
hypothesis of two speakers and one assignment that yield
the maximal conditional probability. Given the simulta-
neous streams and individual speaker models trained from
clean speech, the likelihood maximization amounts to
searching for the globally optimal hypothesis in the joint
speaker and assignment space, K and G. Note that the con-
ditional probability is essentially the joint SID score of as-
signed simultaneous streams. Given an assignment g, we
denote Y0 as the subset of simultaneous streams labeled
0, and Y1 the subset labeled 1. Y0 and Y1 are
complementary.

In speaker recognition studies (Reynolds, 1995; Furui,
2001), feature vectors extracted from individual frames
are usually assumed to be independent of one another for
text-independent tasks. Since we are interested in
sequential organization of speech independent of text
information, we adopt a similar assumption that two
simultaneous streams, Si and Sj, are independent of each
other given the speaker models. In addition, different labels
of simultaneous streams (superscripts 0 and 1) correspond
to different speakers. Hence, the conditional probability in
(2) can be written below (Shao and Wang, 2006):

PðY jg; kI; kIIÞ ¼ PðY 0jkI; kIIÞPðY 1jkI; kIIÞ

¼
Y

Si2Y 0

PðSijkIÞ
Y

Sj2Y 1

P ðSjjkIIÞ: ð3Þ

The likelihood in (3) calculates the probability of having a
simultaneous stream, Si or Sj, belong to a speaker model k.
This likelihood is not directly obtainable using conven-
tional methods (Huang et al., 2001) that calculate the prob-
ability of a complete feature frame given a model because a
binary T–F mask that represents a simultaneous stream in-
cludes both reliable and unreliable T–F units within a
frame. To incorporate the binary masks for sequential
grouping, we apply a feature reconstruction and uncer-
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Fig. 3. Segregated speaker streams after sequential grouping of the
simultaneous streams shown in Fig. 2b. White color shows the back-
ground. The two gray-colored sets of T–F regions represent two separated
speaker streams.
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tainty decoding method described in Shao et al. (2007).
More specifically, we employ a novel auditory feature,
gammatone frequency cepstral coefficients (GFCC), which
are derived from gammatone filtering and cepstral analysis
(Shao et al., 2007). The unreliable T–F components indi-
cated by 0 in a binary mask are reconstructed using a
speech prior (Raj et al., 2004) to enhance GFCCs. More-
over, reconstruction uncertainties are estimated to compen-
sate for reconstruction errors (Shao et al., 2007; Srinivasan
and Wang, 2007). The enhanced GFCCs are then used in
conjunction with uncertainty estimates by an uncertainty
decoder (Deng et al., 2005) to calculate the likelihood of
a stream given a speaker in (3).

According to (2) and (3), given a pair of speakers, the
best assignment of simultaneous streams by the two
speaker models is determined by comparing the aforemen-
tioned stream likelihoods for all the simultaneous streams
(Shao and Wang, 2006). This can be achieved efficiently
since streams are assumed to be independent. Then, we
iterate through all the possible pairs of speakers and find
the optimal speaker pair and stream assignment (Shao
and Wang, 2006). Fig. 3 illustrates two segregated speaker
streams after sequential organization of the simultaneous
streams in Fig. 2b. The two speaker streams are shown
as two different gray colors.

2.3. Modeling of background

Under multi-talker conditions such as cochannel speech,
the input to the system is a mixture composed of voices
from multiple speakers. The voice of interest is designated
as target and the others as interferences. In certain circum-
stances such as a meeting, there can be more than one inter-
fering speaker. To tackle such conditions, we can extend
the model-based sequential grouping framework by replac-
ing the speaker pair with a speaker triplet, a speaker
quadruplet, etc., in (1). This will end up with a computa-
tional objective similar to (2) by applying the same deriva-
tion in Section 2.2. An optimal stream assignment g to M

speakers can be formulated as,

ĝ; k̂I; k̂II; . . . k̂M ¼ arg max
kI;kII ;...kM2K;g2G

PðY jg; kI; kII; . . . kMÞ; ð4Þ

where M 6 K. Naturally, the components of g take values
from 1 to M. This extension makes an explicit assumption
of the speaker number in a mixture. Without this assump-
tion, one could further extend the formulation in (4) by
including another search that evaluates different speaker
numbers. In other words, the grouping algorithm evaluates
the best hypotheses for one, two, three,. . ., and a suffi-
ciently large number of speakers. The speaker number that
yields the highest likelihood would be chosen as the esti-
mate, and the grouping hypothesis associated with the
speaker number estimate would provide the optimal
assignment of simultaneous streams. Nevertheless, this
extension has the problem of scalability. For example, in
the case of a cocktail party, there may be a large number
of active speakers in the background. Indeed, there can
be so many voices in the background that a listener per-
ceives something more like babble noise. Searching
through all the combinations of up to M speakers greatly
increases computational time.

To deal with multi-talker conditions, consider how exist-
ing CASA systems treat interference (Wang and Brown,
2006). Typically, the target signal is segregated into a fore-
ground (target) stream while the remaining parts of the
input signal are organized into the background (interfer-
ence) stream. This process applies regardless of actual
interference types or numbers. Hence, instead of modeling
individual speakers, we propose to build a background
model that accounts for all interfering speakers as well as
unregistered ones. This background model is constructed
as a GMM by training on a large sample pool of speakers.
Conceptually, it is analogous to a universal background
model in speaker verification studies (Bimbot et al.,
2004). Thus, we replace one speaker in (2) with a general
background model kB and perform the search over the tar-
get speaker as follows:

ĝ; k̂ ¼ arg max
k2K;g2G

P ðY jg; k; kBÞ: ð5Þ

The formulation in (5) handles multi-talker conditions
where the grouping system possesses the models of the tar-
get speakers but not others in an input mixture. This for-
mulation is also able to deal with acoustic conditions
with non-speech intrusion sources. To perform such a task,
a background model is constructed using a large sample
pool of non-speech intrusions; the existence of typical noise
corpora such as the Noisex (Varga and Steeneken, 1993)
and environmental sounds (Hu, 2006) facilitates such con-
struction. The grouping system then organizes target
speech into a foreground stream while assigning the



Fig. 4. Illustration of speaker quantization. The solid circles represent
individual speakers, which are modeled as GMMs. The thin dashed circles
represent clusters obtained by the speaker quantization method. The thick
dashed circles denote selected generic models within each cluster.
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remaining intrusions to the background. Moreover, in the
case where interfering sources could be either speech or
non-speech, our formulation of the background model
can be extended to combine both multi-talker and non-
speech interference conditions.

2.4. Generic modeling with speaker quantization

The sequential grouping approach described in the pre-
ceding subsection requires the prior knowledge of target
speakers. Here, we extend the grouping algorithm to han-
dle acoustic conditions where none of the speakers in an
input mixture are registered. Specifically, we employ a
speaker quantization method to derive generic models for
this purpose. The basic idea of generic speaker modeling
and speaker quantization is to identify and construct a
small number of models that represent a much larger
speaker set. Generally speaking, quantization can be
applied either in the feature space or in the model space.
The former approach is widely used in automatic speech
recognition (Huang et al., 2001). However, without top-
down constraints that model a speaker, a quantized model
produced by this approach more likely reflects intrinsic
speech classes of the feature space instead of speakers.
Hence, we adopt the latter approach that performs quanti-
zation over speaker models. We propose to use a speaker
quantization method that is similar to a quantization
method used in speaker indexing (Kwon and Narayanan,
2005) to construct generic models for sequential
grouping.

We first construct a large set of speaker models K = {k1,
k2, . . . ,kK}, each of which is, once again, a GMM. Pair-wise
distances between two models are calculated for each
speaker pair within the set. Thus, the resulting distance
matrix describes a distribution of all the models within
the speaker space. Then, we apply a K-means clustering
method (Duda et al., 2001) to obtain a number of clusters
based on the distance matrix. Finally, within each cluster,
the model that has the shortest average distance to the
remaining models is selected as a generic model. Fig. 4
illustrates quantized generic models.

Since a speaker is usually modeled by a statistical distri-
bution of its features, we employ the symmetrized K–L
divergence (KLD) (Kullback, 1968) as the distance mea-
sure between two speaker models,

KLðf kgÞ ¼
Z

f ðxÞ log
f ðxÞ
gðxÞ dx ð6Þ

defines the KLD, also known as the relative entropy, be-
tween two density functions, f(x) and g(x). The symmetric
KLD is defined as,

Dðf ; gÞ ¼ KLðf kgÞ þ KLðgkf Þ ð7Þ

However, no closed-form solution exists for the KLD when
f(x) and g(x) are GMMs (Vasconcelos, 2004; Silva and
Narayanan, 2006). Various methods have been proposed
to approximate the KLD or estimate its upper-bound
(Vasconcelos, 2004; Silva and Narayanan, 2006; Hershey
and Olsen, 2007). The only known method that asymptot-
ically estimates the KLD is Monte Carlo simulation (Ben
et al., 2002; Vasconcelos, 2004; Hershey and Olsen,
2007). Here, we apply a Monte Carlo method to calculate
the KLD between two GMMs. First, we draw N samples
{xi: i = 1, . . . ,N} from f(x). KLD is then approximated as,

KLðf kgÞ � 1

N

XN

i¼1

log
f ðxiÞ
gðxiÞ

: ð8Þ

KL(g||f) is estimated in the same way using a set of samples
drawn from g(x). Thus, pair-wise symmetric K–L distances
are calculated for all the speaker pairs and the resulting dis-
tance matrix defines the speaker space where we apply
quantization.

3. Evaluation and comparison

This section systematically evaluates the performance of
the sequential organization system. We adopt a perfor-
mance metric that measures SNR of segregated speech
after it is resynthesized in the time domain (Hu and Wang,
2004). This metric compares the target signal s(n) resynthe-
sized from the ideal binary mask and the organized target
signal ŝ(n) resynthesized from an estimated binary mask
in decibels. This measure directly compares signals in the
time domain as

SNR ¼ 10log10

P
ns2ðnÞP

n sðnÞ � ŝðnÞð Þ2
; ð9Þ

where n indexes time.

3.1. Evaluation on speech background

To simulate multi-talker conditions, we create test utter-
ances from the speech separation challenge (SSC) corpus
(Cooke and Lee, 2006). This corpus provides speech mate-
rials from 34 speakers. Our training data is taken from the
training part of SSC corpus and each of the 34 speakers is
modeled as a 64-component GMM of 30-dimensional



Table 1
Evaluation of sequential grouping of two-talker mixtures. Numbers in the
table show output SNR (dB) of segregated speech.

Methods Input SNR (dB)

�6 0 6 12

Ideal sequential grouping 3.604 6.483 8.287 8.865
Random grouping �2.459 0.487 2.474 2.699
Grouping using prior pitch 2.690 4.597 6.711 7.293
Pitch-based grouping 0.598 4.167 6.013 6.527
Background modeling 2.545 5.065 6.708 7.623

Table 2
Evaluation of sequential grouping of three-talker mixtures. Numbers in
the table show output SNR (dB) of segregated speech.

Methods Input SNR (dB)

�6 0 6 12

Ideal sequential grouping 3.006 5.793 8.968 10.937
Random grouping �3.648 0.873 2.566 3.334
Grouping using prior pitch 2.298 3.931 5.552 6.860
Pitch-based grouping �0.622 3.121 5.233 6.158
Background modeling 1.296 4.483 7.278 9.287

Table 3
Evaluation of sequential grouping of four-talker mixtures. Numbers in the
table show output SNR (dB) of segregated speech.

Methods Input SNR (dB)

�6 0 6 12

Ideal sequential grouping 2.529 5.492 8.965 11.004
Random grouping �3.177 1.121 2.554 3.302
Grouping using prior pitch 1.827 3.722 5.236 6.804
Pitch-based grouping �0.373 2.777 4.264 4.786
Background modeling 0.636 4.169 7.355 9.314
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GFCCs (Shao et al., 2007). The corpus also provides 600
clean utterances in the test set, so we use these utterances
to generate two-talker, three-talker, and four-talker mix-
tures. For each utterance deemed as target, one, two, or
three utterances are randomly selected from other speakers
in the clean set and mixed with the target. For each mix-
ture, interfering utterances are either cut or appended with
themselves to match the length of a target utterance. Inter-
fering utterances are also scaled to have equally strong
energy. Every multi-talker condition comprises an SNR
range of �6 dB, 0 dB, 6 dB, and 12 dB that provides a wide
range of noisy environments. Each of the SNR conditions
contains 600 mixtures.

Evaluation results are presented in Tables 1–3 for two-
talker, three-talker, and four-talker conditions, respec-
tively. To establish a performance upper-bound, we first
construct the ideal binary mask of each mixture (see Sec-
tion 2.1). Then, we find an ideal sequential grouping
(ISG) mask for the mixture by grouping simultaneous
streams into the target stream according to its ideal binary
mask. A simultaneous stream is grouped as target if more
than half of its energy is retained by the ideal mask. This
ISG mask presents the best mask that a sequential group-
ing algorithm can produce, thus reflecting an upper-bound
performance. The first rows of the tables show the SNR
results of ISG. ISG significantly improves SNRs at
�6 dB, 0 dB, and 6 dB. However, since an ISG mask is
generated by grouping simultaneous streams which are
produced by a voiced speech segregation system (Hu,
2006; Hu and Wang, 2006), errors in simultaneous
grouping, including the removal of unvoiced speech, are
inherited in an ISG mask. Because of this, output SNRs
of ISG masks are less than input SNRs under the 12 dB
condition.

The second rows in the tables present the baseline per-
formance by randomly assigning a stream to either the tar-
get or the background stream. When an input SNR is
positive, the output SNR is expected to be lower because
simultaneous streams are randomly assigned. On the
other hand, with a negative input SNR, random grouping
tends to produce a higher output SNR as in the case of
�6 dB.

Similar to our previous study (Shao and Wang, 2006),
we also conduct sequential grouping using pitch informa-
tion as an alternative approach. We first evaluate grouping
performance based on prior pitch, which is extracted from
clean target utterances. A simultaneous stream is assigned
to the target stream if the average difference of its pitch
contour and a prior contour is within 5% range of the lat-
ter. The resulting performance is reported in the third rows.
This performance places an upper-bound for all sequential
grouping methods that utilize pitch. To implement a pitch-
based approach, we employ a clustering method that is
based on the mean pitch values of simultaneous streams.
The number of clusters is set to the speaker number in a
test mixture. SNR results are shown in the ‘Pitch-based
Grouping’ rows. The results are worse than the perfor-
mance upper-bound using prior pitch because the cluster-
ing method is not able to differentiate speakers when
their pitch contours are close to each other

The last rows in the tables present sequential grouping
results using general background models. Here, the group-
ing system only assumes information about target speak-
ers. A general background model is trained on all the
speakers other than the target and the interfering speakers.
Specifically, for each input mixture, we randomly select a
group of 10 speakers from the SSC corpus as the target
speaker set. In other words, this simulates the acoustic con-
dition where a system is only familiar with the voice of a
target speaker. It can be observed from the tables that
background modeling performs significantly better than
the baseline and the pitch-based methods. Except at
�6 dB, where the binary mask of a simultaneous stream
is too sparse for reliable feature reconstruction and likeli-
hood calculation, our model-based approach performs bet-
ter even than grouping based on prior pitch. It is worth
emphasizing that background modeling achieves a perfor-
mance level that is only moderately lower than the upper-
bound obtained by ISG.



Table 4
Sequential grouping of mixtures with non-speech interferences. Numbers
in the table show output SNR (dB) of segregated speech. The test mixtures
contain babble noise in (a), destroyer noise in (b), F16 noise in (c) and
factory noise in (d).

Methods Input SNR (dB)

�6 0 6 12

(a) Babble

Ideal sequential grouping 2.190 5.763 9.074 11.054
Random grouping 0.349 2.159 2.752 3.212
Background modeling 1.065 5.302 8.849 11.002
Unregistered target 0.802 4.238 7.617 10.294

(b) Destroyer

Ideal sequential grouping 2.670 6.486 9.693 11.262
Random grouping �0.822 2.082 3.129 3.286
Background mdeling 1.342 4.075 9.062 11.052
Unregistered target 1.215 3.018 7.704 10.280

(c) F16

Ideal sequential grouping 3.586 7.587 10.197 11.477
Random grouping 1.257 2.665 3.079 3.287
Background modeling 3.213 6.767 9.833 11.333
Unregistered target 2.992 5.717 8.588 10.440

(d) Factory

Ideal sequential grouping 2.958 7.063 9.855 11.420
Random grouping 1.225 2.505 3.067 3.382
Background modeling 2.778 6.576 9.500 11.305
Unregistered target 2.599 5.670 7.996 10.376
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3.2. Evaluation on non-speech background

In this section, we evaluate the background modeling
method to deal with non-speech interferences. Similar to
the preceding subsection, we create test mixtures by mixing
clean test utterances of 34 speakers from SSC with four
non-speech noise types: babble noise (100 speakers),
destroyer (a navy ship) operation room noise, F16 cockpit
noise, and factory noise. These four noise types are selected
from the Noisex 92 corpus (Varga and Steeneken, 1993),
which is widely used for robust speech recognition studies.
The first two types contain a noisy background with many
talkers speaking at the same time. They are considered as
non-speech here because with so many voices the back-
ground does not exhibit clear speech patterns.

Evaluation results are shown in Table 4 for the babble,
destroyer, F16 and factory noise types separately. The first
two rows in each part of the table present the upper-bound
performance and the baseline performance obtained by
ISG and random grouping, respectively. The third rows
show SNR results by employing background modeling. A
background model is trained from pooled noise samples.
These noise samples include the 4 noise types and 15 other
non-speech noise types (Hu, 2006): white noise, rock music,
siren, telephone, electric fan, clock alarm, traffic noise, bird
chirp with water flowing, wind, rain, cocktail party noise,
crowd noise at a playground, crowd noise with music,
crowd noise with clap, and babble noise (16 speakers). This
simulates a test condition where an actual noise source in a
mixture originates from a number of possible noise types.
The resulting performance is close to that of ISG under
most of the SNR conditions since the trained models of tar-
get speech and non-speech interferences are quite different.

The last rows in the table, ‘Unregistered Target’, show a
test configuration that removes the target speaker from the
registered speaker set, simulating a condition where a lis-
tener has not heard the voice of a target speaker before
the test. In other words, the system performs grouping by
automatically selecting the most likely speaker out of the
remaining speakers as the target. Compared with the regis-
tered target condition in the third rows, the grouping per-
formance here degrades only moderately. These results
imply that a set of 30–40 speakers likely contains a speaker
that is acoustically close to the target. Thus, a small set of
speaker models might be sufficient for sequential grouping
when input speakers are not registered. This observation
led us to design an algorithm presented in Section 2.4 that
creates a set of generic speaker models.

In the preceding evaluations, the grouping system
assumes the knowledge of whether input mixtures contain
multi-talker or non-speech intrusions. Our formulation of
the background model can be extended to handle acoustic
conditions that contain both speech and non-speech intru-
sions (Shao, 2007). As a direct extension, we can construct
a general background model by incorporating both the
multi-talker and the non-speech background models. A
simpler approach is to combine these two GMM back-
ground models together and adjusting the weights of their
Gaussian components accordingly. The grouping system
then employs the combined model in (5) for sequential
organization.

3.3. Evaluation on speaker quantization

Since speaker quantization requires a large number of
speakers, we adopt the 2002 NIST Speaker Recognition
Evaluation corpus (Przybocki and Martin, 2004) for evalu-
ation. Unlike our previous evaluations and most of the
evaluations in CASA studies (Wang and Brown, 2006), this
corpus is composed of telephone recordings, which have a
narrower bandwidth than typical microphone recordings.
We use the ‘1-speaker detection task’ portion of the corpus.
It contains 191 female and 139 male speakers, thus a total
of 330 speakers. For each speaker, this corpus provides a
120 s recording of concatenated cell phone utterances.

Considering computational complexity, our evaluations
are focused on cochannel mixtures; regarding other kinds
of mixtures inference could be made from our earlier eval-
uations. First, the original recordings are sliced into short
utterances of 4 s each. Given the resulting 30 utterances
for each speaker, 26 of them are randomly selected to con-
struct speaker models while the remaining four are used for
testing. Each of the 330 speakers is modeled as a 32-com-
ponent GMM of 30-dimensional GFCCs. Then, cochannel
mixtures are created at SNRs of �6 dB, 0 dB, 6 dB, and
12 dB. For each speaker designated as target, those four
test utterances are mixed with randomly chosen test utter-



Table 5
Sequential grouping evaluation with generic models. Numbers in the table
show output SNR (dB) of segregated speech. The test utterances are two-
talker mixtures. Numbers in the parentheses refer to the number of generic
models.

Methods Input SNR (dB)

�6 0 6 12

Ideal sequential grouping 5.718 7.494 9.704 11.445
Known speaker identity 2.193 4.766 7.659 9.872
Random grouping �3.396 0.396 2.301 2.945
Exhaustive search 1.515 4.397 7.270 9.442
Exhaustive search with subset of 40 1.808 4.637 7.443 9.590
Speaker quantization (20) �0.558 2.846 5.823 7.547
Speaker quantization (140) �0.319 3.093 6.117 8.215
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ances from the remaining speakers. Therefore, each SNR
consists of 1320 cochannel mixtures.

Evaluation results are shown in Table 5. The first row
presents SNR results obtained by ISG. Like the results pre-
sented in earlier tables, errors in simultaneous grouping
cause the output SNR to be lower than the input SNR
under the 12 dB condition. ‘Known speaker identity’
denotes a condition where identities of speakers in a mix-
ture are provided to the system beforehand. In short, the
grouping algorithm reduces to a hypothesis test between
the two speaker models. This places an actual performance
upper-bound for all the model-based methods. Compared
to ideal sequential grouping, grouping performance
degrades faster with decreasing SNR. This indicates that
likelihood scores become less reliable when SNR decreases
because there are more missing T–F units to be recon-
structed from fewer reliable units. The following row,
‘Random Grouping’, randomly assigns simultaneous
streams, thus setting a performance lower-bound.

Before evaluating quantized generic models, we also
show how the grouping system fares using individual
speaker models. SNR results are given in the ‘Exhaustive
Search’ row. This search requires a large amount of com-
putation time with the complete set of 330 speakers (see
Table 6). Since our previous study performs evaluation
using a smaller set of 38 speakers (Shao and Wang,
2006), we also conduct an experiment that uses a reduced
set of 40 speakers. The reduced set is composed of two
underlying speakers in an input mixture and 38 speakers
that are randomly selected from the remaining 328 speak-
ers. Evaluation results are shown in the following row.
The exhaustive search over the complete set produces
results almost as good as those obtained with known
speaker identities, and on average the degradation is about
0.5 dB. This suggests the effectiveness of our model-based
grouping method. When the speaker number is reduced
from 330 to 40, the performance improves slightly. This
is because with a smaller number of speakers, models are
less crowded in the speaker space and it is easier for the
grouping system to differentiate them.

The last two rows present grouping results obtained by
performing speaker quantization with 20 and 140 speaker
clusters respectively. Since the cochannel mixtures in the
test set are created from utterances from the 330 speakers,
we simulate the acoustic conditions that none of the test
speakers are registered by employing a method similar to
cross validation (Russell and Norvig, 2003). More specifi-
cally, for each cochannel input, we remove the two under-
lying speakers from the speaker set and perform speaker
quantization on the remaining 328 speakers. Thus, we cre-
ate a different generic model set for each test speaker pair.
On average, the performance with 140 generic models is
about 1.9 dB worse than that of ‘Known Speaker Identity’
and about 1.4 dB worse than that of the exhaustive search
within the complete speaker space.

The number of generic models is a factor that deter-
mines the trade-off between grouping performance and
computation time. More generic models entail better
matches between generic models and unregistered speakers
in the input while they require more computation time
because of the increased search space. To observe how this
factor affects grouping, we vary the number of quantized
models in a range from 20 to 140, and grouping results
and average computation times per test file are presented
in Table 6. The reported times were recorded from Matlab
implementation on a Dell PowerEdge 1850 server with dual
Xeon 3.4 GHz processor and 4 GB memory. In the table, a
number after ‘Speaker quantization’ denotes the number of
generic models. SNR performance is significantly improved
by increasing the number of generic models from 20 to 60.
While the improvement stalls from 60 to 90, the perfor-
mance is further improved beyond 90. Since the core of
the algorithm compares summarized likelihoods for every
speaker pair with a complexity of O(M2), the computation
time increases roughly 21 times by increasing the number
of generic models from 20 to 140.

4. Discussion and conclusion

Sequential organization groups sound components of
the same source across time into the same stream. In this
paper, we have extended a model-based sequential group-
ing framework (Shao and Wang, 2006) to include general
background modeling in order to handle multiple interfer-
ing speakers and non-speech intrusions. By employing a
general background model that takes different interference
types into account, our system achieves a level of perfor-
mance close to that with registered interference models.
Subsequently, we have presented a speaker quantization
method that constructs generic models by clustering a large
set of speakers. These generic models are used for sequen-
tial grouping when none of the speakers in an auditory
scene are registered. The systematic evaluations have
shown that this approach gives only moderately worse per-
formance than that obtained with registered speakers.

In general our system produces better output SNRs
when interfering signals are non-speech. This is to be
expected because even though each speaker’s voice is uni-
que it is still easier to discriminate speech from non-speech



Table 6
Sequential grouping evaluation for different numbers of generic models. Numbers in the table show output SNR (dB) of segregated speech as well as
computing times. Numbers in parentheses refer to the number of generic models.

Methods Input SNR (dB)

�6 0 6 12 Computation time (s)

Speaker quantization (20) �0.558 2.846 5.823 7.547 74.8
Speaker quantization (40) �0.314 2.931 5.868 7.618 159.8
Speaker quantization (60) �0.479 2.963 5.952 8.044 298.3
Speaker quantization (80) �0.493 2.948 5.996 8.058 472.5
Speaker quantization (90) �0.427 2.985 5.978 8.013 636.7
Speaker quantization (100) �0.534 2.941 6.035 8.139 802.5
Speaker quantization (120) �0.494 2.853 6.043 8.226 1133.6
Speaker quantization (140) �0.319 3.093 6.117 8.215 1614.1
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than telling apart different voices. For non-speech interfer-
ence, other methods can be applied. For example, the
decoding model of Barker et al. (2005) uses a speech recog-
nizer to organize segments into speech and non-speech
ones. Recently, Hu and Wang (2008) introduced a classifi-
cation method to decide whether segments during unvoiced
intervals belong to speech or interference. In multi-talker
situations, the performance of our system degrades when
the number of interfering speakers increases. However,
when this number becomes large, the combined signal of
many interfering talkers approaches babble noise, which
becomes easier for sequential organization.

Since our approach is model based, it requires a training
process with training data from both target and interfering
sources. Like other model-based methods, the requirement
of prior training poses certain limitations on the potential
application of the system. Indeed, it may be impractical
to collect all the possible intrusion types in the world. How-
ever, as evidenced in the evaluations, our approach is able
to deal with conditions with hundreds of speakers. Even
though a training corpus does not account for all the pos-
sible non-speech noise types, a trained background model
may generalize to noises not included in the corpus as long
as the corpus is reasonably representative of the kinds of
interference encountered in an application domain. In
addition, voice characteristics might be quite unique com-
pared to acoustic properties of non-speech signals, hence
placing only modest demands on the accuracy of a back-
ground model.

Our sequential grouping system organizes simultaneous
streams that are produced by segmentation and simulta-
neous grouping. Thus, errors in simultaneous grouping,
particularly the omission of unvoiced speech, will propa-
gate to the sequential organization process. Such errors
have limited the performance of our model in high input
SNR conditions. Unvoiced speech segregation has been
addressed in a recent study (Hu and Wang, 2008). Unfor-
tunately, this study only deals with non-speech interfer-
ence. A system that is capable of segregating unvoiced
speech from a general background containing both speech
and non-speech interference is yet to be developed. Future
research also needs to address how to integrate sequential
grouping and simultaneous grouping and optimize CASA
performance as a whole.
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