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ABSTRACT 

 
The performance of speaker recognition systems drop significantly 
under noisy conditions. To improve robustness, we have recently 
proposed novel auditory features and a robust speaker recognition 
system using a front-end based on computational auditory scene 
analysis. In this paper, we further study the auditory features by 
exploring different feature dimensions and incorporating dynamic 
features. In addition, we evaluate the features and robust 
recognition in a speaker identification task in a number of noisy 
conditions. We find that one of the auditory features performs 
substantially better than a conventional speaker feature. 
Furthermore, our recognition system achieves significant 
performance improvements compared with an advanced front-end 
in a wide range of signal-to-noise conditions. 
 

Index Terms— Robust speaker recognition, auditory 
feature, Gammatone feature, Gammatone frequency cepstral 
coefficient, computational auditory scene analysis 
 

1. INTRODUCTION 
 
A speaker recognition system typically consists of three stages: 
feature extraction, speaker modeling, and decision making using 
pattern classification methods [3, 9]. Usually, short-time cepstral 
coefficients are extracted as speaker features [9] such as Mel-
frequency cepstral coefficients (MFCC) [10], or long-term features 
such as prosody [20]. For speaker modeling, Gaussian mixture 
models (GMM) are widely used to model feature distributions of 
individual speakers [19]. Recognition decisions are usually made 
based on the likelihood of observing a feature frame given a 
speaker model. However, when facing distorted speaker features 
extracted from noisy utterances, such systems usually do not 
perform well because of mismatch in likelihood calculation [7, 24].  

To tackle this robustness problem, speech enhancement 
methods such as spectral subtraction [7] have been explored for 
robust speaker recognition. These methods tend to perform well 
when noise is stationary. RASTA filtering [11] and cepstral mean 
normalization (CMN) [8] have also been used in speaker 
recognition but they are mainly intended for convolutive noise. On 
the other hand, recent studies of robust speech recognition on 
Aurora [16] have yielded an advanced feature extraction algorithm 
(AFE) [26], which is standardized by ETSI. ETSI-AFE derives 
robust MFCC features using a set of sophisticated front-end 

processes, including speech activity detection and Wiener filtering. 
An alternative approach to feature enhancement seeks to improve 
robustness by modeling noise and combining it with clean speaker 
models [13, 21]. However, these systems cannot deal with novel 
interference types because of their dependence on the prior 
information of noise sources.  

On the other hand, humans are found to perform better than 
machines in speaker recognition tasks when input signals are 
corrupted by background noise such as crosstalk [22]. 
Furthermore, human subjects are able to select and follow the 
voice of a particular talker in the presence of multiple speakers as 
long as the signal-to-noise ratio (SNR) is not exceedingly low [1, 
2]. This human ability is due to a perceptual process termed 
auditory scene analysis (ASA) [1]. Inspired by ASA research, 
computational auditory scene analysis (CASA) seeks to segregate 
target speech from a complex auditory scene based on ASA 
principles [28]. The superior performance of the auditory system in 
robust speaker recognition motivates us to explore CASA for 
robust speaker recognition.  

Recently, we have proposed a novel auditory feature and a 
CASA-based robust speaker identification (SID) system [24]. 
Evaluations show that the auditory feature achieves a recognition 
performance level that is significantly better than MFCC. The SID 
system performs substantially better than the baseline system and 
significantly better than the ETSI-AFE features in a wide range of 
SNR conditions. In this paper, we continue the study on the 
auditory features by varying their feature dimensions. In addition, 
we incorporate dynamic coefficients with the static feature. Finally, 
we evaluate the novel auditory feature and the SID system under 
five different noisy conditions. Each of these conditions comprises 
mixtures with a wide range of SNRs. 

The rest of the paper is organized as follows. Section 2 
describes auditory features and a robust SID system. Evaluations 
are presented in Section 3. Section 4 concludes the paper. 
 
2. CASA-BASED ROBUST SPEAKER RECOGNITION 
 
Conceptually, our approach improves noise robustness in two 
aspects of a SID system: novel robust auditory features in the 
feature extraction stage; feature enhancement and better likelihood 
estimation in the speaker scoring stage. Specifically, we employ a 
CASA system [24] to segregate speech from noise and obtain a 
binary mask that indicates reliable or corrupted components of an 
auditory feature. The auditory feature is then enhanced by 
reconstructing the corrupted components [18, 24, 25]. 
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Additionally, we estimate reconstruction uncertainties [24, 25] and 
apply them in an uncertainty decoder [6] to calculate speaker 
likelihoods. This decoder accounts for varied accuracies of the 
feature enhancement process. 
 
2.1 Auditory Features 

 
Our system first performs auditory filtering by decomposing an 
input signal into the time-frequency (T-F) domain using a bank of 
Gammatone filters [28]. Gammatone filters are derived from 
psychophysical and physiological observations of the auditory 
periphery and this filterbank is a standard model of cochlear 
filtering [17]. The impulse response of a Gammatone filter 
centered at frequency f is: 
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t refers to time; a=4 is the order of the filter; b is the rectangular 
bandwidth which increases with the center frequency f [17]. We 
use a bank of 128 filters whose center frequencies range from 50 
Hz to 8000 Hz. These center frequencies are equally distributed on 
the ERB scale [14] and the filters with higher center frequencies 
have wider bandwidths. 

Since the filter output retains original sampling frequency, we 
down-sample the 128-channel responses to 100 Hz along the time 
dimension. This yields a corresponding frame rate of 10 ms, which 
is used in many short-time speech feature extraction algorithms 
[12]. The magnitudes of the down-sampled outputs are then 
loudness-compressed by a cubic root operation. 
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Here, N=128, referring to the 128 filter channels. m is the frame 
index; M is the number of time frames obtained after down-
sampling. The resulting responses Gm[i] form a matrix, 
representing a T-F decomposition of the input. This T-F 
representation is a variant of cochleagram [28]. Note that unlike 
the linear frequency resolution of a spectrogram, a cochleagram 
retains higher frequency resolution at low frequency range for the 
same number of frequency components. We base our subsequent 
processing on this T-F representation. 

We call a time frame, G[i], of the above cochleagram a 
Gammatone feature (GF). Since it comprises 128 components, the 
dimension of the GF vector is much larger than that of feature 
vectors used in a typical speaker recognition system. Additionally, 
because of the overlap among neighboring filter channels, GF 
components are largely correlated with each other. In order to 
reduce dimensionality and de-correlate the components, we apply a 
discrete cosine transform (DCT) [15] to GF. We call the resulting 
coefficients Gammatone frequency cepstral coefficients (GFCC) 
[24]. Specifically, cepstral coefficients, C[j] j=0…N-1, are 
obtained from a GF, G[i], as follows, 
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Rigorously speaking, the newly derived features are not 
cepstral coefficients because a cepstral analysis requires a log 
operation between the first and the second frequency analysis for 
the deconvolution purpose [15]. Here we regard these features as 
cepstral coefficients because of the functional similarities between 
the above transformation and that of a typical cepstral analysis in 
the derivation of MFCC.  

2.2 Feature dimensions and dynamic features 
 

In our previous study, the lower 23-order GFCC coefficients are 
used as a feature vector. We chose 23 GFCCs because they are 
compact and appear to retain most of the information of a GF 
frame. After performing inverse DCT of GFCCs, we find that the 
lower 30-order coefficients capture almost all the GF feature 
information while the GFCCs above the 30th are close to 0 
numerically, which means that they provide negligible information. 
Fig. 1 illustrates a GFCC transformed GF and a cochleagram using 
30 GFCCs. The top plot shows a cochleagram of an utterance. The 
middle plot shows a comparison of a GF frame of the top plot and 
the resynthesized GF from 30 GFCCs; the original GF is plotted as 
the solid line and the resynthesized GF by 30 GFCCs is plotted as 
the dashed line. The bottom plot presents the resynthesized 
cochleagram using 30 GFCCs. As observed from the figure, the 
lowest 30-order GFCCs largely retain the information in a 128-
dimensional GF. This is due to the “energy compaction” property 
of DCT [15]. Hence, we use 30-dimensional GFCCs as a feature 
vector, Z = (C[j]), j=1…30, in this paper.  

Since a typical speaker recognition system uses MFCCs and 
their first-order dynamic (delta) coefficients. Thus, it is desirable to 
study how GFCC dynamic features fare for recognition. The delta 
feature ZD at time t is calculated from a set of neighboring GFCC 
vectors Z around the time frame at t. 
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w is a neighboring window index; W denotes the half-window 
length and it is set to 2 here. In other words, the delta-window is of 
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Figure 1. Illustrations of energy compaction by GFCCs. Darker 
color indicates stronger energy within the corresponding T-F 
unit.  
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length 5. The delta coefficients are appended to the 30-dimensional 
GFCCs, resulting in a 60-dimensional feature vector. 

 
2.3 Speech segregation and robust recognition 

 
To enhance corrupted speaker features under noisy conditions, we 
apply a pitch-based speech segregation system [24] that performs 
CASA. This system makes minimal assumptions about the 
underlying noise and has been shown to significantly improve the 
SNR of segregated speech under various noisy conditions. This 
system produces a binary T-F mask as well as estimated pitch 
tracks. Specifically, it performs voiced speech segregation on a T-F 
representation derived from Gammatone filterbank filtering and 
hair-cell transduction. In the low-frequency range, the system 
generates homogeneous T-F regions based on temporal continuity 
and cross-channel correlation, and groups them based on 
periodicity similarity. In the high-frequency range, the envelope of 
a filter response fluctuates at the pitch rate and amplitude 
modulation rates are used for grouping. As a result, it labels 
speech-dominated T-F units as reliable in the binary mask and 
noise-dominated units as unreliable. 

In speaker recognition, the probability distribution of an 
extracted feature vector, produced by a speaker, is modeled as a 
GMM [19], typically parameterized by diagonal covariance 
matrices. A binary T-F mask produced by the CASA system 
indicates whether a GF component is reliable or unreliable. The 
latter is deemed as missing data since the system does not possess 
its distribution information. Accordingly, a feature vector is 
partitioned into reliable components and missing ones. To enhance 
a corrupted GF, we reconstruct its missing components from a 
speech prior [18]. Specifically, the missing components are 
estimated as the expected value conditioned on the reliable data [4, 
24, 25]. Reconstruction errors are estimated as GF uncertainties 
[24, 25]. Enhanced GFs are transformed into GFCC using (3), 
likewise for uncertainties.  

It is shown in [6] that an uncertainty decoder computes the 

likelihood of observing an enhanced GFCC frame Ẑ  given 
mixture component k of a speaker GMM as, 
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2ˆZσ  is the diagonal covariances of the DCT transformed GF 

uncertainties. The non-diagonal covariances are numerically small 
and thus dropped from computation. Note that clean GFCC Z is 
integrated out. This uncertainty decoder increases the variances of 
individual components to account for mask estimation errors [6, 
25]. Delta uncertainties are derived from GFCC uncertainties as  
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Second-order dynamic coefficients, known as acceleration features, 
can be calculated by replacing the GFCCs and their uncertainties in 
(4) and (6) with the delta coefficients and delta uncertainties 
respectively. 
 

3. EVALUATIONS 
 
We use the speech materials from the recent speech separation 
corpus [5]. The training data is drawn from a closed set of 34 
talkers, 18 males and 16 female, and consists of 17,000 utterances. 
We use the speech-shaped noise (SSN) portion of the test set for 

our SID evaluation. The SSN data was generated by mixing clean 
test utterances with SSN at: −12, −6, 0 and 6 dB. The test set 
contains 600 utterances in each SNR condition. For a systematic 
evaluation, we create additional test sets by mixing the clean test 
utterances with four types of non-stationary noise: speech babble, 
destroyer operation room noise, F-16 cockpit and factory noise 
from the Noisex 92 corpus [27]. The mixtures are created at -6 dB, 
0 dB, 6 dB and 12 dB SNRs. Speakers are modeled as 64-mixture 
GMMs. The speech prior comprises 2048 mixture components, 
and is trained from the pooled training utterances of all speakers.  

We first evaluate feature dimensions and delta features using 
the SSN test set and show results in Table 1. The baseline and 
ETSI-AFE results are taken from our previous study [24]. For the 
baseline, GFCCs substantially outperform MFCCs. Under other 
conditions, GFCCs are enhanced and uncertainty decoding is 
applied. Our robust recognition system substantially outperforms 
the baseline and the ETSI-AFE. Increasing the number of GFCCs 
from 23 to 30 further improves SID performance. Delta-augmented 
GFCCs yield significantly better performance than the static 
feature alone except at -12 dB condition, where reconstruction 
does not perform well with few reliable GF components. In 
addition, we find that including the acceleration feature rather 
hurts system performance. This is probably because the 
acceleration window requires 9 frames while estimated binary 
masks with SSN do not typically contain consecutively 
reconstructed frames that can provide reliable acceleration feature 
estimates. Compared with our previous study, we have, on average, 
significantly improved SID accuracy by increasing the number of 
GFCCs and incorporating the delta feature.  

We then evaluate our system under the additional four noisy 
conditions. Evaluation results are presented in Table 2. 
Specifically, we use the 30-dimensional GFCCs and their delta 
coefficients because they achieved the best overall performance in 
the preceding experiment. The results in the table corroborate the 
conclusions in the SSN experiment. Our GFCC feature is 
substantially better than the MFCC feature, and our recognition 
system significantly outperforms the ETSI-AFE feature except at 
12 dB where the SID performance saturates.  
 

4. CONCLUDING REMARKS 
 
In this paper, we have studied auditory features and a general 
solution to robust speaker recognition under additive noise 
conditions. The novel speaker features are derived from auditory 
filtering and cepstral analysis. Additionally, by using binary T-F 
masks generated by a CASA system, we enhance the auditory 
features and estimate their reconstruction uncertainties for better 

Feature  -12 dB -6 dB 0 dB 6 dB 
MFCC_D_CMN Baseline 2.83 2.83 4 23.17 
GFCC(23) Baseline 3.5 13.83 50 94.83 
ETSI-AFE_D 3.5 20.33 58.17 89.5 
GFCC(23) 13.33 51.17 87 97.33 
GFCC(30) 14.83 54.67 89 97.67 
GFCC(30)_D 9.83 58.83 92.17 98.67 
GFCC(30)_D_A 7.67 37.83 81 97.33 

Table 1 Accuracy (%) of robust SID using GFCCs, dynamic 
features and uncertainty decoding. _D refers to delta feature; _A 
denotes acceleration feature.  
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speaker likelihood calculation. Our systematic evaluations show 
that the proposed feature performs significantly better than a 
conventional speaker feature. Furthermore, we find that employing 
CASA as a front-end processor to work in conjunction with 
uncertainty decoding achieves significant performance 
improvements over not only conventional speaker features but also 
advanced robust front-end processing. 

It is important to note that our proposed system does not 
require noise conditions be known a priori or assumes a noise 
model. Hence, the proposed robust speaker recognition system is 
expected to generalize well to noise types not tested. In addition, 
our preliminary studies in speaker verification tasks indicate that 
similar improvements are observed as in the SID evaluations [23]. 
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Babble -6 dB 0 dB 6 dB 12 dB 
MFCC_D_CMN Baseline 3.0 10.67 60.33 95.83 
GFCC_D Baseline 5.67 39.5 90.67 99.67 
GFCC_D 25.0 83.83 97.5 99.17 
ETSI-AFE_D 19.0 69.83 96.5 99.67 

Destroyer -6 dB 0 dB 6 dB 12 dB 
MFCC_D_CMN Baseline 2.83 3.33 24.5 71.33 
GFCC_D Baseline 3.17 12.5 72.0 96.83 
GFCC_D 16.5 76.83 97.0 98.67 
ETSI-AFE_D 12.83 44.5 76.17 95.0 

F16 -6 dB 0 dB 6 dB 12 dB 
MFCC_D_CMN Baseline 2.83 8.83 9.67 54.17 
GFCC_D Baseline 6.17 15.33 57.83 93.83 
GFCC_D 41.67 83.5 96.5 99.17 
ETSI-AFE_D 3.83 37.83 77.5 96.5 

Factory -6 dB 0 dB 6 dB 12 dB 
MFCC_D_CMN Baseline 2.83 3.33 17.67 65.5 
GFCC_D Baseline 8.5 28.83 77.83 98.0 
GFCC_D 46.17 87.83 97.83 99.33 
ETSI-AFE_D 9.5 43.5 79.17 95.67 

Table 2: Accuracy (%) of robust SID using GFCCs, dynamic 
features and uncertainty decoding.  
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