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Segmentation of Medical Images Using LEGION
Naeem Shareef, DeLiang L. Wang,*Member, IEEE, and Roni Yagel,Member, IEEE

Abstract—Advances in visualization technology and specialized
graphic workstations allow clinicians to virtually interact with
anatomical structures contained within sampled medical-image
datasets. A hindrance to the effective use of this technology is the
difficult problem of image segmentation. In this paper, we utilize a
recently proposed oscillator network called the locally excitatory
globally inhibitory oscillator network (LEGION) whose ability to
achieve fast synchrony with local excitation and desynchrony with
global inhibition makes it an effective computational framework
for grouping similar features and segregating dissimilar ones
in an image. We extract an algorithm from LEGION dynam-
ics and propose an adaptive scheme for grouping. We show
results of the algorithm to two-dimensional (2-D) and three-
dimensional (3-D) (volume) computerized topography (CT) and
magnetic resonance imaging (MRI) medical-image datasets. In
addition, we compare our algorithm with other algorithms for
medical-image segmentation, as well as with manual segmenta-
tion. LEGION’s computational and architectural properties make
it a promising approach for real-time medical-image segmenta-
tion.

Index Terms—LEGION, medical images, oscillatory correla-
tion, segmentation.

I. INTRODUCTION

A DVANCES in imaging, visualization, and virtual envi-
ronments technology are allowing the clinician to not

only visualize, but also to interact with a virtual patient [32],
[33]. In many cases, anatomical information contained within
sampled image datasets is essential to clinical tasks. One
typical example is in surgery where presurgical planning and
postoperative evaluations are not only enhanced, but in many
cases depend upon sampled image data for successful results
[12], [26]. A number of imaging modalities are currently in
widespread clinical use for anatomical and physiological imag-
ing. Among them, two commonly used devices to image bony
structures and soft tissue are computerized tomography (CT)
and magnetic resonance imaging (MRI), respectively. Datasets
are realized as a sequence of two-dimensional (2-D) cross
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sectional slices that together represent the three-dimensional
(3-D) sample space. The entire image stack may be viewed as
a 3-D array of scalar (or vector) values, called a volume, where
each voxel (volume pixel) represents a measured physical
quantity at a location in space. Advances in the fields of
surface and volume graphics now make it possible to render
a volume dataset with high image quality using lighting and
shading models. Graphic workstations equipped with special-
ized hardware and texture-mapping capabilities show promise
for real-time rendering [32]. Currently, clinicians view images
on photographic sheets containing adjacent image slices, and
must mentally reconstruct 3-D anatomical structures. Even
though clinicians have developed the necessary skills to make
use of this presentation, computer-based tools will allow for a
higher level of interaction with the data.

A major hurdle in the effective use of this technology is
the accurate identification of anatomical structures within the
volume. Computer vision literature typically identifies three
processing stages before object recognition: image enhance-
ment, feature extraction, and grouping of similar features. In
this paper we address the last step, image segmentation, where
pixels are grouped into regions based on image features. The
goal is to partition an image into pixel regions that together
represent objects in the scene. Segmentation is a very difficult
problem for general images, which may contain effects such
as highlights, shadows, transparency, and object occlusion.
On the other hand, sampled image datasets lack these effects
with a few exceptions. One such exception is ultrasound
datasets which may still contain occluded objects. Challenges
to segment sampled image datasets involve handling noise
artifacts introduced during the acquisition process and dataset
size. With new imaging technology, increasing sizes of volume
datasets are an issue for most applications. For example,
a medium-size dataset with dimensions 256256 125
contains over eight million voxels. The MRI, CT, and color-
image datasets for an entire human male cadaver from the
National Library of Medicine’s Visible Human Project [1]
require approximately 15 Gbyte of storage. An additional
challenge is that objects may be arbitrarily complex in terms
of size and shape.

Many segmentation methods proposed for medical-image
data are either direct applications or extensions of approaches
from computer vision. image-segmentation algorithms can
be classified in many ways [14], [21], [34]. We identify
three broad classes that divide algorithms to segment sampled
image data: manual, semiautomatic, and automatic. Reviews
of algorithms from each class can be found in [10] and [24].
The image-segmentation algorithm presented in this paper is a
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semiautomatic approach. The manual method requires a human
segmenter with knowledge of anatomy to use a graphical
software tool to outline regions of interest. Obviously this
method produces high-quality results, but is time consuming
and tedious.

Semiautomatic methods require user interaction to set algo-
rithm parameters, to perform initial segmentation, or to select
critical features. They can be classified according to the space
in which features are grouped together [14]. Measurement
space methods map and cluster pixels in a feature space.
A commonly used method is global thresholding [14], [15],
[24], where pixel intensities from the image are mapped into
a feature space called a histogram. Thresholds are chosen at
valleys between pixel clusters so that each pair represents a
region of similar pixels in the image. This works well if the
target object has distinct and homogeneous pixel values, which
is usually the case with bony structures in CT datasets. On the
other hand, spatial information is lost in the transformation,
which may produce disjoint regions.

Spatial-domain methods use spatial proximity in the image
to group pixels. Edge-detection methods use local gradient
information to define edge elements, which are then combined
into contours to form region boundaries [10], [14]. For exam-
ple, a 3-D version of the Marr–Hildreth operator was used to
segment the brain from MRI data [6]. However, edge operators
are generally sensitive to noise and produce spurious edge
elements that make it difficult to construct a reasonable region
boundary. Region growing methods [2], [4], [14], [34], on the
other hand, construct regions by grouping spatially proximate
pixels so that some homogeneity criterion is satisfied over
the region. In particular, seeded-region-growing algorithms [2]
grow a region from a seed, which can be a single pixel or
cluster of pixels. Seeds may be chosen by the user, which
can be difficult because the user must predict the growth
behavior of the region based on the homogeneity metric. Since
the number, locations, and sizes of seeds may be arbitrary,
segmentation results are difficult to reproduce. Alternatively,
seeds may be defined automatically, for example, the min/max
pixel intensities in an image may be chosen as seeds if the
region mean is used as a homogeneity metric [2]. A region
is constructed by iteratively incorporating pixels on the re-
gion boundary. In addition, active-contour-based methods and
neural-network-based classification methods have also been
proposed to perform image segmentation. These methods will
be described in some detail in Section V where comparisons
are drawn.

In contrast to these approaches, we utilize a new biologically
inspired oscillator network, called the locally excitatory glob-
ally inhibitory oscillator network (LEGION) [25], [30], [31],
to perform segmentation on sampled medical-image datasets.
The network was proposed based on theoretical and experi-
mental considerations that point to oscillatory correlation as
a representational scheme for the workings of the brain. The
oscillatory correlation theory assumes that the brain groups
and segregates visual features on the basis of correlation
between neural oscillations [28], [30]. It has been found
that neurons in the visual cortex respond to visual features
with oscillatory activity (see [22] for review). Oscillations

from neurons detecting features of the same object tend
to synchronize with zero phase shift, whereas oscillations
from different objects tend to desynchronize from each other.
Thus, objects seem to be segregated in time. In addition to
biological plausibility, LEGION exhibits unique computational
advantages to be discussed in Section II.

We describe LEGION dynamics in Section II. In Section III,
an algorithm derived from LEGION dynamics is described,
which is based on a local neighborhood for grouping and
chooses seeds automatically. In Section IV we present results
of segmenting CT and MRI image datasets. In Section V we
compare our algorithm with other segmentation algorithms
for medical images and compare our results with manual
segmentation. Finally, we give some concluding remarks in
Section VI.

II. LEGION MODEL

Recent experimental evidence and earlier theoretical con-
siderations point to neural oscillations in the visual cortex as
a possible mechanism by which the brain detects and binds
features in a visual scene. It is well known that neurons
in the visual system respond to features such as color, ori-
entation, and motion and are arranged in regular structures
called columns and hypercolumns. In addition, these neurons
respond only to stimuli from a particular part of the visual
field. Recent experimental work shows persistent stimulus-
dependent oscillations around 40 Hz in the visual cortex [[11],
[13], [22]. Furthermore, synchronized behavior is observed
between spatially separate neuronal groups. This supports
earlier theoretical considerations [28] which suggest that cells
acting as visual-feature detectors bind together through corre-
lation of their firing activities. Previously proposed oscillator
networks [5], [16], [23], represent an oscillatory event by
a single-phase variable. These networks are limited when
applied to image segmentation. Oscillations in these networks
are built into the system rather than stimulus dependent.
More substantially, these systems rely on fully connected
network architecture to achieve synchronization, which results
in indiscriminate grouping and loss of topological (spatial)
information. LEGION is able to overcome these deficiencies
with stimulus-dependent oscillations and fast- and long-range
synchrony by using local connections. In addition, LEGION
achieves fast desynchrony with a global inhibitory mecha-
nism.

LEGION was proposed by Terman and Wang [25], [30] as
a biologically plausible computational framework for image
analysis and has been used successfully to segment binary
and gray-level images [31]. It is a network of relaxation
oscillators, each constructed from an excitatory unitand an
inhibitory unit as shown in Fig. 1. Unit sends excitation
to unit which responds by sending inhibition back. When
external input stimulus is continuously applied to , this
feedback loop produces oscillations. Neighboring oscillators
are connected via mutual excitatory coupling, as well as the
global inhibitor [see (1a) below].

LEGION is formally defined and analyzed in [25] and [31].
The behavior of each oscillator, indexed byin a network, is
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Fig. 1. Diagram of a single oscillator with an excitatory unitx and an
inhibitory unit y in a feedback loop. A triangle indicates an excitatory
connection and a circle indicates an inhibitory connection.I indicates external
input andS indicates the coupling with the rest of the network.

defined by the following equations:

(1a)

(1b)

(2)

(3)

(4)

The dynamics of are defined in (1a) which contains a cubic
function. The subtractive term represents inhibition from
unit is external stimulus, and represents excitatory cou-
pling with neighboring oscillators and coupling with the global
inhibitor. We call stimulated if and unstimulated if

. The Heaviside step function is defined as
if and if . The function determines
oscillatory behavior by multiplying . The variable is called
the lateral potential of the oscillator and is used to suppress
noisy regions. Parameteris set in the range and
is used as a threshold for and an exponential term which
decays at rate . The oscillator whose lateral potential exceeds

is referred to as a leader. Parameteris the amplitude of
Gaussian noise and plays a role in assisting the separation
of synchronized groups of oscillators. The behavior ofis
defined in (1b) which contains a sigmoid function with
chosen small. The role ofwill be discussed below. Parameter

is chosen to be small, i.e., and determines that the
oscillator is a relaxation oscillator with two time scales [27].

The potential term plays the role of removing the
oscillations of noisy regions. Its value is determined by the
activities of its coupled neighbors. As shown in (2), if the
activity of each neighbor is larger than threshold

, which is a permanent connection weight defining the
topology of the network, is accumulated. If the sum is greater
than threshold , then the outer Heaviside function will be

Fig. 2. A 2-D LEGION network with four-neighborhood connections. The
global inhibitor is indicated with a black circle and is coupled with the entire
network.

one and will grow its value to one by the term
where is a constant and chosen to be . In this case,
oscillator becomes a leader. If , then the potential
will decay to zero with rate chosen to be . is
called the potential neighborhood ofand is called the
recruiting neighborhood of.

Equation (3) defines the coupling to oscillator, which
includes excitation from neighboring oscillators and inhibition
from a global inhibitor . A threshold is applied to the
activity of each coupled oscillator . The resultant
excitation is weighted by , which is a dynamic weight used
to achieve weight normalization to improve synchronization
[29]. If the activity of the global inhibitor is above the
threshold then is subtracted [see (3)]. The global
inhibitor is activated when at least one oscillator in the network
is active. In (4) is one if for at least one oscillator

and zero otherwise, and is a parameter. Fig. 2 shows a
2-D network architecture with four-neighborhood coupling.
The global inhibitor, shown with a black circle, is coupled
with the entire network.

The behavior of an oscillator is qualitatively shown in
the phase-plane diagram (see Fig. 3). Fig. 3(a) illustrates the
oscillatory behavior as a limit-cycle trajectory. When
and two nullclines are defined called thenullcline and
the nullcline, respectively. The nullcline is a cubic where
the left and middle branches connect at a point called the left
knee (LK) and the middle and right branches connect at the
right knee (RK). The nullcline is a sigmoid function and,
with a small , the sigmoid is close to a step function. The
two nullclines intersect at an unstable fixed point along the
middle branch of the cubic. A stimulated oscillator starting in
an arbitrary position will be attracted to a counter-clockwise
limit cycle trajectory illustrated in Fig. 3(a). The section of
the orbit that lies on the left branch is called the silent phase
because has low activity. Similarly, the section on the right
branch is called the active phase. The oscillator exhibits two
time scales due to. The slow time scale occurs during the two
phases, denoted by the single arrows in Fig. 3(a). Parameter
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(a)

(b)

Fig. 3. Phase plane diagrams illustrating two states of a single oscillator.
(a) An oscillatory state occurs when LK of the cubic is above the left part
of the sigmoid. (b) A nonoscillatory state occurs when LK is below the left
part of the sigmoid. Two fixed points are created on two sides of LK, where
the fixed point to the left of LK is stable and acts as a gate to prevent the
oscillator from oscillating.

in (1b) controls the relative times an oscillator spends in
the two phases whereby a largerleads to a shorter time
in the active phase. The fast time scale, denoted by double
arrows in Fig. 3(a), occurs when an oscillator alternates or
jumps between the two phases at either LK or RK.

In (1a), and have the effect of vertically shifting the
cubic. The position of the cubic relative to the sigmoid defines
two states for an oscillator. The first is an enabled state where
the cubic intersects the sigmoid at exactly one point and a limit
cycle occurs [Fig. 3(a)]. The excitable state occurs when the
cubic shifts downward so that LK is below the left part of the
sigmoid [Fig. 3(b)]. Two fixed points are created, and one of
them is stable, thus preventing the oscillator from jumping up.

The LEGION network defined in (1)–(4) has been rigor-
ously analyzed by Terman and Wang [25], [31]. To summarize,
their analytical results imply that after a number of oscillation
cycles a block of oscillators corresponding to a major image
region will oscillate in synchrony, while any two oscillator
blocks corresponding to two different major regions will
desynchronize from each other. Those stimulated oscillators
whose corresponding pixels do not belong to a major region
will stop oscillating shortly after the system starts, and these
pixels are collectively called the background. A major region
is a region that produces at least one leader. Furthermore,

(a)

(b)

Fig. 4. Computer simulation of a 20� 20 LEGION network to segment
a binary image. (a) The input image with four objects (arrow, square, cross,
and rhombus) and some background noise. (b) Temporal activity of stimulated
oscillators shown for 13 750 integration steps. Except for the global inhibitor,
the vertical axis shows thex value and the horizontal axis indicates time.
The activities of all oscillators in a group are shown together in one trace.
Both synchronization and desynchronization occur after two cycles, denoted
by the dashed line. The networks parameters are:" = 0:02; � = 0:003;

� = 0:1; 
 = 20:0; � = 0:8; � = 2:0; �x = �0:5; �p = 7:0; Wz = 2:0;
� = 0:0006; � = 3:0; � = 3:0; Tik = 2:0; and�z = 0:1. Dynamic weights
to a stimulated oscillator are normalized to 8.0.

they established that the number of cycles required for both
synchrony and desynchrony is no greater than the number of
major regions plus one. This result, in particular, gives an
upper bound on how long the system takes to achieve full
segmentation.

To illustrate LEGION dynamics, Fig. 4 shows a computer
simulation of a 20 20 LEGION using four-neighborhood
connectivity for both and (see Fig. 2). Equations (1)–
(4) were solved using a fourth-order Runge–Kutta method. The
input image is a 20 20 binary image, shown in Fig. 4(a),
with four objects (arrow, square, cross, and rhombus) and some
background noise. Pixels are mapped to oscillators in one-to-
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one correspondence and network connections preserve pixel
adjacency. An oscillator receives a positive input stimulus if its
associated pixel is black. Fig. 4(b) shows plots of the temporal
activity of oscillators in each group. Each trace combines the
activities for all oscillators in a group. The horizontal axis is
time and the vertical axis is the normalizedactivity, except
for the global inhibitor which is the activity. The activity of
the oscillators representing the background is shown together.
Initially, each stimulated oscillator has random activity and is
enabled. Proper synchronization and desynchronization occur
after only two cycles, consistent with the analysis. The near
steady limit cycle behavior occurs after the vertical dotted line
because all synchronized groups are separated, and oscillators
representing the background have entered the excitable state.

III. SEGMENTATION ALGORITHM

Using direct computer simulation of a LEGION network to
segment large 2-D images and volume datasets is computa-
tionally infeasible because it requires numerically integrating
a huge number of differential equations. Based on LEGION’s
computational characteristics, Wang and Terman [31] gave an
algorithmic implementation of LEGION which follows major
steps of the oscillatory dynamics. The simplifications made in
their algorithm are summarized as follows.

• Jumping between the active and the silent phase takes
one time step only.

• Leaders are computed during initialization.
• When every oscillator is in the silent phase the leader

closest to the jumping point LK is selected to jump.
• Permanent weight is set to equal dynamic weight .
• An oscillator in the silent phase jumps up to the active

phase as soon as .
• All the oscillators in the active phase jump down if no

oscillator is recruited to jump up in the previous time step.

The above simplifications were justified to be legitimate
approximations of the underlying oscillatory dynamics [31].
We shall not repeat these justifications here. On the basis of
these approximations, we further simplify the Wang and Ter-
man algorithm for efficiency purposes, which are particularly
needed for volume data segmentation. We also extend their
algorithm in order to produce better results for the medical data
that we deal with. More specifically, we made the following
changes.

1) We approximate the state of an oscillator by a binary
variable indicating which phase it lies in.

2) We introduce two neighborhoods, and [see (2)
and (3), respectively] whereas only one neighborhood is
used in [31].

3) We introduce an adaptive-tolerance scheme to adaptively
weight the coupling strength between two oscillators that
correspond to two pixels. In [31] a uniform is used
for this purpose.

It is not difficult to see that these changes do not alter the
essential dynamics of the underlying LEGION network. Thus,
on the basis of [31], our resulting algorithm is functionally
equivalent to LEGION with appropriately chosen system pa-
rameters. Our algorithm is given below for gray-level images
which we deal with in this paper.

A. Segmentation Algorithm for Gray-Level Images

At the bottom of the page we show the segmentation
algorithm for gray-level images. Only the binary state of
oscillator , is used in the algorithm. indicates the value
of pixel .

When the algorithm terminates in Step 2, those oscilla-
tors that still have not jumped form the background, which
corresponds to scattered noisy regions that cannot produce a
leader. In the algorithm, jumping down occurs immediately

1. Initialize

1.1 Form effective connections
or

1.2 Identify leaders

1.3 Place all the oscillators in the silent phase. Namely Thus

2. Find a leader that has not jumped and make jump to the active phase; terminate
if every leader has jumped.

jump up
3. Iterate

If and
stay on the right branch

else if and
jump down

If go to step 2
else

If
jump up

else
stay on the left branch
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when all of the oscillators stimulated by the same pattern
have jumped up. We note that, different from seeded region
growing techniques, leaders in our algorithm may or may not
produce a resultant region. In fact, a general image produces
many more leaders than segments and a leader can recruit
other leaders in Step 3 to form a segment. Also note that
maximization is performed when computing instead of
summation as used in (3). The maximization operation is also
used in [31] where justification is provided. Because of the
maximization operation, another property of our algorithm is
that segmentation results are not sensitive to the order in which
pixels are evaluated and thus can be readily reproduced.

We now specify in the algorithm. We call
the tolerance function, because the largeris the easier of

the two corresponding oscillators to synchronize. Most of the
interesting structures in sampled medical-image datasets have
relatively brighter pixel intensities when compared with other
structures. The separation between objects is usually defined
by a relatively large change in the intensities of pixels. For
example, see the bony and soft tissue structures in the CT
image shown in Fig. 6(a) and the cortex and the extracranial
tissue in the MRI image shown in Fig. 7(a). A uniform
used in [31] implies a constant toleranceto . Thus, small
values of tend to restrict region expansion in areas such as
the soft tissue in Fig. 6(a) and the brain in Fig. 7(a). Large
values of , however, may cause undesirable region merging
between darker pixels and brighter ones, i.e., the flooding
problem. This consideration led us to use an adaptive function
for as given below.

We have three intuitive criteria for defining segments
(groups) on an image. The first is that leaders should be
generated from both homogeneous and brighter parts of
the image. Second, brighter pixels should be considered
similar to wider ranges of pixels than darker ones. The third
criterion stipulates that the boundaries of segments are given
where pixel intensities have relatively large variations. We
use an adaptive-tolerance scheme that satisfies the above
three criteria. In this scheme, larger tolerances are used
when brighter pixels participate in grouping. A mapping
is constructed between the gray-level intensities
known from the imagery type and a range of tolerance
values given by the user. When an oscillator

attempts to recruit another neighboring oscillator, their
corresponding tolerance is found based on the brighter pixel,
thus, is used as the argument toand applied to

. The function returns the mapped tolerance value for a
given pixel. This mapping determines how much a segmented
region depends upon the local pixel intensity variation. In the
segmentation experiments to be reported in Section IV, we use
three functions that are linear, square, or cubic. Specifically
we define for

or . Note that is a monotonically increasing function.
Since the range of pixel intensities is finite, thefunction
may be precomputed and stored in a lookup table. This greatly
reduces the segmentation time, especially whenis complex,
because the function is used heavily in the recruiting process.

In addition to the tolerance function, our algorithm requires
that the user set three parameters and . Each param-

eter has an influence on the number and sizes of segmented
regions. It is easy to see that leaders lie in homogeneous parts
of an image. and determine the identification of leaders
and the minimum size for a segmented region in an image.
Usually the number of leaders increases as decreases.
Since more than one leader may be incorporated into the same
region, a smaller potential neighborhood does not necessarily
produce more segmented regions. A smaller threshold
usually yields many tiny regions in the final segmentation, and
a larger value will produce fewer and larger regions. This is be-
cause when is small, tiny regions in the image can produce
leaders. affects the sizes and number of final segmented
regions because it determines the spatial extent from a leader in
the recruiting process. A smaller recruiting neighborhood im-
plies that recruiting is restricted and usually produces smaller
regions. In addition, more regions are produced because fewer
leaders will be placed into the same region.

Three-dimensional segmentation is readily obtained by us-
ing 3-D neighborhood kernels. For example, in 2-D a 4-
neighborhood kernel defines the neighboring oscillators to
the left of, right of, above, and below the center oscillator;
an eight-neighborhood kernel contains all oscillators with
one oscillator away, including diagonal directions, and a
24-neighborhood kernel includes all oscillators that are two
oscillators away. In 3-D, a neighborhood may be viewed as
a cube. A six-neighborhood kernel contains oscillators (corre-
spondingly voxels) that are face adjacent, a 26-neighborhood
kernel contains oscillators that are face, edge, and vertex
adjacent and a 124-neighborhood includes oscillators that are
two voxels away.

IV. RESULTS

We show results of our segmentation algorithm on 2-D and
volume CT and MRI medical datasets of the human head. The
user provides six input parameters: the potential neighborhood

; the recruiting neighborhood ; the threshold ; the
power of the adaptive-tolerance-mapping function; and the
tolerance range-variables and .

Before presenting the results on medical imagery our algo-
rithm is first used to segment a phantom image where ground
truth is known. The 2-D phantom is composed of four regions,
as shown in Fig. 5(a), and is then corrupted by additive
Gaussian noise, as shown in Fig. 5(b). Such type of noise is
characteristic of MRI acquisition [7], [20]. Figure 5(c) shows
four regions plus a background, segmented by our algorithm
using a square adaptive threshold function, a 24-neighborhood

, a four-neighborhood and
. In this, as well as all following figures, we use

a gray map to indicate the results of segmentation where each
gray level indicates a distinct segment and black indicates the
background generally composed of scattered areas. With only
0.05% pixels incorrectly labeled, the labeling of the pixels that
belong to one of the four segmented regions is near perfect.
The background accounts for 14.25% of total pixels. Notice
that noisy variations in the phantom are mainly collected
into the background, and thus can be easily incorporated into
segments by a simple postprocessing step [see Fig. 13(b) and
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(a) (b)

(c)

Fig. 5. Segmentation of a 256� 256 phantom image. (a) Original image containing four regions with intensity values of 98, 118, 138, and 158. (b) The
phantom with additive zero-mean Gaussian noise with variance of five for all four regions. (c) A gray map showing the result of segmenting Fig. 5(b).

(c) for example]. This way of handling noise is characteristic
of our algorithm. Segmented regions tend to reflect target
objects well and uncertain parts of the image are collected
into the background. The background would be a primary
focus in further grouping (or postprocessing) for improving
segmentation results. One way to achieve such postprocessing
in LEGION is to use summation instead of maximization
in Step 3 of the algorithm (see [31] for further discussion).
Though the variance of the noise in Fig. 5(b) is five, a modest
amount indicative of MRI images, our algorithm can correctly
separate the four regions in the phantom for a variance of at
least seven.

Fig. 6(a) is a CT image of a view of a horizontal section
extracted at the nasal level of a human head. The white
areas are bone and gray areas are soft tissue. Fig. 6(b) shows
results of our algorithm using an eight-neighborhood and
a 24-neighborhood , and

. The gray map in Fig. 6(b) contains 105 segmented
regions and the background. Due to limited discriminability

of the printer, spatially separate regions that appear to have
the same gray level are in fact different segmented regions.
Whereas a global thresholding method would collect all bony
structures into a single region and would have difficulty
distinguishing the soft tissue, our algorithm is able to segment
both. Furthermore, each spatially distinct bony structure or soft
tissue area is separately labeled, as well as surrounding nasal
cavities and passages.

MRI-image data have the advantage of being able to display
soft-tissue structures better than CT-image data. All the MRI
images used in this study were obtained using a 1.5-T MR
scanner with a multielement resonant head coil. The field of
view in the horizontal plane was set to 22 22 cm and
the image slices for the volume acquisition sequence were 1.7
mm thick with a pixel size of 0.86 0.86 mm on a slice,
resulting in a voxel size of 0.86 0.86 1.7 mm . They are
T1 weighted with ms ms, a 40-degree flip
angle, and a 3-D spoiled gradient. The dataset in Fig. 12 used
a Gd-dtpa contrast enhancement.
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(a) (b)

Fig. 6. Segmentation of a 256� 256 CT image. (a) Original gray-level image showing a horizontal section of a human head. (b) A gray map
showing the result of segmentation.

(a) (b)

Fig. 7. Segmentation of a 256� 256 MRI image. (a) Original gray-level image showing a midsagittal section of a human head. (b) A gray map
showing the result of segmentation.

MRI imagery is more difficult to segment than CT imagery
because objects are usually inhomogeneous and adjacent ob-
jects may have a low contrast in MRI. For example, see
the MRI image shown in Fig. 7(a) which is a midsagittal
section of the head showing many structures, including brain,
vertebrae, oral cavity, extracranial tissue, bone marrow, and
muscle. Fig. 7(b) shows our result of segmentation using an
eight-neighborhood and a 24-neighborhood

, and . As shown in the gray map
of Fig. 7(b), the MRI image is segmented into 70 regions plus
a background. The entire brain is segmented as a single region.
Other significant segments include the extracranial tissue, the
chin and the neck parts, the vertebrae, etc.

Among the six parameters, the effects of and
are discussed in the previous section. The roles of the

adaptive-tolerance measure and its parameters are illustrated
in Figs. 8 and 9. Fig. 8(a) displays an MRI image of a
horizontal section of a human head at the eye level, showing
the structures of brain, two eyeballs, the ventricle at the center,
extracranial tissue, and scattered bone marrow. Fig. 8(b) shows
the segmented brain by a human expert, and this will be
used later for a quantitative measure on the performance of
our algorithm. To apply our adaptive-tolerance method, pixel
intensities are first mapped to tolerance values. As the power

increases relatively larger tolerances are assigned to brighter
pixels, which means that brighter pixels have relatively larger
ranges of grouping. This is desirable if brighter pixels rep-
resent more interesting structures, as is usually the case for
sampled medical images. Fig. 8(c)–(e) shows segmentation
results using the cubic, square, and linear tolerance functions,
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(a) (b)

(c) (d)

(e)

Fig. 8. Segmentation of a 256� 256 MRI image. (a) Original gray-level image showing a horizontal section of a human head. (b) Manually segmented
brain from (a). (c) Segmentation results when the tolerance function is cubic. (d) Segmentation results when the tolerance function is square. (e) Segmentation
results when the tolerance function is linear.
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(a)

(b) (c)

Fig. 9. Effects of tolerance parameters in segmenting the MRI image of Fig. 8(a). A cubic tolerance function is used with!min clamped to 1. (a) Segmentation
results when!max is 80. (b) Segmentation results when!max is 40. (c) Segmentation results when!max is 20.

respectively, on the MRI image of Fig. 8(a). In this case
and are both set to eight-neighborhood
and . The gray maps in Figs. 8(b)–(d) contain
288, 239, and 173 regions, respectively. The three gray maps
show that areas with bright pixels are consistently segmented,
such as the white structures behind the eyes, the brain, and
the brighter parts of the extracranial tissue. Also consistently
segmented are the two eyeballs. In the leader identification step
of our algorithm, the tolerance function has a similar effect in
determining leaders as do and . In the recruiting step, the
tolerance function affects region expansion because it specifies
which oscillators in are to be grouped. Region expansion
depends on how fast pixel intensities change within a region.
The boundaries between regions occur where intensity changes
are too large. When the pixel intensities within a region change
substantially, a tolerance function with a higherusually tends
to break the region apart. For example, the brain is segmented
into many parts in Fig. 8(c), whereas it remains a single

region in Fig. 8(d) and (e). In Fig. 8(e), however, boundary
details of the brain are lost. Segmentation of the extracranial
tissue shows the same effect. Thus, an appropriate choice of
the tolerance function depends upon the intensity-variation
characteristics of target objects.

The user can also control the grouping for darker and
brighter pixels by selecting and . When either
parameter is changed, the tolerance function remaps all in-
tensities to a new range of tolerance values. When is
increased, tolerance values will increase more quickly for
darker pixels. A similar effect holds for brighter pixels when

is increased. Moreover, the effect is more dramatic. In
Fig. 9, we show segmentation results using a cubic tolerance
function clamping to one and varying from 80
in Fig. 9(a), to 40 in Fig. 9(b), and 20 in Fig. 9(c). The
remaining parameters are the same as in Fig. 8. The results in
Fig. 9(a)–(c) contain 278, 375, and 459 regions, respectively.
The white areas behind the eyes, and the bright areas that cor-
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(a) (b)

Fig. 10. Segmentation of a reduced resolution image of Fig. 8(a). (a) Original gray-level image after a reduction in resolution by half. (b) The
result of segmentation.

respond to the brain and the extracranial tissue (see Fig. 8(a))
are grouped more fully in Fig. 9(a) than in Fig. 9(b) and (c).

Figs. 9 and 10 also illustrate how our algorithm handles the
various types of noise artifacts commonly found in sampled
image data. Fig. 8(a) contains noise inherent in the imaging
process, as well as arbitrarily sized noisy areas caused by too
small a sampling rate compared with the sizes of the structures
being imaged, such as the nasal area between the two eyes.
Fig. 9 shows that these noise artifacts are collected into the
background and do not affect segmentation of other regions.
To further illustrate the robustness of our algorithm to noise
artifacts, we reduce the resolution of the image of Fig. 8(a) by
half by throwing away every other pixel value. As shown in
Fig. 10(a), this magnifies the noise artifacts, especially near the
boundaries of objects. The result of segmenting Fig. 10(a) is
shown in Fig. 10(b) using a 24-neighborhood , an eight-
neighborhood and

. The segmentation result contains ten regions.
The algorithm is able to segment the brain, the areas behind the
eyes, and the extracranial tissue while placing a large number
of noisy areas into the background.

It is well known that, due to the lack of ground truth, quan-
titative evaluation of a segmentation algorithm is difficult to
achieve. An alternative is to use manual-segmentation results
as ground truth. One should, however, bear in mind that such
manual segmentation is not perfect as ground truth (see more
discussions in Section V-B). Nevertheless, some quantitative
comparison with manual segmentation may provide a useful
indication. We use Fig. 8(b), a segmented brain by a human
expert, as the ground truth for a quantitative comparison.
Since the brain is the target of manual segmentation, only
the segmented brain region by our algorithm is used in the
comparison. In addition, we do not use Fig. 8(c), Fig. 9(b)
or Fig. 9(c) because the brain is fragmented in segmentation
for the purpose of explaining parameters. Table I gives error
rates in two metrics: false target counts, those pixels that

TABLE I
ERROR RATE FOR SEGMENTING FIG. 8(a)

TABLE II
EXECUTION TIME

are wrongly segmented as the target by the algorithm, and
false nontarget counts, those pixels that are in but fail to
be segmented as the target. The percentages in the table are
calculated based on the number of pixels in the manually
segmented target. In the overall best case [Fig. 8(e)] the error
rate is less than 4% in both metrics. For other segmentation
results the false nontarget rate is higher, but the false target
rate is very low: less than 1%.
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(a) (b)

(c) (d)

Fig. 11. Segmentation of 256� 256 MRI images. For all segmentation results a cubic tolerance function is used. (a) Original gray-level image showing a
coronal section of a human head. (b) Segmentation result for the image in (a) with a 24-neighborhoodN1, a four-neighborhoodN2; �p = 11:5; !min = 1;

and!max = 316. (c) Original gray-level image showing another coronal section of a human head. (d) Segmentation result for the image in (c) with an
eight-neighborhoodN1, an eight-neighborhoodN2; �p = 7:5; !min = 7 and !max = 90.

Fig. 11 shows segmentation results on a number of 256
256 MRI images with different sections. Parameters have

been chosen in order to extract various meaningful structures.
In Fig. 11(b), significant regions that are segmented include
the cortex, the cerebellum, and the extracranial tissue, as
well as two ear segments. In Fig. 11(d), the entire brain is
segmented as a region, as are the extracranial tissue and the
neck muscle. In Fig. 11(f), the cortex and the cerebellum are
well separated. Other interesting regions that are segmented
include the chin part and the extracranial tissue. In Fig. 11(h),
again the cortex and the cerebellum are well segmented. In
addition, the brainstem and the ventricle lying at the center
of the brain are correctly separated. Other structures are also
well segmented, as in Fig. 11(f).

As discussed before, our algorithm easily extends to seg-
ment volume data by expanding 2-D neighborhoods to 3-D. To
illustrate 3-D segmentation we show the result of segmenting

an entire MRI volume dataset from which the image in
Fig. 8(a) was obtained. The volume dataset consists of 128
horizontal sections, and each section consists of 256256
pixels, with a total of 256 256 128 pixels. The dataset
was partitioned into four stacks along the vertical direction.
From superior to inferior: stack one consists of sections 1–49;
stack two, sections 50–69; stack three, sections 70–89; and
stack four, sections 90–128. We divide the entire dataset to
four stacks for the purpose of dividing total computing to
different stages, and for reflecting major anatomical shifts.
It turns out that such divisions are approximately consistent
with signal intensity variations introduced during the volume
dataset acquisition process. The following parameters are
common for all stacks: is half the size of

, a square tolerance function, and . In addition,
for stack one and six for the remaining stacks;

for stack one, 25 for stack two, 30 for stack
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(e) (f)

(g) (h)

Fig. 11. (Continued.) Segmentation of 256� 256 MRI images. For all segmentation results a cubic tolerance function is used. (e) Original gray-level image
showing a sagittal section of a human head. (f) Segmentation result for the image in (e) with a 24-neighborhoodN1, an eight-neighborhoodN2; �p = 17:5;

!min = 7 and!max = 75. (g) Original gray-level image showing another sagittal section of a human head. (h) Segmentation result for the image in (g)
with a 24-neighborhoodN1, an eight-neighborhoodN2; �p = 19:5; !min = 4 and !max = 250.

three, and 35 for stack four. We emphasize that both
and are 3-D neighborhood kernels and segmentation is
performed on 3-D datasets directly rather than on individual
2-D sections. The parameters in the algorithm are chosen to
extract the 3-D brain and no attempt is made to correlate
parameter values with signal variations between horizontal
sections which are introduced during image acquisition. In this
volume, dataset signal intensities vary systematically and by
5%–10% in the entire dataset. Through local connections, our
algorithm can tolerate to a certain extent gradual variations
without changing parameter values. Fig. 12(a) and (c) shows
two views of the segmented 3-D brain using a volume-
rendering software developed in [19]. Fig. 12(a) displays a top
view with the front of the brain facing downward. Fig. 12(c)
displays a side view of the segmented 3-D brain, with the
front of the brain facing leftward. To put our results in
perspective, Fig. 12(b) and (d) shows the corresponding views

of manual segmentation of the same volume dataset by a
human technician (more discussions in Section V). As shown
in Fig. 12, the results of manual segmentation fit well with
prototypes of our anatomical knowledge. On the other hand,
as will be discussed in Section V, the results of our algorithm
can better reflect details of a specific dataset.

All of the results reported above were obtained on an SGI
Onyx workstation. Table II documents the execution times for
all segmentation runs where a 256256 brain section takes
about one second. We note that our algorithm is about ten times
as fast as those in Section V-A that have reported running
times (after speed differences due to computer platforms
are calibrated) where a 256 256 section typically takes
approximately one minute on a Sun Sparc 10 workstation.

We have performed many other tasks of medical-image
segmentation using our algorithm, including tasks such as seg-
menting blood vessels in other 3-D volume MRI datasets and
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(a) (b)

(c) (d)

Fig. 12. Segmentation of a 3-D MRI volume dataset for extracting the brain. The segmentation results are displayed using volume rendering. (a) and (c)
show the results with a top view (the front facing downward) and a side view (the front facing leftward), respectively. (b) and (d) show the corresponding
results produced by slice-by-slice manual segmentation.

segmenting sinus cavities from the Visible Human Dataset [1].
The segmentation results are comparable with those illustrated
above. We note that our segmentation results are usually robust
to considerable parameter variations, that is, major segments
are not sensitive to these variations.

Determining appropriate algorithm parameters is not as
difficult as it may appear because each parameter has an
intuitive meaning and its effect on segmentation is fairly
predictable. The method we use to set the parameters is
an incremental one where each parameter is set individually
while holding the others constant. First, target structures in the
dataset are determined for segmentation. Usually these struc-
tures correspond to bright and relatively homogeneous regions
within images. To reduce the number of extraneous regions in
segmentation, and should both be set large initially. As
an initial step, we suggest for a 2-D image a 24-neighborhood

and (two-thirds of the size of ). They essentially
act as filters for removing small and nontarget regions. A cubic

tolerance function should be used first, in order to identify
bright regions. To limit expansion into extraneous regions,

can be chosen small initially (e.g., eight-neighborhood).
Choosing and is relatively tedious and may require
some trial and error to produce best results.

The code for our algorithm is written inC and is compiled
to run on both the SGI and HP platforms. The user is able to
set each of the six algorithm parameters through a graphical
user interface (GUI) written inMotif . The software displays a
3-D volume with integer tags so that the user can select one
particular segmented 3-D region for viewing purposes. The
latter utility is also written inC and Motif for the GUI.

V. COMPARISONS

Medical-image segmentation, particularly for MRI images,
is a well-studied problem and there is a large body of literature
on the topic. In Section V-A, we compare our method with
other segmentation methods for medical imagery. Such a
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(a) (b)

(c) (d)

(e)

Fig. 13. Comparison between computer and manual segmentation. (a) Original gray-level image showing a horizontal section of the volume data set
used in Fig. 12. (b) Segmentation result of the image in (a) from 3-D segmentation in Fig. 12 by our algorithm. (c) Result of (b) after tiny holes merge
with the brain segment. (d) Segmentation result of the image in (a) from 3-D manual segmentation in Fig. 12. (e) Result of separating white matter
from gray matter based on the segmented brain in (c).
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comparison is by no means complete, as a comprehensive
comparison can only be done in a survey paper given the size
of the literature. Instead, we have selected several methods
that have been recently and successfully applied to medical
imagery. In Section V-B, we conduct another, perhaps more
meaningful, type of comparison, with manual segmentation.

A. Comparison with Other Methods

In this subsection, we compare our algorithm to four recent
approaches that have been successfully used to segment MRI
images of the brain. The first is the commonly used global-
thresholding approach. In [15], global thresholding and space
filling were used to segment the white and gray matter of the
brain from sagittally oriented MRI images. In this method,
a user manually identifies regions of interest separately for
the white- and gray-matter regions in order to define two
pixel-intensity ranges for applying global thresholding. As was
previously mentioned, the loss of spatial information is an
inherent problem in this approach. Joliot and Mazoyer [15]
tried to overcome this problem with a connectivity algorithm
to fill the white- and gray-matter segmentation, again with user
intervention, to seed a primary region of interest. White-matter
segmentation is done first, and then gray-matter segmentation
starts on the surface of the white matter based on anatomical
knowledge that gray matter surrounds white matter. Many
other ad hoc techniques are also employed to overcome the
problems caused by high intensity variation and the lack of
topology. Compared with this global thresholding method, our
method embodies topology naturally in oscillator-network con-
nectivity through local connections that can tolerate gradual
variations in pixel intensities in one region, even though the
intensity range of the whole region may be large. Also, our
method is more general, not limited to segmenting prespecified
objects, and requires less user intervention. On the other
hand, because of generality, domain-specific knowledge is not
utilized as directly in our method as in [15].

Statistical models, such as Markov or Gibbs random field
models, have been widely used to segment medical im-
agery [8], [20]. In this approach, connectivity and smoothness
constraints on desired segmentation are imposed by Gibb-
sian priors. Using Bayesian formulation, the segmentation
algorithm attempts to estimate the maximuma posteriori
probability (MAP). Given good parameter estimation and prior
knowledge of the number of target objects to be segmented,
statistical models can produce good segmentation results. In
both [8] and [20] gray matter, white matter, and cerebral spinal
fluid were the target segments. Compared to this approach, our
method is more flexible in terms of what is segmented and
does not require prior specification of the number of segments.
In addition, our algorithm is less intensive computationally,
as indicated by reported running times [8], [20]. On the
other hand, if the target segments are known beforehand, this
knowledge can be incorporated into the statistical approach
for producing better results.

Recent image-segmentation methods have used the idea
of fitting a contour to the boundary of a targeted object,
called active contours or snakes [17], based on an energy-
minimizing spline that converges to the boundary of a target

region. In contrast to edge-detection methods that first identify
edges and then try to construct a closed boundary from the
edges, this approach shapes a predefined contour to match the
boundary of the object. An energy function is generally defined
in terms of an internal energy that measures the smoothness
of the boundary and an external energy that measures image
properties as well as user defined constraints. The contour is
iteratively updated so that the energy is minimized. Chiou
and Hwang [9] noted the local minimum problem with the
active-contour method for segmenting MRI images of the
brain, which prevents the spline from converging to its desired
boundary. They used a two-layer perceptron to train on the
image data to better identify pixels on the boundary of
the brain. In addition, pushing forces were added to further
help the spline to avoid local minima, so as to reduce the
requirement that the initial contour must be placed close to the
target boundary. To work for noisy images, the model needs to
be further augmented with a stochastic decision mechanism.

Active-contour methods require considerable user interven-
tion in placing the initial contour and for [9] additional user
input of desired boundary pixels for supervised training of
multilayer perceptrons. In order to provide such intervention,
the user has to solve the segmentation problem to a consid-
erable extent. Note that, besides this kind of user input, the
system still needs to properly set a number of parameters. Also,
energy minimization is generally computationally expensive,
and the local-minimum problem is always a major concern.
Our method does not suffer from these problems. Besides
parameter setting our algorithm is entirely automatic, requir-
ing no user intervention. Our method represents a uniform
framework, whereas the method of Chiou and Hwang [9]
is a mixture of several unrelated techniques. In terms of
segmentation results, our results appear to be at least as good
in identifying contours of the brain.

Recently, a neural network method was proposed by
Alirezaie et al. [3] who used learning-vector quantization
(LVQ) for segmenting 2-D MRI images of the brain. This
method treats the segmentation problem as classifying pixels
based upon features that are extracted from multispectral
images and incorporate spatial information. The network
is a typical self-organizing map [18] which requires prior
knowledge of the number of objects to be segmented. For
proper initialization a training set is needed for each image
and it is selected by manual segmentation of multispectral
MRI images. It is particularly instructive to compare the
method of Alirezaieet al. [3] with our method, since both
are neural network models. As described above, this LVQ
method requires considerable user intervention to provide
essential information for segmentation, whereas ours does
not. Although spatial information is utilized in the LVQ
method, it can be incorporated only in a limited way specified
by system parameters. In our method, spatial information
is naturally incorporated into lateral connections between
oscillators and, through temporal dynamics, oscillators can
influence each other to an unbounded extent even though
oscillators have only local direct connections. Perhaps more
importantly, segmentation in our method is the result of
emergent behavior of the entire oscillator network that takes
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the whole image as the input. As a result, the LEGION
network, besides its biological plausibility, is especially
feasible for parallel-hardware implementation, which would
be important for real-time segmentation of volume datasets.
In contrast, classification-based methods, including that of
Alirezaie et al. [3], operate on a single pixel at a time.

B. Comparison with Manual Segmentation

Since much of the motivation for medical-image segmen-
tation is to automate all or part of manual segmentation, it is
perhaps more important to compare the results of our algorithm
with those of manual segmentation. Manual segmentation gen-
erally gives the best and most reliable results when identifying
structures for a particular clinical task. Usually, a medical
practitioner with knowledge of anatomy utilizes a mouse-based
software to outline or fill regions of target structures on each
image slice in an image stack, i.e., a volume. The segmenter
needs to mentally reconstruct a structure in 3-D because only
2-D image slices can be viewed. Segmentation of each slice
requires that the segmenter view adjacent images in the stack
in order to correctly reconstruct an object in 3-D. The task is
very tedious and time consuming for the segmenter, and thus
does not serve the needs of daily clinical use well. On the other
hand, no fully automatic method exists that is able to provide
comparable segmentation quality to manual segmentation. Our
algorithm lends itself to a semiautomatic approach that is easy
to use and fast to generate results, thus providing the segmenter
a valuable tool to attain acceptable segmentation quality.

Fig. 12 compares the performance of our approach in seg-
menting MRI volume datasets with manual segmentation
performed by a medical technician. Using a segmentation
software available from the National Institutes of Health on
the Apple Macintosh platform, the task required the segmenter
many hours. To have a closer comparison, we display in
Fig. 13 one horizontal section and its segmentation in Fig. 12.
The sample section from the volume dataset is shown in
Fig. 13(a) and Fig. 13(d) shows the manually segmented brain
for this section. Fig. 13(b) shows the segmented brain from
the same sample image using our method. Fig. 13(c) shows
the result after a simple postprocessing step which fills in tiny
isolated holes in the background that have no more than 12
pixels. A comparison between Fig. 13(c) and (d) reveals that
our algorithm is able to provide more details that are omitted
in the corresponding manual segmentation. For example, the
brain ventricles and many fissures are correctly outlined in
Fig. 13(c) by our algorithm, but are too tedious to outline in
manual segmentation.

One objective of medical-image segmentation is to separate
white matter and gray matter. To achieve this objective,
knowledge about the characteristics of white and gray matter
is generally needed. Unlike algorithms that are specifically
designed for this purpose (see for example [20] and [8]), our
algorithm is intended to be more flexible for segmenting a
variety of structures (see Fig. 11). However, it is interesting
to note that once the brain is segmented, the separation of
gray matter from white matter can be performed by our
algorithm in another pass (or as the second layer, see dis-
cussions in Section VI). To illustrate this, we use Fig. 13(c)

as the segmented brain, and Fig. 13(e) displays the result
of segmenting white matter and gray matter. Given that
the segmented brain consists of either white matter or gray
matter, our second pass treats all segmented regions as white
matter (likely discontiguous) by an appropriate selection of
leaders and the background as gray matter. Leaders are simply
chosen by checking if the average pixel intensity in an
entirely stimulated potential neighborhood exceeds a threshold
[75 in Fig. 13(e)]. Other parameter values for producing
Fig. 13(e) are , and

. Note that a negative tolerance value prohibits
any grouping. The result in Fig. 13(e) is comparable with
those of Changet al. [8] and Rajapakseet al. [Fig. 1, 20]
whose statistical algorithms, as discussed in Section V-A, are
specifically designed to segment gray matter, white matter,
and cerebral spinal fluid.

VI. CONCLUDING REMARKS

We propose to use a new neurally inspired approach to
the problem of segmenting sampled medical-image datasets.
Studies from neurobiology and the oscillatory-correlation the-
ory suggest that objects in a visual scene may be represented
by the temporal binding of activated neurons via their firing
patterns. In oscillatory correlation, neural oscillators respond to
object features with oscillatory behavior and group together by
synchronization of their phases. Oscillator groups representing
different objects desynchronize from each other. Our algorithm
is derived from LEGION dynamics for image segmentation
because of its desirable properties of stimulus-dependent os-
cillations, rapid synchronization for forming oscillator groups,
and rapid desynchronization via a global inhibitor for separat-
ing oscillator groups.

Based on performance considerations, we derive an efficient
algorithm that closely follows LEGION dynamics. To segment
CT- and MRI-sampled datasets, we group oscillators based on
the intensity contrasts of their corresponding pixels and intro-
duce an adaptive-tolerance scheme to better identify structures
of interest. Our results show that the LEGION approach is able
to segment volume datasets and, with appropriate parameter
settings, produces results that are comparable to commonly
used manual segmentation. Our method also compares favor-
ably with other segmentation methods for medical imagery.
Our software is currently used to segment structures from
sampled medical datasets from various sources including the
Visible Human Project dataset.

Various extensions to our algorithm can be explored for
further improving segmentation results and reducing user
intervention in parameter setting. The neighborhood kernels
used for both the potential and recruiting neighborhoods may
be set in many ways. For example, a Gaussian kernel may
be used as a recruiting neighborhood, with the connection
strength between two oscillators falling off exponentially. Such
a Gaussian neighborhood can potentially alleviate unwanted
region merging, or the flooding problem (see [14]). Other
tolerance functions may also be used to better define pixel
similarity. For example, a tolerance mapping using a Gaussian
function may provide proper tolerance values for both darker
and brighter pixels.
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So far, segmentation is performed by a single network layer
only. Another layer may be added to process the result of the
first layer. Because the second layer deals with segmented
regions, it is easy to make the second layer extract only
major, i.e., large, regions while putting other regions into a
background. This can be implemented by choosing a larger
potential neighborhood for the second layer while using the
same recruiting neighborhood. With the addition of this second
layer, we expect that a majority of small segments in the
segmentation results of Section IV will be removed, and the
number of final segments will be cut dramatically.

While our algorithm captures major components of LE-
GION dynamics and leads to much faster implementation, it
should be pointed out that our algorithm is not equivalent to
LEGION dynamics. For example, LEGION dynamics exhibits
a segmentation capacity, only a limited number of segments
can be separated, whereas our algorithm can produce an
arbitrary number of segments. The ability to naturally exhibit
a segmentation capacity may be a very useful property for
explaining psychophysical data concerning perceptual organ-
ization. In addition, our algorithm is iterative in nature. The
dynamical system of LEGION, on the other hand, is fully par-
allel, and does not require synchronous algorithmic operations.

To conclude, our results as well as our comparisons with
other methods suggest that LEGION is an effective compu-
tational framework to tackle the problem of medical-image
segmentation. Layers of LEGION networks may be envi-
sioned that are capable of grouping and segregation based on
partial results from preceding layers, and thus may further
enhance segmentation performance. The network architecture
is amenable to VLSI chip implementation, which would make
LEGION a plausible architecture for real-time segmentation.
Real-time segmentation would be highly desirable for large
volume datasets.
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