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ABSTRACT 
 
Conventional speaker recognition systems perform poorly under 
noisy conditions. Recent research suggests that binary time-
frequency (T-F) masks be a promising front-end for robust speaker 
recognition. In this paper, we propose novel auditory features 
based on an auditory periphery model, and show that these features 
capture significant speaker characteristics. Additionally, we 
estimate uncertainties of the auditory features based on binary T-F 
masks, and calculate speaker likelihood scores using uncertainty 
decoding. Our approach achieves substantial performance 
improvement in a speaker identification task compared with a 
state-of-the-art robust front-end in a wide range of signal-to-noise 
conditions. 
 

Index Terms— robust speaker identification, auditory 
features, uncertainty decoding 
 

1. INTRODUCTION 
 
A speaker recognition system, performing either speaker 
identification (SID) or speaker verification (SV), typically 
comprises three processes: feature extraction, pattern classification 
using speaker modeling, and decision making [1, 7]. Typically, the 
extracted speaker features are short-term cepstral coefficients such 
as Mel-frequency cepstral coefficients (MFCC) and perceptual 
linear predictive (PLP) coefficients, or long-term features such as 
prosody [16]. For speaker modeling, Gaussian mixture models 
(GMM) are widely used [15] to model the feature distributions. 
Such systems usually do not perform well under noisy conditions 
[6, 18, 21] because the extracted features are distorted by noise,  
causing mismatched likelihood calculation.  

To tackle this noise robustness problem, spectral subtraction 
has been widely used because of its simplicity [6, 11], but its 
effectiveness degrades sharply when noise is nonstationary [18]. 
RASTA filtering [8] and cepstral mean normalization (CMN) have 
also been widely used but they are mainly designed for convolutive 
noise. Rose et al. [17] use parallel model combination when noise 
statistics is known a priori, which poses restrictions on its 
applications. On the other hand, recent studies of robust speech 
recognition on Aurora [12] have yielded an advanced front-end 

feature extraction algorithm (AFE) [20], standardized by the 
European Telecommunication Standards Institute (ETSI).  

Recently, we have employed a missing data method for robust 
SID and SV tasks [18]. The basic idea is to decompose the input 
signal in time-frequency (T-F) and treat the noise-dominant T-F 
units as missing during recognition. This process requires a binary 
mask to indicate whether a particular T-F unit is reliable or 
missing. The binary mask is generated by a computational auditory 
scene analysis (CASA) system [9]. Our evaluations demonstrate 
that using binary masks with a T-F representation offers a superior 
alternative method under nonstationary noise conditions. 

In this paper, we first propose two novel speaker features 
based on an auditory periphery model [13]. Specifically, a 
Gammatone feature (GF) is obtained from a bank of Gammatone 
filters, which was originally proposed to model human cochlear 
filtering. Then, Gammatone frequency cepstral coefficients 
(GFCC) are derived from GF. We find that such features achieve 
comparable SID performance to ETSI-AFE features under both 
clean and noisy conditions. To account for the deviations of noisy 
features from clean ones, we reconstruct the auditory features from 
a speech prior based on an estimated binary mask. This missing 
data method has been employed for robust speech recognition [14, 
19]. Additionally, feature uncertainties estimated from 
reconstruction are utilized by an uncertainty decoder [5] to enhance 
likelihood calculation in a speaker identification task. Our system 
achieves substantial improvement over ETSI-AFE features in a 
wide range of signal-to-noise (SNR) conditions. 

The rest of the paper is organized as follows. Section 2 
describes the overall system including the proposed auditory 
feature extraction and uncertainty estimation. SID evaluations are 
presented in Section 3. Section 4 concludes the paper. 
 

2. SYSTEM DESCRIPTION  
 
Conceptually, our proposed system improves noise robustness in 
two components of a speaker identification system; novel robust 
auditory features in the feature extraction component, and feature 
uncertainty estimation and decoding in the scoring component. 
 
2.1. System overview 
 
Figure 1 presents a diagram of the overall system. Input speech is 
decomposed into a T-F representation using an auditory filterbank. 
Specifically we use a Gammatone filterbank [3] to generate a time 

 
*At Research and Technology Center, Robert Bosch LLC, USA. 

IV ­ 2771­4244­0728­1/07/$20.00 ©2007 IEEE ICASSP 2007



sequence of GFs, which are analogous to the discrete Fourier 
transform (DFT) based spectral coefficients. We also pass the input 
signal through a CASA system [9], creating a binary T-F mask. An 
element of this mask indicates whether the corresponding GF 
component is reliable or corrupted within a time frame.  

The corrupted GF feature components are then reconstructed 
using a speech prior [14], which is derived from a pooled training 
set. We also estimate uncertainties associated with the 
reconstructed GF features.  

Similar to the cepstral analysis in MFCC extraction, the GF 
feature is transformed into “cepstrum” by a discrete cosine 
transform (DCT) [10]. DCT de-correlates the feature components 
and compacts feature dimensions [10]. The estimated uncertainties 
can also be transformed into the cepstral domain because of DCT’s 
linearity property. Finally, an uncertainty decoder [5] performs 
speaker identification using the derived GFCC and the transformed 
uncertainty estimates. 
 
2.2. Auditory feature extraction  
 
The mixture signal is first analyzed using a 128-channel 
Gammatone filterbank [3]. Its center frequencies are quasi-
logarithmically spaced from 50 Hz to 8 KHz, which models human 
cochlear filtering [13]. The filterbank outputs are then down-
sampled to 100 Hz in the time dimension, corresponding to a frame 
rate of 10 ms, which is used in many short-term speech feature 
extraction algorithms. The magnitudes of the down-sampled 
filterbank outputs are then loudness-compressed using cubic root 
operation. The resulting GF feature vectors, G f ( t )  at time t with 
component index of frequency f, comprise the T-F representation 
of the auditory response. This response matrix is called the 
cochleagram, which is analogous to the spectrogram. Figure 2 
presents illustrations of the cochleagram and the spectrogram of a 
clean speech utterance. Evidently, similar to Mel-scale processing 
in MFCC extraction, cochleagram provides a much higher 
frequency resolution at low frequencies than at high frequencies.  

A GF feature vector contains 128 components, which is much 
more than the number of dimensions a typical speaker or speech 
recognition system uses. Also, because of frequency overlap 
among neighboring Gammatone filters, individual components are 
correlated with each other. Hence, we apply DCT on a GF feature 
vector G  to reduce the dimensionality and de-correlate feature 
components. 
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The elements d ( i , j )of a DCT matrix D, are defined in (1). N is the 
number of dimensions; N =128 in this paper. 
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Thus, a vector of “cepstral” coefficients C , is obtained by 
multiplying the DCT matrix D with a GF vector G.  

Rigorously speaking, the newly derived features are not 
cepstral coefficients, since cepstral analysis requires a log 
operation between the first and the second frequency analysis for 
the deconvolution purpose. Here we call this feature as 
Gammatone frequency cepstral coefficients (GFCC) because of the 
functional similarities between the transformation above and that 
of cepstral analysis. We use the lowest 23-order GFCCs since they 
retain the majority information of a GF feature frame, a result of 
the “energy compaction” property of DCT [10]. 
 
2.3. Computational auditory scene analysis  
 
We adapt and apply [18] a pitch-based speech segregation system 
[9] that performs CASA analysis. This system makes minimal 
assumptions about the underlying noise and has been shown to 
significantly improve the SNR of segregated speech under various 
noisy conditions. This system produces a binary T-F mask as well 
as estimated pitch tracks. Specifically, it performs voiced speech 
segregation on a T-F representation derived from Gammatone 
filterbank filtering and hair-cell transduction. In the low-frequency 
range, the system generates homogeneous T-F regions based on 
temporal continuity and cross-channel correlation, and groups 
them based on periodicity similarity. In the high-frequency range, 
the envelope of a filter response fluctuates at the pitch rate and 
amplitude modulation (AM) rates are used for grouping. As a 
result, it labels speech-dominated T-F units as reliable (1) in the 
binary mask and noise-dominated units as unreliable (0). 
 
2.4. GF reconstruction and uncertainty estimation 
 
In a typical speaker identification or verification system, the 
probability distribution of an extracted feature vector, X, produced 
by a speaker λ , is modeled as a GMM, typically parameterized by 
diagonal covariance matrices [15]. Under noisy conditions, the 
aforementioned CASA system produces a binary T-F mask that 
indicates whether a GF feature component is reliable or corrupted 
(missing). Thus, the feature vector can be partitioned into reliable 
components Xr, or unreliable ones Xu. Our previous study [18] 
employs a missing data method that marginalizes the unreliable 

  
 

Figure 1. Schematic diagram of the proposed system. Input speech is passed through a computational auditory scene analysis system 
to produce a binary time-frequency (T-F) mask. Then, extracted Gammatone features (GF) are used in conjunction with the binary 
mask to reconstruct missing T-F units from a speech prior. GF uncertainties are also estimated in the reconstruction process. GFs and 
their uncertainties are then transformed into “cepstrum” by the discrete cosine transform (DCT).  Finally, uncertainty decoding 
searches for the best-matched speaker model given the resulting Gammatone frequency cepstral coefficients (GFCC) and 
uncertainties. The dotted path denotes how GFCCs are extracted from clean speech for the purpose of speaker model training. 
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dimensions of the feature distribution to improve robust speaker 
recognition performance.  

Here, we propose using the auditory cepstral feature, GFCC, 
in conjunction with the binary mask. In order to apply the DCT 
transform on the corrupted GF, we first reconstruct the missing GF 
components from a prior speech model, which is similar to the 
universal background model (UBM) in a typical speaker 
verification system. Specifically, the speech prior p (X )  is modeled 
as a GMM, and constructed from pooled training data: 
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where M is the number of mixtures, k is the mixture index, and p (k )  
gives the prior of a mixture, or in other words the mixture weight. 
p (X |k )  is the k th Gaussian distribution with a mean vector k  and 
a diagonal covariance k . Given a binary mask, the components of 
the mean and variance of each Gaussian can be split into reliable 
and unreliable ones. We then calculate the a posteriori probability 
of the k th mixture given reliable GF components as in 
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As  shown in [4, 19], the unreliable components are estimated 
as the expected value or the mean conditioned on Xr. 
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kμu  refers to the unreliable components of the mean vector of the 

k th mixture of the speech prior. The reliable components are 
retained in the reconstruction.  

Although (5) gives a good estimate of the unreliable GF 
components, errors in reconstruction will cause degradation of 
recognition performance. Thus, estimates of the reconstruction 
uncertainties would mitigate such degradations by accounting for 
the reconstruction errors in the speaker likelihood calculation. 
Specifically, the uncertainties are estimated as, 
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kσu refers to the unreliable components of the diagonal covariance 

matrix of the k th mixture. 
A reconstructed GF feature and its associated uncertainty are 

then transformed into the GFCC domain using DCT. During the 
identification process, an uncertainty decoder [5] calculates the 
likelihood of the reconstructed GFCC given a clean speaker model 
and the estimated uncertainty. Specifically, the uncertainty is 
added to the covariance of each mixture of the speaker model. 

 
3. EVALUATION 

 
We evaluate the noise robustness of our proposed auditory features 
and the uncertainty estimation method in a SID task. The standard 
MFCC features are used to obtain the baseline performance. We 
also compare the performance of our proposals with the state-of-
the-art robust front-end ETSI-AFE [20]. 
 
3.1. Evaluation setup 
 
We use the speech materials from the recent speech separation 
challenge (SSC) [2]. The training data is drawn from a closed set 
of 34 talkers, 18 males and 16 female, and consists of 17,000 
utterances. We use the speech-shaped noise (SSN) portion of the 
test set for our SID evaluation. The SSN data was generated by 
mixing clean utterances with speech-shaped noise at 4 SNRs: −12, 
−6, 0 and 6 dB. The test set contains 600 utterances in each SNR 
condition.  

The speakers are modeled as 64-mixture GMMs and trained 
on the training portion of SSC directly. The speech prior model 
comprises 2048 Gaussian mixtures, and is constructed from the 
pooled training utterances of all speakers. SID scores are only 
calculated on the voiced speech frames. 
 
3.2. Evaluation results 
 
Figure 3 presents the SID evaluation results. ‘MFCC_D_Z’ 
denotes the baseline SID performance obtained using 24 MFCC 
features including deltas and after cepstral mean normalization. 
They are extracted using the HTK toolkit [22]. ‘ETSI-AFE’ 
represents the enhanced 24 MFCC features, deltas included, 
derived from the advanced front-end feature extraction algorithm, 
which is standardized by the European Telecommunication 
Standards Institute [20]. ‘ETSI-AFE_Z’ denotes the cepstral mean 
normalized ‘ETSI-AFE’ feature.   

‘GF’ and ‘GFCC_C0’ are the auditory features described in 
Section 2.2 with 128 and 23 dimensions respectively. ‘GFCC’ is 
the GFCC feature but with the first cepstral coefficient C0, 
removed. ‘GF_MD’ stands for the missing data recognition method 
using the GF features and estimated binary T-F masks [18].  

‘GFCC_C0_U’ denotes SID performance by the uncertainty 
decoder using GF reconstruction and estimated uncertainties in the 
GFCC feature domain as described in Section 2.4. ‘GFCC_U’ 
shows the same feature configuration but without C0. ‘GF_U’ 
shows the SID performance when the uncertainty decoder is 
directly applied in the GF domain, before the DCT transform.  

It is observed from Figure 3 that the proposed GF feature 
performs significantly better than the baseline MFCC feature at 
low SNR conditions. More importantly, the GFCC features, 
especially the GFCC without C0, not only achieve substantial 
improvement over the baseline feature, but also obtain comparable 
identification results with the robust features extracted by ETSI-
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Figure 2. Illustrations of the cochleagram and the spectrogram 
of a clean speech utterance. Note the asymmetric frequency 
resolution at low and high frequencies in the cochleagram. 
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AFE.  Since C0 relates to the overall energy of a feature frame, it is 
very susceptible to noise degradation. Thus, removing C0 is 
beneficial at low SNR conditions. Note that C0 has been removed 
from MFCC and ETSI-AFE features. 

The missing data method using marginalization performs 
significantly better than ETSI-AFE. GF reconstruction and 
uncertainty decoding in the GF domain further improve SID 
accuracies. Substantial improvement over ETSI-AFE is obtained 
after the GF feature and the uncertainty are transformed into the 
GFCC domain. In summary, GFCC features provide a substantial 
contribution to the noise robustness of the system.  

 
4. CONCLUSION 

 
In this paper, we have proposed a general solution to robust 
speaker recognition under additive noise conditions. Novel speaker 
features are derived from auditory filtering and cepstral analysis. 
Additionally, by using binary T-F masks generated from a CASA 
system for speech separation, we estimate the auditory feature 
uncertainties for better speaker likelihood calculation. Our 
systematic evaluation shows that the proposed auditory features 
and uncertainty estimates achieve substantial performance 
improvement over not only typical speaker features but also the 
state-of-the-art robust front-end processing. 

It is important to note that our proposed system does not 
assume a noise model. Hence, it should generalize well to additive 
noise types other than the one tested. Also, the proposed feature 
extraction and likelihood calculation methods in the system are not 
restricted to SID tasks. We expect our system to provide a similar 
performance improvement on SV tasks. Since automatic speech 
recognition and speaker recognition typically share the same front-
end, it is interesting to study the proposed auditory features also in 
speech recognition tasks. 
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Figure 3. Accuracies of speaker identification in the presence 
of speech-shaped noise. 
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