Pitch-based monaural segregation of reverberant speech
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In everyday listening, both background noise and reverberation degrade the speech signal.
Psychoacoustic evidence suggests that human speech perception under reverberant conditions relies
mostly on monaural processing. While speech segregation based on periodicity has achieved
considerable progress in handling additive noise, little research in monaural segregation has been
devoted to reverberant scenarios. Reverberation smears the harmonic structure of speech signals,
and our evaluations using a pitch-based segregation algorithm show that an increase in the room
reverberation time causes degraded performance due to weakened periodicity in the target signal.
We propose a two-stage monaural separation system that combines the inverse filtering of the room
impulse response corresponding to target location and a pitch-based speech segregation method. As
a result of the first stage, the harmonicity of a signal arriving from target direction is partially
restored while signals arriving from other directions are further smeared, and this leads to improved
segregation. A systematic evaluation of the system shows that the proposed system results in
considerable signal-to-noise ratio gains across different conditions. Potential applications of this

system include robust automatic speech recognition and hearing aid design.
© 2006 Acoustical Society of America. [DOI: 10.1121/1.2204590]
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I. INTRODUCTION

In a natural environment, a desired speech signal often
occurs simultaneously with other interfering sounds such as
echoes and background noise. While the human auditory sys-
tem excels at speech segregation from such complex mix-
tures, simulating this perceptual ability computationally re-
mains a great challenge. In this paper, we study the monaural
separation of reverberant speech. Our monaural study is mo-
tivated by the following two considerations. First, an effec-
tive one-microphone solution to sound separation is highly
desirable in many applications including automatic speech
recognition and speaker recognition in real environments,
audio information retrieval, and hearing prosthesis. Second,
although binaural listening improves the intelligibility of tar-
get speech under anechoic conditions (Bronkhorst, 2000),
this binaural advantage is largely diminished by reverbera-
tion (Plomp, 1976; Culling et al., 2003); this underscores the
dominant role of monaural hearing in realistic conditions.

Various techniques have been proposed for monaural
speech enhancement including spectral subtraction (e.g.,
Martin, 2001), Kalman filtering (e.g., Ma er al., 2004), sub-
space analysis (e.g., Ephraim and Trees, 1995), and autore-
gressive modeling (e.g., Balan et al., 1999). However, these
methods make strong assumptions about the interference and
thus have difficulty in dealing with a general acoustic back-
ground. Another line of research is the blind separation of
signals using independent component analysis (ICA). While
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standard ICA techniques perform well when the number of
microphones is greater than or equal to the number of ob-
served signals such techniques do not function in monaural
conditions. Some recent sparse representations attempt to re-
lax this assumption (e.g., Zibulevsky et al., 2001). For ex-
ample, by exploiting a priori sets of time-domain basis func-
tions learned using ICA, Jang et al. (2003) attempted to
separate two source signals from a single channel but the
performance is limited.

Inspired by the human listening ability, research has
been devoted to build speech separation systems that incor-
porate known principles of auditory perception. According to
Bregman (1990), the auditory system performs sound sepa-
ration by employing various cues including pitch, onset time,
spectral continuity, and location in a process known as audi-
tory scene analysis (ASA). This ASA account has inspired a
series of computational ASA (CASA) systems that have sig-
nificantly advanced the state-of-the-art performance in mon-
aural separation (e.g., Weintraub, 1985; Cooke, 1993; Brown
and Cooke, 1994; Wang and Brown, 1999; Hu and Wang,
2004) as well as in binaural separation (e.g., Roman ef al.,
2003; Palomaki er al., 2004). Generally, CASA systems fol-
low two stages: segmentation (analysis) and grouping (syn-
thesis). In segmentation, the acoustic input is decomposed
into sensory segments, each of which originates from a
single source. In grouping, the segments that likely come
from the same source are put together. A recent overview of
both monaural and binaural CASA approaches can be found
in Brown and Wang (2005). Compared with speech enhance-
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ment techniques described above, CASA systems make few
assumptions about the acoustic properties of the interference
and the environment.

CASA research, however, has been largely limited to
anechoic conditions, and few systems have been designed to
operate on reverberant input. A notable exception is the bin-
aural system proposed by Palomaki er al. (2004) which in-
cludes an inhibition mechanism that emphasizes the onset
portions of the signal and groups them according to common
location. Evaluations in reverberant conditions have also
been reported for a series of two-microphone algorithms that
combine pitch information with binaural cues or signal-
processing techniques (Luo and Denbigh, 1994; Shamsod-
dini and Denbigh, 2001; Barros et al., 2002).

At the core of many CASA systems is a time-frequency
(T-F) mask. Specifically, the T-F units in the acoustic mixture
are selectively weighted in order to enhance the desired sig-
nal. The weights can be binary or real (Srinivasan et al.,
2004). The binary T-F masks are motivated by the masking
phenomenon in human audition, in which a weaker signal is
masked by a stronger one in the same critical band (Moore,
2003). Additionally, from the speech segregation perspective,
the notion of an ideal binary mask has been proposed as the
computational goal of CASA (Wang, 2005). Such a mask can
be constructed from a priori knowledge about target and
interference; specifically a value of 1 in the mask indicates
that the target is stronger than the interference and O indi-
cates otherwise. Speech reconstructed from the ideal binary
mask has been shown to be highly intelligible even when
extracted from multisource mixtures and also to produce
large improvements in robust speech recognition and human
speech intelligibility (Cooke et al., 2001; Roman et al., 2003;
Brungart et al., 2006).

Perceptually, one of the most effective cues for speech
segregation is the fundamental frequency (FO) (Darwin and
Carlyon, 1995). Accordingly, much work has been devoted
to build computational systems that exploit the FO of a de-
sired source to segregate its harmonics from the interference
(for a review see Brown and Wang, 2005). In particular, the
system proposed by Hu and Wang (2004) employs differen-
tial strategies to segregate resolved and unresolved harmon-
ics. More specifically, periodicities detected in the response
of a cochlear filterbank are used at low frequencies to segre-
gate resolved harmonics. In the high-frequency range, how-
ever, the cochlear filters have wider bandwidths and a num-
ber of harmonics interact within the same filter, causing
amplitude modulation (AM). In this case, their system ex-
ploits periodicities in the response envelope to group unre-
solved harmonics. In this paper, we propose a pitch-based
speech segregation method that follows the same principles
while simplifying the calculations required for extracting pe-
riodicities. The method shows good performance when tested
with a variety of noise intrusions under anechoic conditions.
However, when FO varies with time in a reverberant environ-
ment, reflected waves with different FOs arrive simulta-
neously with the direct sound. This multipath situation
causes smearing of harmonic structure (Darwin and Hukin,
2000). Due to weakened harmonicity, the performance of
pitch-based segregation degrades in reverberant conditions.
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One method for removing the reverberation effect is to
pass the reverberant signal through a filter that inverts the
reverberation process and hence reconstructs the original sig-
nal. However, because a typical room impulse response is
not minimum phase, perfect one-microphone reconstruction
requires a noncausal infinite impulse response filter with a
large delay (Neely and Allen, 1979). In addition, one needs
to have a priori knowledge of the room impulse response,
which is often impractical. Several methods have been pro-
posed to estimate the inverse filter in unknown acoustical
conditions (Furuya and Kaneda, 1997; Gillespie et al., 2001;
Nakatani and Miyoshi, 2003). In particular, the system de-
veloped by Gillespie ef al. (2001) estimates the inverse filter
from an array of microphones using an adaptive gradient-
descent algorithm that maximizes the kurtosis of linear pre-
diction (LP) residuals. The inverse filter results in reduction
of perceived reverberation as well as enhanced harmonicity.
In this paper, we employ a one-microphone adaptation of this
method proposed by Wu (2003; Wu and Wang, 2006).

The dereverberation algorithms described above are de-
signed to enhance a single reverberant source. Here, we in-
vestigate the effect of inverse filtering as preprocessing for a
pitch-based speech segregation system in order to improve
its robustness in reverberant environments. The key idea is to
estimate a filter that inverts the room impulse response cor-
responding to the target source. The effect of applying this
inverse filter on the reverberant mixture is twofold: It im-
proves the harmonic structure of the target signal while
smearing those signals originating at other locations. Using a
signal-to-noise ratio (SNR) evaluation, we show that the in-
verse filtering stage improves the separation performance of
our pitch-based system. To our knowledge, this is the first
study that addresses monaural speech segregation with room
reverberation.

The rest of the paper is organized as follows. The next
section defines the problem domain and presents a model
overview. Section III gives a detailed description of the der-
everberation stage. Section IV gives a detailed description of
the pitch-based segregation stage. Section V presents system-
atic results on pitch-based segregation both in reverberant
and inverse-filtered conditions. We also make a comparison
with the spectral subtraction method. Section VI concludes
the paper.

Il. MODEL OVERVIEW

The speech received at one ear in a reverberant enclo-
sure undergoes both convolutive and additive distortions:

y(#) = h(2) * s(2) + n(t), (1)

where “#” indicates convolution. s(¢) is the clean (anechoic)
target speech signal to be recovered, i(r) models the acoustic
transfer function from target speaker location to the ear, and
n(r) is the reverberant background noise which usually con-
tains interfering sources at other locations. As explained in
the Introduction, the problem of monaural speech segrega-
tion has been studied extensively in the additive condition by
employing the periodicity of target speech. However, room
reverberation poses an additional challenge by smearing the
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spectrum and weakening the harmonic structure. Conse-
quently, we propose a two-stage speech segregation model:
(1) inverse filtering with respect to the target location in
order to enhance the periodicity of the target signal; (2)
pitch-based speech segregation. Figure 1 illustrates the archi-
tecture of the proposed model.

The input to our model is a monaural mixture of two or
more sound sources in a small reverberant room (6 m
X4 m X3 m). The receiver—the left ear of a Knowles Elec-
tronic Manikin for Auditory Research (KEMAR) (Burkhard
and Sachs, 1975)—is fixed at (2.5 m, 2.5 m, and 2 m) while
the acoustic sources are located at a distance of 1.5 m from
the receiver. The impulse response corresponding to the
acoustic transfer function from a source to the receiver is
simulated using a room acoustic model. Specifically, the
simulated reflections from the walls are given by the image
reverberation model (Allen and Berkley, 1979) and are con-
volved with the measured head related impulse responses
(HRIR) of the KEMAR (Gardner and Martin, 1994). This
represents a realistic input signal at the ear. Specific room
reverberation times are obtained by varying the absorption
characteristics of room boundaries (Palomaki et al., 2004).
Note that two different positions in the room produce im-
pulse responses that differ greatly. The original clean signals
are upsampled at the HRIR sampling frequency of 44 kHz
and then convolved with the corresponding room impulse
responses. Finally, the resulting reverberant signals are added
together and resampled at 16 kHz.

In the first stage, a finite impulse response filter is esti-
mated that inverts the target room impulse response. Adap-
tive filtering strategies for estimating this filter are sensitive
to background noise (Haykin, 2002). For simplicity, we per-
form this estimation during an initial training stage using
reverberant speech from the target location in the absence of
background noise. We employ the inverse-filtering method
by Gillespie et al. (2001), which uses a relatively small
amount of training data. During testing, the inverse filter is
applied to a mixture signal consisting of a reverberant target
signal and interfering signals. The result is then fed to the
next stage. We emphasize that this initial training is not ut-
terance dependent; that is, the utterances used in training and
testing can be totally different.

In the second stage, we employ a pitch-based segrega-
tion system to separate the inverse-filtered target signal. The
signal is analyzed using a gammatone filterbank (Patterson ef
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FIG. 1. Schematic diagram of the pro-
posed two-stage model.

al., 1988) in consecutive time frames to produce a T-F de-
composition, where a basic T-F unit refers to the response of
a particular filter channel in a particular time frame. Our
system computes a correlogram which is a standard tech-
nique for periodicity extraction (Licklider, 1951; Slaney and
Lyon, 1993). Specifically, autocorrelation is computed at the
output of a particular channel and the set of the autocorrela-
tions for all channels forms the correlogram. In the high-
frequency range, we use response envelopes and extract AM
rates. The system then groups those T-F units where the un-
derlying target is stronger than the combined interference by
comparing the extracted periodicities with an estimated tar-
get pitch. Labeling at the T-F unit level is a local decision
and therefore prone to noise. Following Bregman’s concep-
tual model, previous CASA systems employ an initial seg-
mentation stage followed by a grouping stage in which seg-
ments likely to originate from the same source are grouped
together (see, e.g., Wang and Brown, 1999). To enhance the
robustness, we further perform segmentation. The result of
this process is a binary T-F mask corresponding to the target
stream.

Finally, a speech wave form is resynthesized from the
resulting binary mask using a method described by Wein-
traub (1985; see also Brown and Cooke, 1994). The signal is
reconstructed from the output of the gammatone filterbank.
To remove across-channel differences, the output of the filter
is time reversed, passed through the gammatone filter, and
reversed again. The mask is employed to retain the acoustic
energy from the mixture that corresponds to one’s in the
mask and nullifies the others.

lll. TARGET INVERSE FILTERING

As described in the Introduction, inverse filtering is a
standard strategy used for deriving the anechoic signal. We
employ the method proposed by Gillespie et al. (2001)
which attempts to blindly estimate the inverse filter from
single-source reverberant speech. Their method was origi-
nally proposed for multi-microphone situations and has sub-
sequently been extended to monaural recordings by Wu and
Wang (2006). Based on the observation that peaks in the LP
residual of speech are weakened by reverberation, an adap-
tive algorithm estimates the inverse filter by maximizing the
kurtosis of the inverse-filtered LP residual of reverberant
speech z(7)
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FIG. 2. Effects of inverse filtering on room impulse responses. (a) A room impulse response for a target source presented in the median plane. (b) The effect
of convolving the impulse response in (a) with an estimated inverse filter. (c) A room impulse response for one interfering source at 45° azimuth. (d) The effect

of convolving the impulse response in (c) with the estimated inverse filter.

2 =qyl (1), )

where y,(1)=[y,(t—=L+1),...,y,(t=1),y(r)] and y,(¢) is the
LP residual of the reverberant speech from the target source,
and q is an inverse filter of length L. The inverse filter is
derived by maximizing the kurtosis of Z(¢), which is defined
as

_EZ0]
EYZ(1)]

The gradient of the kurtosis with respect to the inverse filter
q can be approximated as follows (Gillespie et al., 2001):

ol _ | HEZ0]2 () - E[Z'(0]z(1)
9q E[Z(r)]

Consequently, the optimization process in the time do-
main is given by the following update equation:

q(t+1)=4(0) + uf(O3 ), )

where (¢) is the estimate of the inverse filter at time 7, w
denotes the update rate, and f(7) denotes the term inside the
braces of Eq. (4).

However, a direct time-domain implementation of the
above update equation is not desirable since it results in very
slow convergence or no convergence at all under noisy con-
ditions (Haykin, 2002). In this paper, we use the fast-block
LMS (least mean square) implementation for one micro-

3)

yA0). (4)
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phone signals described by Wu and Wang (2006). This
method shows good convergence when applied to one-
microphone reverberant signals for a range of reverberation
times. The signal is processed block by block using a size L
for both filter length and block length with the following
update equations:

M
Q'(n+1)=Q(n)+ ﬁE F(m)Y(m), 6)

m=1

Q'(n+1)
Q' (n+1)|

where F(m) and Y,(m) represent the fast Fourier transform
(FFT) of f(r) and y,(¢) for the mzh block, and Q(n) represents
the estimate for the FFT of inverse filter q at iteration n. M
represents the number of blocks and the superscript * indi-
cates the complex conjugation. Equation (7) ensures that the
estimate of the inverse filter is normalized.

The system is trained on reverberant speech from the
target source sampled at 16 kHz and presented alone. We
employ a training corpus consisting of ten speech signals
from the TIMIT database: five female utterances and five male
utterances. An inverse filter of length L=1024 is adapted for
500 iterations on the training data.

Figure 2 shows the outcome of convolving an estimated
inverse filter with both the target impulse response as well as

Qn+1)= (7)
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the impulse response at a different source location. The room
reverberation time Ty, is 0.35 s (T is the time required for
the sound level to drop by 60 dB following the sound offset).
The two source azimuths are 0° (target) and 45°. As can be
seen in Fig. 2(b), the equalized response for the target source
is far more impulselike compared to the room impulse re-
sponse in Fig. 2(a). On the other hand, the impulse response
corresponding to the interfering source is further smeared by
the inverse filtering process, as seen in Fig. 2(d). Figure 3
illustrates the effect of reverberation as well as that of in-
verse filtering on the harmonic structure of a voiced utter-
ance. The filters in Fig. 2 are convolved with an anechoic
signal to generate the signals in Fig. 3. For a constant pitch
contour, reverberation produces elongated tails but preserves
the harmonicity. However, once the pitch varies reverbera-
tion smears the harmonic structure. For a given change in
pitch frequency, higher harmonics vary their frequencies
more rapidly compared to lower ones. Consequently, higher
harmonics are more susceptible to reverberation as can be
seen in Fig. 3(b). Figure 3(c) shows that an inverse filter is
able to recover some of the harmonic components in the
signal; for example, the harmonic series starting at about
1.0 s is more visible in Fig. 3(c) than in Fig. 3(b). To exem-
plify the smearing effect on the spectrum of an interfering
source, we show the convolution of the same utterance with
the filters corresponding to Figs. 2(c) and 2(d) and the results
are given in Figs. 3(d) and 3(e), respectively.

Finally, the target inverse filter is applied on the rever-
berant mixture and the resulting signal feeds to the second
stage of our model described below.

IV. PITCH-BASED SPEECH SEGREGATION

The proposed pitch-based segregation system uses a
given target pitch track to group harmonically related com-
ponents from the target source. Our system follows the seg-
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FIG. 3. Effects of reverberation and
target inverse filtering on the harmonic

© structure of a voiced utterance. (a)

Spectrogram of the anechoic signal.
(b) Spectrogram of the reverberant
signal corresponding to the impulse
response in Fig. 2(a). (c) Spectrogram
of the inverse-filtered signal corre-
sponding to the equalized impulse re-
sponse in Fig. 2(b). (d) Spectrogram of
the reverberant signal corresponding
to the room impulse response in Fig.

(€) 2(c). (e) Spectrogram of the inverse

filtered signal corresponding to the im-
pulse response in Fig. 2(d).

Time (sec)

mentation and grouping steps of Hu and Wang (2004). How-
ever, we simplify their algorithm by extracting periodicities
directly from the correlogram. Also, compared to the sinu-
soidal modeling scheme for computing AM rates in Hu and
Wang (2004), our simplified method is more robust to intru-
sions in the high frequency range. A detailed description of
our model is given below.

A. Auditory periphery and feature extraction

The signal is filtered through a bank of 128 fourth-order
gammatone filters with center frequencies between 80 and
5000 Hz (Patterson ef al., 1988). In addition, envelopes are
extracted for channels with center frequencies higher than
800 Hz. A Teager energy operator is applied to the signal to
extract its envelope (Rouat er al., 1997). This is defined as
E(n)=x*(n)—x(n+1)x(n—1) for a signal x(n), where n de-
notes the sampling step. Then, the signals are low-pass fil-
tered at 800 Hz using a third-order Butterworth filter and
high-pass filtered at 64 Hz.

The correlogram A(c,j,7) for channel ¢, time-frame j,
and lag 7is computed by the following autocorrelation using
a window of 20 ms (K=320):

K
2 gle.j—kgle.j—k-1)
k=0

K

E gz(c’j - k)
k=0

Alc.j.7) = . (8

K
E gz(c7j —k- T)
k=0

where g is the gammatone filter output and the correlogram
is updated every 10 ms. The range for 7 corresponding to
the plausible pitch range of 80 to 500 Hz is from 32 to
200. At high frequencies, the autocorrelation based on re-
sponse envelopes reveals the amplitude modulation rate
that coincides with the FO for one periodic source. Hence,
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an additional envelope correlogram Ag(c,j, 7) is computed
for channels in the high-frequency range (>800 Hz) by
replacing the filter output g in Eq. (8) with its extracted
envelope. This correlogram representation of the acoustic
signal has been successfully used in Wu et al. (2003) for
multipitch analysis.

Finally, the cross-channel correlation between normal-
ized autocorrelations in adjacent channels is computed in
each T-F unit as

N-1

Cle,j) = 2 Ale,j,DA(c+1,j,7), 9)

=0

where N=200 corresponds to the minimum pitch fre-
quency of 80 Hz. Since adjacent channels activated by the
same source tend to have similar autocorrelation re-
sponses, the cross-channel correlation has been used in
previous segmentation studies (see, e.g., Wang and
Brown, 1999). Similarly, envelope cross-channel correla-
tion Cglc,j) is computed for channels in the high-
frequency range (>800 Hz) to capture common amplitude
modulation.

B. Unit labeling

A pitch-based segregation system requires a robust pitch
detection algorithm. We employ the multipitch tracking (es-
timation) algorithm proposed by Wu et al. (2003) that gives
good performance for a variety of intrusions. The system
combines correlogram-based peak and channel selection
within a statistical framework in order to form multiple
tracks that correspond to different harmonic sources. When
the interference is also a harmonic source, their system pro-
duces two pitch tracks each of which consists of a set of
continuous pitch contours which do not overlap with each
other, but the two sets may overlap in time; a pitch contour is
a consecutive set of pitch points. The multipitch tracking
system, however, does not address the issue of whether a
particular pitch contour belongs to the target source or the
interference. Assigning individual pitch contours to either the
target or the interference is the issue of sequential organiza-
tion (Bregman, 1990), and a challenging computational task
which has been little addressed in previous CASA studies
(Brown and Cooke, 1994; Hu and Wang, 2004). A recent
study by Shao and Wang (2006) uses trained speaker models
to address the sequential organization problem in the specific
context of cochannel speech (two-speaker mixtures). In this
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estimated target pitch contours.

paper, we do not attempt to address this problem and instead
assume an “ideal” assignment for the two pitch tracks, i.e.,
an “ideal” binary decision for each of the contours in the
contour union of the two tracks (as each track generally con-
tains multiple contours). For this, an estimated pitch track
from the target signal is extracted using Praat (Boersma and
Weenink, 2002) and then used for the sole purpose of assign-
ing whether an individual pitch contour corresponds to the
target pitch track. This is explained in Fig. 4, which illus-
trates a set of pitch contours from the multipitch tracking
algorithm of Wu et al. (2003) and the corresponding target
pitch contours from Praat. The contours from the mixture
data are marked as solid lines with numerical labels, while
the target pitch contours from Praat are marked as dashed
lines. In this situation, a comparison between the two sets
results in the selection of contours 2 and 5 as estimated target
pitch contours, which are used to group individual T-F units
that belong to the target as described below. See Wu er al.
(2003) for extensive treatment of multipitch tracking for
noisy speech.

The labeling of an individual T-F unit is carried out by
comparing the estimated target pitch with the periodicity of
the correlogram. The correlogram has the well-known prop-
erty that it exhibits a peak at the signal period as well as the
multiples of the period. Note that an autocorrelation response
is quasiperiodic due to the bandpass nature of a filter channel
and the number of peaks in the correlogram increases with
increasing center frequency of the channel. For a particular
T-F unit, we should select the peak that best captures the
periodicity of the underlying signal. In the low-frequency
range, the system selects the peak for which the correspond-
ing time lag [ is the closest to the estimated target pitch lag p
in A(c,j, 7). Statistics collected in individual channels show
that the distribution of selected time lags is sharply centered
around the target pitch lag and its variance decreases with
increased center frequency. Hence, a T-F unit is discarded if
the distance between the two lags |[p—I| exceeds a threshold
0;. We have found empirically that a value of 6,
=0.15(F,/F.) results in a good performance, where F is the
sampling frequency and F is the center frequency of channel
c. Finally, the peak height indicates the strength of the target
signal in the mixture. The unit is thus labeled 1 if A(c,j,l) is
close to the maximum of A(c,j,7) in the plausible pitch
range
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FIG. 5. Histograms of selected peaks in the high-frequency range (>800
Hz) for a male utterance. (a) Results for the anechoic signal. (b) Results for
the reverberant signal. (c) Results for the inverse-filtered signal. The solid
lines are the corresponding pitch tracks.

Alc,j,10)

max A(c,j,7)
7€[32,200]

> 0p, (10)

where 6p is fixed to 0.85. The unit is labeled O otherwise.
In the high-frequency range, we adapt the peak selection
method of Wu er al. (2003). First, the envelope correlogram
Aglc,j,7) of a periodic signal exhibits a peak both at the
pitch lag and at the double of the pitch lag. Thus, the system
selects all the peaks that satisfy the following condition: A
peak with time lag / must have a corresponding peak that
falls within the 5% interval around the double of /. If no
peaks are selected, the T-F unit is labeled 0. Second, to deal
with the situation where the pitch lag corresponding to the
interference is half that of the target pitch, our system selects
the first peak that is higher than half of the maximum peak in
Aglc,j,7) for 7€[32,200]. Finally, the T-F unit is labeled 1
if the distance between the time lag corresponding to the
selected peak and the estimated target pitch lag does not
exceed a threshold of A=15. The unit is labeled O otherwise.
All the above parameters were optimized by using a small
training set and found to generalize well over a test set.
The distortions on harmonic structure due to room rever-
beration are generally more severe in the high-frequency
range. Figure 5 illustrates the effect of reverberation as well
as inverse filtering in frequency channels above 800 Hz for a
single male utterance. The filters in Figs. 2(a) and 2(b) are
used to generate the reverberant signal and the inverse-
filtered signal, respectively. At each time frame, we display
the histogram of time lags corresponding to selected peaks.
As can be seen from the figure, inverse filtering results in
sharper peak distributions and improved harmonicity in com-
parison with the reverberant condition. The corresponding
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FIG. 6. Comparison of pitch tracking in anechoic and reverberant conditions
for a male voiced utterance. (a) Spectrogram of the anechoic signal. (b)
Spectrogram of the reverberant signal corresponding to the impulse response
in Fig. 2(a). (c) Pitch tracking results. The solid line indicates the anechoic
pitch track. The ‘o’ track indicates the reverberant track.

pitch tracks are extracted using Praat for each separate con-
dition. To illustrate the effect of inverse filtering on the har-
monic structure of the signals originating at the target loca-
tion, we apply the T-F labeling described above to both the
reverberant as well as the inverse-filtered male utterance.
The signals are then reconstructed from the resulting T-F
masks using the resynthesis method described in Sec. II. The
reconstructed signal retains 79% of the target energy in the
inverse-filtered condition compared to only 58% in the rever-
berant condition. As a reference, the corresponding labeling
in the anechoic condition retains 94% of the target energy.

C. Segregation

The final segregation of the acoustic mixture into a tar-
get and a background stream is based on combined segmen-
tation and grouping. A segment is a contiguous region of T-F
units, each of which should be dominated by the same sound
source. The main objective of the final segregation is to im-
prove on the T-F unit labeling described above using
segment-level features. The following steps follow the gen-
eral segregation strategy in the Hu and Wang model (2004).

In the first step, segments are formed using temporal
continuity and cross-channel correlation. Specifically, neigh-
boring T-F units are iteratively merged into segments if their
corresponding cross-channel correlation C(c,j) exceeds a
threshold 6-=0.985. The segments formed in this step are
primarily located in the low-frequency range. A segment
agrees with the target pitch at a given time frame if more
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FIG. 7. Binary mask estimation for a
mixture of target male utterance and
interference female speech in rever-
berant and inverse-filtered conditions.
(a) The estimated binary mask on the

Time (sec) 15

reverberant mixture. (b) The ideal bi-
nary mask for the reverberant condi-
(d) tion. (c) The estimated binary mask on
the filtered mixture. (d) The ideal bi-
nary mask for the inverse-filtered con-
dition. The white regions indicate T-F
units that equal 1 and the black re-
gions indicate T-F units that equal 0.
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than half of its T-F units are labeled 1. A segment that agrees
with the target pitch for more than half of its length is
grouped into the target stream; otherwise it goes to the back-
ground stream.

The second step primarily deals with potentially missing
segments in the high-frequency range. Segments are formed
by iteratively merging T-F units that are labeled 1 but not
selected in the first step for which the envelope cross-channel
correlation Cpg(c,j) exceeds the threshold 6.. Segments
shorter than 50 ms are removed. All these segments are
grouped to the target stream.

The final step performs an adjustment of the target
stream so that all T-F units in a segment bear the same label
and no segments shorter than 50 ms are grouped. Further-
more, the target stream is iteratively expanded to include
neighboring units that do not belong to either stream but are
labeled 1.

With the T-F units belonging to the target stream labeled
1 and the other units labeled 0O, the segregated target speech
wave form is then resynthesized from the resulting binary
T-F mask for systematic performance evaluation, to be dis-
cussed in the next section.

V. RESULTS

Two types of ASA cues that can potentially help a lis-
tener to segregate one talker in noisy conditions are location
and pitch. Darwin and Hukin (2000) compared the effects of
reverberation on spatial, prosodic, and vocal-tract size cues
for a sequential organization task where the listener’s ability
to track a particular voice over time is examined. They found
that while location cues are seriously impaired by reverbera-
tion, the FO contour and vocal-tract length are more resistant
cues. In our experiments, we have also observed that pitch
tracking is robust to moderate levels of reverberation. To
illustrate this, Fig. 6 compares the results of the pitch track-
ing algorithm of Wu et al. (2003) on a single male utterance
in anechoic and reverberant conditions where Ty;=0.35 s.
The only distortions observed in the reverberant pitch track
compared to the anechoic one are elongated tails and some
deletions in the time frames where pitch changes rapidly.
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Culling et al. (2003) have shown that while listeners are
able to exploit the information conveyed by the FO contour
to separate a desired talker, the smearing of individual har-
monics caused by reverberation degrades their separation ca-
pability. However, compared to location cues, the pitch cue
degrades gradually with increasing reverberation and re-
mains effective for speech separation (Culling et al., 2003).
In addition, as illustrated in Fig. 5, inverse filtering with
respect to target location enhances signal harmonicity. We
therefore assess the performance of two viable pitch-based
strategies: (1) segregating the reverberant target from the re-
verberant mixture and (2) segregating the inverse-filtered tar-
get from the inverse-filtered mixture. Consequently, the
speech segregation system described in Sec. IV is applied
separately on the reverberant mixture and the inverse-filtered
mixture.

To conduct a systematic SNR evaluation, a segregated
signal is reconstructed from a binary mask following the
method described in Sec. II. Given our computational objec-
tive of identifying T-F regions where the target is stronger
than the interference, we use the signal reconstructed from
the ideal binary mask as the ground truth to compute the
output SNR (see Hu and Wang, 2004)

2 S%BM(I)

SNROUT =10 ]Ogl() (] 1)

E [sipm(2) — SE(I)]Z,

where sigp(2) represents the target signal reconstructed us-
ing the ideal binary mask and sg() the estimated target
reconstructed from the binary mask produced by our
model. The input SNR is computed in the standard way as
the ratio of target signal energy to noise signal energy
expressed in decibels. Note that the target signal refers to
the reverberant target signal in the reverberant condition
and to the inverse-filtered signal in the inverse-filtered
condition.

Figure 7 shows the binary masks produced by our sys-
tem for a mixture of target male speech presented at 0° and
interference female speech at 45°. Reverberant signals as
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TABLE I. Output SNR results for target speech mixed with a female inter-
ference at three input SNR levels and different reverberation times.

Reverberation time (s) -5dB 0 dB 5 dB
Anechoic 8.78 11.61 13.93
T50=0.05 7.25 8.54 10.65
T50=0.10 7.35 8.16 9.46
Tg0=0.15 6.37 7.09 8.24
T50=0.20 5.59 6.52 7.39
T50=0.25 4.74 6.06 6.79
T50=0.30 447 5.57 6.22
T50=0.35 4.55 5.36 6.13

well as inverse-filtered signals for both target and interfer-
ence are produced by convolving the original anechoic utter-
ances with the filters from Fig. 2. The signals are mixed to
give an overall 0 dB input SNR in both conditions. The fig-
ure also displays the ideal binary masks. The results show an
improved segregation capacity in the high frequency range in
the inverse-filtered case [Fig. 7(c)] as compared to the rever-
berant case [Fig. 7(a)].

We perform the SNR evaluations using as target a set of
ten voiced male sentences collected by Cooke (1993) for the
purpose of evaluating voiced speech segregation systems.
The following five noise intrusions are used: white noise;
babble noise; a male utterance; music; and a female utter-
ance. These intrusions represent typical acoustical interfer-
ences occurring in real environments. In all cases, the target
is fixed at 0°. The babble noise is obtained by presenting
natural speech utterances from the TIMIT database at the fol-
lowing eight separate directions around the target source:
+20°; +45°; +60°; and +135°. For the other intrusions, the
interfering source is located at 45°, unless otherwise speci-
fied. Also, the reverberation time for the experiments de-
scribed below equals 0.35 s, unless otherwise specified. This
reverberation time falls in the typical range for living rooms
and office environments. When comparing the results be-
tween the two segregation strategies the target signal in each
case is scaled to yield the desired input SNR. Each value in
the following tables resents the average output SNR of one
particular intrusion mixed with the ten target sentences.

We first analyze how pitch-based speech segregation is
affected by reverberation. Table I shows the performance of
our pitch-based segregation system applied directly on rever-
berant mixtures when T increases from 0.05 to 0.35 s. The

mixtures are obtained using the female speech utterance as
interference and three levels of input SNR: -5; 0; and 5 dB.
The ideal pitch contours, not estimated ones, are used here
for testing purposes. As expected, the system performance
degrades gradually with increasing reverberation. Individual
harmonics are increasingly smeared and this results in a
gradual loss in energy, especially in the high-frequency range
as illustrated also in Fig. 7. The decrease in output SNR for
T0=0.35 s compared to the anechoic condition ranges from
4.23 dB at —5 dB input SNR to 7.80 dB at 5 dB input SNR.
Overall, however, the segregation algorithm provides consis-
tent gains, showing the robustness of the pitch cue. Observe
that a sizeable gain of 9.55 dB is obtained for the —5 dB
input SNR even when T,=0.35 s.

Now we analyze how the inverse-filtering stage impacts
the overall performance. The results in Table II are given for
both the reverberant case (Reverb) and inverse-filtered case
(Inverse) at three input SNR levels: —=5; 0; and 5 dB. The
results are obtained using estimated pitch tracks as explained
in Sec. IV B. The performance depends on input SNR and
type of interference. A maximum improvement of 12.46 dB
is obtained for the female interference at —5 dB input SNR.
The proposed system (Inverse) has an average gain of
10.11 dB at -5 dB, 6.45 dB at 0 dB, and 2.55 dB at 5 dB.
When compared to the reverberant condition a 2—3 dB im-
provement is observed for the male and female intrusions at
all input SNR conditions. Almost no improvement is ob-
served for white noise or babble noise. Moreover, inverse
filtering decreases the system performance in the case of
white noise at low SNRs because of the over-grouping of T-F
units in the high-frequency range. For comparison, results
using the ideal pitch tracks are presented in Table III. The
improvement obtained by using ideal pitch tracks is small
and shows that the pitch estimation method is accurate. We
note that the variation in the output SNR values across dif-
ferent target sentences is relatively small—the standard de-
viation ranges from 1 to 2 dB—in both reverberant and
inverse-filtered conditions.

As seen in the results presented above, the major advan-
tage of the inverse-filtering stage occurs for a harmonic in-
terference. In all the cases presented above the interfering
source is located at 45°, and the inverse filtering stage further
smears its harmonic structure. However, if the interfering
source is located at a location near the target source the in-
verse filter will dereverberate the interference also. Table IV

TABLE II. Output SNR results using estimated pitch tracks for target speech mixed with different noise types
at three input SNR levels and Tg,=0.35 s. Target is at 0° and interference at 45°.

-5 dB 0 dB 5dB
Input SNR Reverb Inverse Reverb Inverse Reverb Inverse
White noise 5.75 492 6.22 5.87 6.37 7.39
Babble noise 2.50 2.81 4.76 5.27 5.95 6.94
Male 0.67 4.54 3.96 6.68 5.76 7.76
Music 3.27 5.82 5.58 6.72 6.24 7.70
Female 4.87 7.46 5.51 7.70 6.13 7.95
Average 3.41 5.11 5.21 6.45 6.03 7.55
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TABLE III. Output SNR results using ideal pitch tracks for target speech mixed with different noise types at
three input SNR levels and T4,=0.35 s. Target is at 0° and interference at 45°.

-5dB 0 dB 5 dB
Input SNR Reverb Inverse Reverb Inverse Reverb Inverse
White noise 5.94 5.38 6.19 6.10 6.37 7.56
Babble noise 3.25 423 5.14 5.71 5.95 7.40
Male 1.90 5.08 4.49 6.96 5.76 7.80
Music 3.89 6.25 5.73 6.93 6.24 7.80
Female 4.55 7.23 5.36 7.71 6.13 8.30
Average 3.90 5.63 5.38 6.68 6.09 7.717

shows SNR results for both white noise and female speech
intrusions when the interference location is fixed at 0°, the
same as the target location. As expected, in the white noise
case, the results are similar to the ones presented in Table III.
However, the relative improvement in output SNR obtained
using inverse filtering is reduced to the range of 0.5—1 dB.
This shows that smearing the harmonic structure of the in-
terfering source plays an important role in boosting the seg-
regation performance in the inverse-filtered condition.

As mentioned in Sec. I, this paper is the first study on
monaural segregation of reverberant speech. As a result, it is
difficult to quantitatively compare with existing systems. In
an attempt to put our performance in perspective, we show a
comparison with the spectral subtraction method, which is a
standard speech enhancement technique (O’Shaughnessy,
2000). To apply spectral subtraction in practice requires ro-
bust estimation of interference spectrum. To put spectral sub-
traction in a favorable light, the average noise power spec-
trum is computed a priori within the silent periods of the
target signal for each reverberant mixture. This average is
used as the estimate of intrusion and is subtracted from the
mixture. The SNR results are given in Table V, where the
reverberant target signal is used as ground truth for the spec-
tral subtraction algorithm and the inverse-filtered target sig-
nal is used as ground truth for our algorithm. As shown in the
table, the spectral subtraction method performs significantly
worse than our system, especially at low levels of input
SNR. This is because of its well-known deficiency in dealing
with nonstationary interferences. At 5 dB input SNR the
spectral subtraction outperforms our system when the inter-
ference is white noise, babble noise, or music. In those cases
of high-input SNR and relatively steady intrusion, the spec-
tral subtraction algorithm tends to subtract little intrusion but
it also introduces little distortion to the target signal. By
comparison, our system focuses on target extraction that at-
tempts to reconstruct the target signal on the basis of period-

icity. Target components made inharmonic by reverberation
are removed by our algorithm, thus introducing more target
signal loss. It is worth noting that the ceiling performance of
our algorithm without any interference is 8.89 dB output
SNR.

VI. DISCUSSION

In natural settings, reverberation alters many of the
acoustical properties of a sound source reaching our ears,
including smearing its harmonic and temporal structures. De-
spite these alterations, moderate reverberant speech remains
highly intelligible for normal-hearing listeners (Nabelek and
Robinson, 1982). When multiple sound sources are active,
however, reverberation adds another level of complexity to
the acoustic scene. Not only does each interfering source
constitute an additional masker for the desired source, but
also does reverberation blur many of the cues that aid in
source segregation. The recent results of Culling ez al. (2003)
suggest that reverberation degrades human ability to exploit
differences in FO between competing voices, producing a
5 dB increase in speech reception threshold for normally in-
tonated sentences in monaural conditions.

We have investigated pitch-based monaural segregation
in room reverberation and report the first systematic results
on this challenging problem. We observe that pitch detection
is relatively robust in moderate reverberation. However, the
segregation capacity is reduced due to the smearing of the
harmonic structure, resulting in gradual degradation in per-
formance as the room reverberation time increases. As seen
in Table I, compared to anechoic conditions there is an av-
erage decrement of 5.33 dB output SNR for a two-talker
situation with Tg3=0.35 s. This decrement is, however, con-
sistent with the 5 dB increase in speech reception threshold
reported by Culling et al. (2003).

TABLE IV. Output SNR results using ideal pitch tracks for target speech mixed with two types of noise at three
input SNR levels and T,=0.35 s. Target and interference are both located at 0°.

-5 dB 0dB 5dB
Input SNR Reverb Inverse Reverb Inverse Reverb Inverse
White noise 6.37 6.76 6.30 6.82 6.21 7.28
Female 4.82 5.51 5.74 6.65 6.28 7.57
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TABLE V. Comparison between the proposed algorithm and spectral subtraction (SS). Results are obtained for
target speech mixed with different noise types at three input SNR levels and T;=0.35 s. Target is at 0° and

interference at 45°.

-5dB 0 dB 5dB
Input SNR SS Proposed SS Proposed SS Proposed
White noise 2.40 3.36 6.54 4.93 10.47 6.48
Babble noise -2.76 2.74 1.98 4.66 6.65 6.42
Male -4.05 4.11 0.77 6.17 5.59 7.24
Music -1.37 445 3.22 6.01 7.68 7.07
Female -3.31 5.40 1.46 6.71 6.19 7.56
Average -1.81 4.01 2.79 5.69 7.31 6.95

To reduce the smearing effects on the target speech, we
have proposed a preprocessing stage which equalizes the
room impulse response corresponding to target location. This
preprocessing results in both improved harmonicity for sig-
nals arriving from the target direction and smearing of com-
peting sources at other directions. We have found that this
effect provides a better input signal for pitch-based segrega-
tion. The extensive evaluations show that our system yields
substantial SNR gains across a variety of noise conditions.
Our previous study shows a strong correlation between SNR
gains measured against the ideal binary mask and improve-
ments in automatic speech recognition and speech intelligi-
bility scores (Roman et al., 2003). Hence we expect similar
improvements for the SNR gains achieved in the present
study, although further evaluation is required to substantiate
this projection.

The improvement in speech segregation obtained in the
inverse-filtering case is limited by the accuracy of the esti-
mated inverse filter. In our study, we have employed an al-
gorithm that estimates the inverse filter directly from rever-
berant speech data. When the room impulse response is
known, better inverse-filtering methods exist, e.g., the linear
least square equalizer by Gillespie and Atlas (2002). This
type of preprocessing leads to increased target signal fidelity
and thus produces large improvements in speech segregation.
In terms of applications to real-world scenarios our inverse-
filtering faces several drawbacks. First, the adaptation of the
inverse filter requires data on the order of a few seconds and
thus any fast change in the environment (e.g., head move-
ments and walking) will have an adverse impact on the
inverse-filtering stage. Second, this stage needs to perform
filter adaptation in the presence of no or weak interference.
On the other hand, our pitch-based segregation stage can be
applied without such limitations. Hence, whenever the adap-
tation of the inverse filter is infeasible, one can still apply our
pitch-based segregation algorithm directly on the reverberant
mixture.

Speech segregation in high input SNR conditions pre-
sents a challenge to our system. We employ a figure-ground
segregation strategy that attempts to reconstruct the target
signal by grouping harmonic components. Consequently, in-
harmonic target components are removed by our approach
even in the absence of interference. While this problem is
common in both anechoic and reverberant conditions, it
worsens in reverberation due to the smearing of harmonicity.
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To address this issue probably requires examining the inhar-
monicity induced by reverberation and distinguishing such
inharmonicity from that caused by additive noise. This is a
topic of further investigation.

In the segregation stage, our system utilizes only pitch
cues and thus is limited to the segregation of voiced speech.
Other ASA cues such as onsets, offsets, and acoustic-
phonetic properties of speech are also important for monau-
ral separation (Bregman, 1990). Recent research has shown
that these cues can be used to separate unvoiced speech (Hu
and Wang, 2003; 2005). Future work will need to address
unvoiced separation in reverberant conditions. Another limi-
tation, already mentioned in Sec. IV B, concerns sequential
grouping. Like previous studies, our system avoids this issue
by assuming an “ideal” assignment of estimated pitch con-
tours. Although some progress has been made on sequential
grouping of cochannel speech (e.g., Shao and Wang, 2006),
the general problem of sequential organization remains a
considerable challenge in CASA.
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