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Abstract

We study the cocktail-party effect, which refers to the
ability of a listener to attend to a single talker in the
presence of adverse acoustical conditions. It has been
observed that this ability improves in the presence of
binaural cues. In this paper, we explore a technique for
speech segregation based on sound localization cues. The
auditory masking phenomenon motivates an “ideal”
binary mask in which time-frequency regions that
correspond to the weak signal are canceled. In our model
we estimate this binary mask by observing that systematic
changes of the interaural time differences and intensity
differences occur as the energy ratio of the original
signals is modified. The performance of our model is
comparable with results obtained using the ideal binary
mask and it shows a large improvement over existing
pitch-based algorithms.

1 Introduction

The field of Computational Auditory Scene Analysis
(CASA) is preoccupied with solving the sound source
separation problem, with emphasis on modeling auditory
scene analysis in humans. Sound sources may differ in
location, fundamental frequency, or the patterns of
envelope modulation in different frequency bands. These
represent potential grouping cues used in a bottom-up
process (so-called primitive process) in order to organize
components with a common origin into a single stream.
The primary grouping cue used in most CASA systems is
fundamental frequency (F0) - this works well only for
parts of the speech signal that contain voiced components.
On the other hand, binaural cues have the advantage of
being independent of the signal structure and can be used
for sequential integration across both voiced and unvoiced
components.

The main cues used by the binaural auditory system are
interaural time differences and interaural intensity
differences (Lord Rayleigh [16]). Psychoacoustic
experiments show that interaural time differences (ITD)
are most effective at low frequencies (<1.5kHz) and

interaural intensity differences (IID) dominate the high
frequency range. Jeffress described a simple and intuitive
mechanism that performs a running interaural cross-
correlation by means of a neurophysiologically plausible
network [13]. This mechanism accounts for the lateral
displacement of the auditory event from the median plane
when an ITD is present. Mechanisms additional to the
cross-correlation model have been proposed to simulate
auditory event localization based on both on ITD and IID
[4], [5], [8].

Models of binaural hearing have already been used for
sound source separation [9], [6]. The main underlying
observation in most of the existing models is that the
auditory event corresponding to a desired sound source
undergoes systematic changes due to the interfering noise.
Our model attempts to quantify those changes by
collecting statistics using a corpus of mixtures of speech
and interfering noise.

In the next section we briefly describe the architecture of
our model. In the third section we introduce our method
for estimating the ideal binary mask – a binary matrix of
time and frequency. Our goal is to estimate this ideal
mask based on measured ITDs and IIDs across frequency
bands. The fourth section presents our results and
observations by comparing our model with an existing
pitch-based algorithm.

2 Model Architecture

The input to our model consists of two signals: one
speech signal and one interfering noise with sampling
frequency of 44.1 kHz. The model consists of five stages
that are presented in the following subsections and
Section 3, and shown schematically in Fig. 1.

2.1 Eardrum signals
For a free-field presentation, the acoustic signals at the
eardrums consist entirely of direct sound from the sound
source (no echoes or reverberations are assumed in the
current model). Binaural signals for such free-field
sources can be obtained by convolving input signals with
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Figure 1: Schematic diagram of the model. The model processes input from two sound sources with different locations (different
azimuths). First stage: binaural signals are obtained by convolving the input signals with HRIRs. Second stage corresponds to the
auditory periphery simulation: cochlear filtering, half-wave rectification to simulate auditory nerve firing and square root to simulate
saturation effects. Third stage: azimuth localization of the two sound sources and computation of IIDs and ITDs across frequency bands.
Fourth stage: estimation of the ideal binary mask. Fifth stage: the resynthesis path allows reconstruction of the separated signals [10].

measured head related impulse responses (HRIR) from a
KEMAR dummy head, which gives realistic filtering due
to the external ear [7]. Two sound sources are simulated:
one corresponds to speech and another to interfering noise.
The corresponding left and right signals for the two
sources are summed at the eardrums.

Location dependent ITDs and IIDs arise naturally in a free
field environment due to diffraction, scattering,
interference and resonance effects. The range of ITDs is
reported to be up to 800sµ . For IIDs, as much as 30 dB

level differences can be obtained for high frequencies [2].

2.2 Auditory periphery
Peripheral auditory processing is simulated using a bank of
128 gammatone filters as described in [10], [3]. In
addition, the gains of the gammatone filters are adjusted in
order to simulate the middle ear transfer function [15]. In
the final stage of the peripheral model, the output of each
gammatone filter is half-wave rectified in order to simulate
the firing probabilities of nerve fibers. . Saturation effects
are modeled by taking the square root of the signal.

2.3 Azimuth Locator
Current models of azimuth localization use, as a starting
point, Jeffress’s cross-correlation mechanism [13] ([4], [5],
[6], [8], [9]). Cross-correlation provides excellent time
delay estimation for broadband signals and narrowband
stimuli in the low frequency range. However, for periodic
waveforms it can present ambiguous peaks at intervals of
the fundamental frequency. In our model the cross-
correlation is implemented by computing cross-correlation
coefficients at time delays equally distributed in the
plausible range from –1 ms to 1 ms for all frequency
channels.

ITDs across frequency bands are estimated at the position
i
maxτ of the absolute maximum of the cross-correlation

function in theith channel. In a training phase, we derive
frequency-dependent nonlinear transformations to map the
time-delay axis onto an azimuth axis. Diffraction effects
introduce weak frequency dependences for ITDs (Fig. 2A).
The functions are monotonic, being sigmoidal at low
frequencies (where diffraction effects are greater) and
increasingly linear at high frequencies.

Cross-correlation provides inconsistent results when two
acoustical sources are present (Fig. 2B). For frequency
channels that are dominated by one source, activity is
observed near the true location. For frequency–time
regions where the two sources overlap the peak deviates,
generally being closer to the louder source. Peaks at both
locations can occur in high frequency channels – this
ambiguity is due to the periodicity of the cross-correlation
function. Hence, under certain conditions (sufficient
channels where no overlapping occurs) an estimate of the
two sound source locations can be obtained at every time
frame (Fig. 2C). Since we assume fixed locations in time, a
summary across time and frequency weighted by the
energy will produce two peaks corresponding to the two
true locations. Further stages of our model assume perfect
localization.

3. Binary Mask Estimation

3.1 Ideal Binary Mask
The auditory masking effect states that for narrowband
stimuli with close frequencies (same critical band) the
stronger signal masks the weaker one [14]. In light of this
phenomenon we estimate an ideal binary mask by
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Figure 2. A: Functions relating azimuth to ITD for three channels of the auditory model with CFs of 500Hz, 1kHz, 3kHz.B: Cross-

correlation for a mixture of male speech at o30 degrees and female speech at o10− degrees (128 channels, time frame 40 (0.4 ms)).C:

Azimuth localization for the two most predominant sources in a mixture of speech ato30 and telephone ringing at o10− updated at
every 10 ms.

comparing the energies of the original signals that arrive at
the better ear (closer to the speech source). The idea is to
pass time-frequency regions where speech is predominant
and mask the other regions. Recent investigations also
show that robust results can be obtained using similar
binary masks as front-end processors to automatic speech
recognizers [12].

We compute energy ratios using the following formula:
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where is and in refer to the output of theith gammatone
filter for speech and noise, respectively. The masking
coefficients of the ideal binary mask are set to 1 whenever
the corresponding energy ratio exceeds the threshold 0.5
(speech spectrum dominates the noise spectrum), and 0
otherwise.

Our approach is to design a method that approximates this
ideal binary mask when correct information about the
locations of the two sound sources is extracted from the
azimuth locator.

3.2 Pure Tones
A psychophysical motivation for our model is the

“summing localization” phenomenon [2]. The classical
experiment to describe this phenomenon uses two
loudspeakers positioned symmetrically in front of the
subject. If both loudspeakers are driven with identical
signals an auditory event is perceived in the median plane.
By introducing a time delay or an intensity difference
between the two signals, the perceived position of the

auditory event moves away from the median plane toward
the loudspeaker that emits earlier or is louder.

For a frequency band, local information about the location
of the auditory event is extracted using ITDs for low
frequencies (<1.5 kHz) and IIDs for high frequencies. By
extrapolating the summing localization results to our
bandfiltered signals we expect to observe a correlation
between ITDs and IIDs corresponding to theith channel
and the energy ratios iE .

For low frequency channels, the gammatone output is a
narrowband signal for which we can neglect the IID. To
start, we analyze a simple mathematical model for two
sources of pure tones. The theoretical cross-correlation
function for this system is given by the following formula:
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where iA is the amplitude of the pure sine wave andid

represents interaural time delay for theith source; ϕ∆
depends on phase differences between the initial signals
and those due to the arrival times of the signals at the left
ear. As a consequence,coeff is assumed to be random
variable in the interval [-1, 1]. We observe that a
systematic change in the relative amplitude results in a
systematic shift of the peak location in the cross-
correlation function. By observing the deviation of the
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peak location maxτ from the middle location between the
two sources we can estimate which signal is stronger:

21
21

max 2
AA

dd >⇔+>τ (3)

We extrapolate these results for the low frequency
channels and conclude that there exists a correlation
between the energy ratios iE and the time delays that
corresponds to the maximum in the cross-correlation
pattern for theith channel.

3.3 Method
Energy ratios iE , IIDs and ITDs are computed at a specific
time frame using a time window of 20 ms and are updated
at every 10 ms across all frequency bands. ITDs
correspond to the time location of the maximum in the
cross-correlation pattern (we have already seen that in low
frequency channels one unambiguous peak is obtained).
IIDs are computed based on the following formula:
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where il , ir refer to the auditory periphery output for the
ith frequency channel.

In a learning stage, for every pair of azimuth angles
( 1θ , 2θ ) we collect statistics of the relationships between

binaural cues and the energy ratiosiE across all critical
bands. The corpus has 100 mixtures obtained from 10
speech signals located at1θ and 10 noise intrusions

located at 2θ [11]. The correlation between ITD and the

energy ratio iE proves to be most effective at low
frequencies (<1.5kHz). For high frequency channels
(>1.5kHz) we evaluate the performance of two cues: ITDs
based on the envelopes of the signals in order to avoid the
multiple peak problem and IIDs. IIDs are more reliable for
high frequencies. Our computational observations match
psychoacoustical results.

In Fig. 3 we display statistics for the relationships between

binaural cues and energy ratios when1θ = o30 , 2θ = o10− .

We observe that the ITD and the IID values undergo
relatively smooth changes with the energy ratio. The
particular orientation of the curves is due to the
computation of the energy ratio iE based on the right ear
(which is closer to the speech sound source; so it receives
more speech energy).

Since we use a binary decision, we derive location
dependent thresholds ),( 21 θθiT across frequency channels
that minimize the overall error rate. An error occurs when
the decision differs from the ideal binary mask which is
equivalent to ii TD > and iE <0.5, or ii TD < and iE >0.5

(where iD refers to the peak location for low frequencies
and to the computed IID for high frequencies). Error rates
range from 1.5% to 3.5% for low and high frequencies to
8% for middle frequencies.

Our model consists of a simple time-domain mechanism
for speech segregation for a mixture of two sound sources.
Assume that the desired source corresponds to location 1θ
( 1θ > 2θ ) and perfect localization has been achieved in a
prior stage. Then, at every time framej and for every
frequency channeli we obtain a binary masking coefficient

ji ,δ based on the following equation:
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Figure 3: A: Relationship between ITD and the energy ratio for
channel 40 (CF=500Hz).B: Relationship between IID and the
energy ratio for channel 100 (CF=2kHz). Statistics are obtained

for speech at o30 and interfering noise at o10− .

4 Results

Resynthesized signals have been extensively used to assess
model evaluation. In our model we use a resynthesis
method described by Brown and Cooke [10]. We compare
our model with the Wang and Brown pitch-based model
for speech segregation [3] across 10 types of noise
interference. For the first criterion we measure
independently the percentage of energy loss (EL) and the
percentage of residual noise (RN) as defined below:

2864



A B C

Ideal Binary Mask

Time (sec)

F
re

q
u

e
n

cy
 (

H
z)

0.0 1.5

5000

2741

1457

729

315

80

Estimated Binary Mask

Time (sec)0.0 1.5

Binary mask based on pitch

Time (sec)0.0 1.5
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where the above are resynthesized signals using the
following binary masks: )(tsI is obtained using the ideal

binary mask, )(1 td using a binary mask that corresponds
to regions selected in the ideal binary mask but missing
from the estimated mask, )(2 td using a binary mask
which corresponds to regions missing from the ideal mask
but present in the estimated mask, and )(tse using the
estimated binary mask (Table 1). The second criterion
represents the relative difference between )(tsI and

)(tse measured in decibels (Fig. 5):
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When compared with the Wang-Brown pitch-based
algorithm, the estimated binary mask from our model
recovers substantially more energy and constitutes a much
better approximation to the ideal binary mask (Fig. 4).
The energy loss (EL) decreases considerably in our model
without increasing the residual noise (RN). At the same
time, we observe a large increase for the second criterion,

the relative difference from the ideal binary mask. Note,
however, that the Wang-Brown model is a monaural
system, where ours is binaural with two sensors.

By analyzing the statistics obtained in Sect. 3, we observe
that the relationships between binaural cues and energy
ratios are basically signal-independent. Hence, we expect
a similar performance for our model when tested on a
different corpus than the training one.

5 Discussion

In this paper, we have focused on the speech segregation
problem using binaural cues (ITDs and IIDs). Our goal is
to estimate an ideal binary mask that was
psychoacoustically motivated by the auditory masking
effect.

We have observed that there exists a relationship between
ITDs and thea priori SNR in low frequency channels, as
well as a relationship between IIDs and thea priori SNR
in high frequency channels. We have analyzed these
relationships across all frequency channels based on a
corpus of 100 mixtures. Thresholds for binary decision
rules are determined in order to minimize the overall error
rate. When tested on the entire corpus, our algorithm
approximates well the ideal binary mask and yields much
improved performance over pitch-based monaural
algorithms.
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Figure 5: Relative difference from the ideal binary mask using
pitch-based algorithm (black bar) and our model (white bar) for
voiced speech mixed with ten different types of noise (N0=1kHz
tone; N1=random noise; N2=noise burst; N3=”cocktail party”;
N4=rock music; N5=siren; N6=trill telephone; N7=female
speech; N8=male speech; N9=female speech). The voice source

is located at o30 and the noise source at o10− .

Table 1: Percentage of energy loss (EL) and residual noise
(RN) (same corpus as Fig. 5).

Pitch-based method Our modelNoise
Type EL% NI% EL% NI%

N0 22.80 0 0.04 0.02
N1 33.74 4.31 1.49 2.05
N2 20.81 4.50 0.04 1.28
N3 37.03 1.40 0.55 0.34
N4 26.74 3.16 1.09 0.79
N5 27.87 0.04 0.10 0.04
N6 21.23 0.41 0.22 0.20
N7 27.56 3.44 0.52 0.33
N8 22.47 0.57 0.15 0.52
N9 30.61 34.33 0.73 0.54

Average 27.09 5.29 0.49 0.61
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