Binaural segregation in multisource reverberant environments
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In a natural environment, speech signals are degraded by both reverberation and concurrent noise
sources. While human listening is robust under these conditions using only two ears, current
two-microphone algorithms perform poorly. The psychological process of figure-ground segregation
suggests that the target signal is perceived as a foreground while the remaining stimuli are perceived
as a background. Accordingly, the goal is to estimate an ideal time-frequency (T-F) binary mask,
which selects the target if it is stronger than the interference in a local T-F unit. In this paper, a
binaural segregation system that extracts the reverberant target signal from multisource reverberant
mixtures by utilizing only the location information of target source is proposed. The proposed
system combines target cancellation through adaptive filtering and a binary decision rule to estimate
the ideal T-F binary mask. The main observation in this work is that the target attenuation in a T-F
unit resulting from adaptive filtering is correlated with the relative strength of target to mixture. A
comprehensive evaluation shows that the proposed system results in large SNR gains. In addition,
comparisons using SNR as well as automatic speech recognition measures show that this system
outperforms standard two-microphone beamforming approaches and a recent binaural processor.
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I. INTRODUCTION

A typical auditory environment contains multiple con-
current sources that are reflected by surfaces and change
their locations constantly. While human listeners are able to
attend to a particular sound signal even under such adverse
conditions, simulating this perceptual ability or solving the
cocktail party problem (Cherry, 1953) remains a grand chal-
lenge. A solution to the problem of sound separation in real
environments is essential for many applications including au-
tomatic speech recognition (ASR), audio information
retrieval and hearing prosthesis. In this paper we study
the binaural (two-microphone) separation of speech in
multisource reverberant environments.

The sound separation problem has been investigated in
the signal processing field for many years for both one-
microphone recordings as well as multi-microphone ones
(for reviews see Kollmeier, 1996; Brandstein and Ward,
2001; Divenyi, 2005). One-microphone speech enhancement
techniques include spectral subtraction (e.g., Martin, 2001),
Kalman filtering (Ma et al., 2004), subspace analysis
(Ephraim and van Trees, 1995), and autoregressive modeling
(e.g., Balan er al, 1999). While having the advantage of
requiring only one sensor, these algorithms make strong as-
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sumptions about the environment and thus have difficulty in
dealing with general acoustic mixtures. Microphone array
algorithms are divided in two categories: beamforming and
independent component analysis (ICA) (Brandstein and
Ward, 2001). While performing essentially the same linear
demixing operation, these two algorithms differ in how they
compute the demixing coefficients. Specifically, to separate
multiple sound sources, beamforming takes advantage of
their different directions of arrival while ICA relies on their
statistical independence (ICA also requires different arrival
directions of sound sources). A fixed beamformer, such as
that of the delay-and-sum, constructs a spatial beam to en-
hance signals arriving from the target direction independent
of the interfering sources. The primary limitations of a fixed
beamformer are: (1) a poor spatial resolution at lower fre-
quencies, i.e., the spatial response has a wide main lobe
when the intermicrophone distance is smaller than the signal
wavelength; and (2) spatial aliasing, i.e., multiple beams at
higher frequencies when the intermicrophone distance is
greater than the signal wavelength. To solve these problems a
large number of microphones is required and constraints
need to be introduced in order to impose a constant beam
shape across the frequencies (Ward et al., 2001). Adaptive
beamforming techniques, on the other hand, attempt to null
out the interfering sources in the mixture (Griffiths and Jim,
1982; Widrow and Stearns, 1985; Van Compernolle, 1990).
While they improve spatial resolution significantly, the main
disadvantage of such beamformers is greater computation
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and adaptation time when the locations of interfering sources
change. Note also that while an adaptive beamformer with
two microphones is optimal for canceling a single directional
interference, additional microphones are required as the
number of noise sources increases (Weiss, 1987). A subband
adaptive algorithm has been proposed by Liu et al. (2001) to
address the multisource problem. Their two-microphone sys-
tem estimates the locations of all the interfering sources and
uses them to steer independent nulls that suppress the stron-
gest interference in each T-F unit. The underlying signal
model is, however, anechoic and the performance degrades
in reverberant conditions. Similarly, the drawbacks of ICA
techniques include the requirement in the standard formula-
tion that the number of microphones be greater than or equal
to the number of sources and poor performance in reverber-
ant conditions (Hyvéarinen et al., 2001). Some recent sparse
representations attempt to relax the former assumption (e.g.,
Zibulevsky et al., 2001), but their application has been lim-
ited to anechoic conditions. Other multi-microphone algo-
rithms include nonlinear processing schemes that attempt to
remove incoherent components by attenuating T-F units
based on the cross-correlation between corresponding micro-
phone signals (Allen et al., 1977; Lindemann, 1995).

Human listeners excel at separating target speech from
multiple interferences. Inspired by this robust performance,
research has been devoted to build speech separation systems
that incorporate the known principles of auditory perception.
According to Bregman (1990), the auditory system performs
sound separation by employing various grouping cues, in-
cluding pitch, onset time, spectral continuity, and location in
a process known as auditory scene analysis (ASA). This
ASA account has inspired a series of computational ASA
(CASA) systems that have significantly advanced the state-
of-the-art performance in monaural separation as well as in
binaural separation. Monaural separation algorithms rely pri-
marily on the pitch cue and therefore operate only on voiced
speech. On the other hand, the binaural algorithms use the
source location cues—time differences and intensity differ-
ences between the ears—which are independent of the signal
content, and thus can be used to track both voiced and un-
voiced speech. A recent overview of CASA approaches can
be found in Brown and Wang (2005).

CASA research, however, has been largely limited to
anechoic conditions, and few systems have been designed to
operate on reverberant inputs. In reverberant conditions,
anechoic modeling of time delayed and attenuated mixtures
is inadequate. Reverberation introduces potentially an infi-
nite number of sources due to reflections from hard surfaces.
As a result, the estimation of location cues in individual T-F
units becomes unreliable with an increase in reverberation
and the performance of location-based segregation systems
degrades under these conditions. A notable exception is the
binaural system proposed by Palomiki et al. (2004), which
includes an inhibition mechanism that emphasizes the onset
portions of the signal and groups them according to a com-
mon location. The system shows improved speech recogni-
tion results across a range of reverberation times. Evalua-
tions in reverberation have also been reported for two-
microphone algorithms that combine pitch information with
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binaural cues or other signal-processing techniques (Luo and
Denbigh, 1994; Wittkop et al., 1997; Shamsoddini and Den-
bigh, 1999; Barros er al., 2002).

From an information processing perspective, the notion
of an ideal T-F binary mask has been proposed as the com-
putational goal of CASA (Roman er al., 2003; see also
Wang, 2005). Such a mask is constructed from target and
interference before mixing; specifically a value of 1 in the
mask indicates that the target is stronger than the interference
within a particular T-F unit and O indicates otherwise. This
particular definition results in the optimal SNR gain among
all possible binary masks because the local SNR is greater
than O dB for all the retained T-F units and less than or equal
to 0 dB for all the discarded T-F units (see Hu and Wang,
2004). Speech reconstructed from ideal binary masks has
been shown to be highly intelligible, even when extracted
from multisource mixtures of very low SNRs. In Roman et
al. (2003), we tested the intelligibility of speech recon-
structed from binary masks that are very close to ideal binary
masks at three SNR levels of 0, =5, and —10 dB. The tests
were done in two and three source configurations. The recon-
structed speech improves the intelligibility scores of normal-
hearing listeners in all test conditions, and the improvement
becomes larger as the SNR decreases. For example, for the
two-source condition with the input SNR of —10 dB, binary
mask processing improves the intelligibility score from about
20% to 81%. Similar improvements were found in later stud-
ies (Chang, 2004; Brungart et al., 2006). In addition, binary
mask processing produces substantial improvements in ro-
bust speech recognition (Cooke et al., 2001; Roman et al.,
2003).

As stated earlier, only one wideband source can be can-
celed through linear filtering in binaural processing. In this
paper we pursue a binaural solution to target segregation
under reverberant conditions and in the presence of multiple
concurrent sound sources. We propose a two-stage model
that combines target cancellation through adaptive filtering
and a subsequent stage that estimates the ideal binary mask
based on the amount of target cancellation. Specifically, we
observe that the amount of target cancellation within indi-
vidual T-F units is correlated with the relative strength of
target to mixture. Consequently, we employ the output-to-
input attenuation level within each T-F unit resulting from
adaptive filtering to estimate the ideal binary mask. Since the
system depends only on the location of the target, it works
for a variety of interfering sources including moving intru-
sions and impulsive ones. Alvarez et al. (2002) proposed a
related system that combines a first-order differential beam-
former to cancel the target and obtain a noise estimate, and
spectral subtraction to enhance the target source, but their
results are not satisfactory in reverberant conditions.

Although the speech reconstructed directly from the
ideal binary mask is highly intelligible, typical ASR systems
are sensitive to the small distortions produced during resyn-
thesis and hence do not perform well on the reconstructed
signals. Two methods have been proposed to alleviate this
problem: (1) the missing-data ASR proposed by Cooke et al.
(2001) that utilizes only the reliable (target dominant) fea-
tures in the acoustic mixture; and (2) a target reconstruction
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FIG. 1. Schematic diagram of the proposed model. The input signal is a
mixture of reverberant target sound and acoustic interference. At the core of
the system is an adaptive filter for target cancellation. A T-F decomposition
is performed on the output of the adaptive filter and the input signal at
microphone 1. The output of the system is an estimate of the ideal binary
mask.
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method for the unreliable (interference dominant) features
proposed by Raj et al. (2004) followed by a standard ASR
system. The first method requires the use of spectral features,
whereas the second method, thanks to reconstruction, can
operate on cepstral features. It is well known that cepstral
features are more effective for ASR than spectral features.
Hence, in our evaluations we use a spectrogram reconstruc-
tion technique similar to the one proposed by Raj et al
(2004). Our technique leads to substantial speech recognition
improvements over baseline and other related two-
microphone approaches.

The rest of the paper is organized as follows. In the next
section we define the problem and describe the model. In
Sec. III we give an extensive evaluation of our system as
well as a comparison with related models. In the last section
we conclude the paper.

Il. MODEL ARCHITECTURE

The proposed model consists of two stages, as shown in
Fig. 1. In the first stage, an adaptive filter is applied to the
mixture signal, which contains both target and interference,
in order to cancel the target signal. In the second stage, the
system labels as 1 those T-F units that have been largely
attenuated in the first stage since those units are likely to
have originated from the target source. This mask is then
applied to suppress all the T-F units dominated by noise. The
adaptive filter needs to be trained in the absence of noise.

The input signal to our system assumes that a desired
speech source s has been produced in a reverberant enclosure
and recorded by two microphones to produce the signal pair
(x1,x,). The transmission path from the target location to
microphones is a linear system and is modeled as

x1(1) = hy(2) * (1), (1a)
x(1) = hy(2) * (1), (1b)

where h; corresponds to the room impulse response for the
ith microphone. The challenge of source separation arises
when an unwanted interference pair (n;,n,) is also present at
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the input of the microphones resulting in a pair of mixtures
V1.y2):

yi(0) =x (1) + (1), (2a)

yo(t) = x,(1) + ny(1). (2b)

The interference here is a combination of multiple reverber-
ant sources and additional background noise. In this study,
the target is assumed to be fixed but no restrictions are im-
posed on the number, location, or content of the interfering
sources. In realistic conditions, the interference can suddenly
change its location and may also contain impulsive sounds.
Under these conditions, it is hard to localize each individual
source in the scene. The goal is therefore to remove or at-
tenuate the noisy background and recover the reverberant
target speech based only on the target source location.

Our objective here is to develop an effective mechanism
to estimate an ideal binary mask, which selects the T-F units,
where the local SNR exceeds a threshold of O dB. The rela-
tive strength of target to mixture for a T-F unit is defined as

— |X1(w’t)|
|Xl(w9t)| + Nl(wst)l '

R(w,1) (3)

where X,(w,?) and N;(w,r) are the corresponding Fourier
transforms of the reverberant target signal and the noise sig-
nal at frequency w and time ¢ corresponding to microphone 1
(primary microphone). Note that the noise signal includes all
the interfering sources. As seen in Eq. (3), R(w,1) is related
to the mixture SNR in a T-F unit. A T-F unit is then set to 1
in the ideal binary mask if R(w,t) exceeds 0.5, otherwise it is
set to 0. Note that R(w,#)=0.5 corresponds to the situation
where the target and the noise are equally strong.

In the classical adaptive beamforming approach with
two microphones (Griffith and Jim, 1982), the filter learns to
identify the differential acoustic transfer function of a par-
ticular noise source and thus perfectly cancels only one di-
rectional noise source. Systems of this type, however, are
unable to cope well with multiple noise sources or diffuse
background noise. As an alternative, we propose to use the
adaptive filter only for target cancellation and then process
the noise estimate obtained using a nonlinear scheme de-
scribed below in order to obtain an estimate of the ideal
binary mask (see also Roman and Wang, 2004). This two-
stage approach offers a potential solution to the problem of
multiple interfering sources in the background.

In the experiments reported here, we assume a fixed tar-
get location and the filter w in the target cancellation module
(TCM) is trained in the absence of interference (see Fig. 1).
A white noise sequence of 10 s duration is used to calibrate
the filter. We implement the adaptation using the Fast-Block
Least Mean Square algorithm with an impulse response of
375 ms length (6000 samples at a 16 kHz sampling rate)
(Haykin, 2002). After the training phase, the filters param-
eters are fixed and the system is allowed to operate in the
presence of interference. Both the TCM output z(¢) and the
noisy mixture at the primary microphone y,(¢) are analyzed
using a short time-frequency analysis. The time-frequency
resolution is 20-ms time frames with a 10-ms frame shift and
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FIG. 2. Scatter plot of the output-to-input ratio with respect to the relative
strength of the target to the mixture for a frequency bin centered at 1 kHz.
The mean and the standard deviation are shown as the dashed line and
vertical bars, respectively. The horizontal line corresponds to the —6 dB
decision threshold used in the binary mask estimation.

257 discrete Fourier transform coefficients. Frames are ex-
tracted by applying a running Hamming window to the sig-
nal.

As a measure of signal suppression at the output of the
TCM unit, we define the output-to-input energy ratio as fol-
lows:

_ |Z(w)

OIR(w,?) = .
@0 =y @]

(4)
Here Y,(w,f) and Z(w,t) are the corresponding Fourier
transforms of y;(¢) and z(z), respectively, where z(t)=y,(¢)
—w#Yy,(), as shown in Fig. 1.

Consider a T-F unit in which the noise signal is zero.
Ideally, the TCM module cancels perfectly the target source
resulting in zero output and therefore OIR(w,#) —0. On the
other hand, T-F units dominated by noise are not suppressed
by the TCM and thus OIR(w,?)>0. Hence, a simple binary
decision can be implemented by imposing a decision thresh-
old on the estimated output-to-input energy ratio. The esti-
mated binary mask is 1 in those T-F units where OIR(w,?)
> 0(w), which is a frequency-dependent threshold, and 0 in
all the other units. Due to the additional filtering introduced
by the target cancellation stage, the noise estimate may have
different characteristics compared with the noise in the pri-
mary microphone hence degrading the quality of the ideal
mask estimation.

Figure 2 shows a scatter plot of R and OIR measured in
dB, as well as the mean and the standard deviation, which is
obtained for individual T-F units corresponding to a fre-
quency bin at 1 kHz. Similar results are seen across all fre-
quencies. The results are extracted from 100 mixtures of re-
verberant target speech fixed at 0° azimuth mixed with four
interfering speakers at —135°, —45°, 45°, and 135° azimuths.
The room reverberation time, Ty, is 0.3 s (see Sec. III for
simulation details); Ty, is the time required for the sound
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level to drop by 60 dB following the sound offset. The input
SNR considering reverberant target as signal is 5 dB. Ob-
serve that there exists a correlation between the amount of
cancellation in the individual T-F units and the relative
strength of target to mixture. In order to simplify the estima-
tion of the ideal binary mask we have used in our evaluations
a frequency-independent threshold of —6 dB on the output-
to-input energy ratio, i.e., 8(w) is set to —6 dB. The —6 dB
threshold is obtained when the reverberant target signal and
the noise have equal energy in Eq. (3). As seen in the figure,
the binary masks estimated using this threshold remove most
of the noise at the expense of some target speech energy loss.

lll. EVALUATION AND COMPARISON

We have evaluated our system on binaural stimuli, simu-
lated using the room acoustic model described in Palomiki et
al. (2004). The reflection paths of a particular sound source
are obtained using the image reverberation model for a small
rectangular room (6 mX4 mX3 m) (Allen and Berkley,
1979). The resulting impulse response is convolved with the
measured head related impulse responses (HRIR) (Gardner
et al., 1994) of a KEMAR dummy head (Burkhard and Sa-
chs, 1975) in order to produce the two binaural inputs to our
system. Typically, the room reverberation is influenced by
the absorption properties of surface materials, which are fre-
quency dependent, as well as by a low-pass filtering effect
due to air absorption. Specific room reverberation times are
obtained here by varying the absorption characteristics of
room boundaries, as described in Palomiki ef al. (2004). The
position of the listener was fixed asymmetrically at (2.5 m
X 2.5 mX2 m) to avoid obtaining near identical impulse re-
sponses at the two microphones when the source is in the
median plane. All sound sources are presented at different
angles at a distance of 1.5 m from the listener. For all our
tests, the target is fixed at 0° azimuth unless otherwise speci-
fied. To test the robustness of the system to various noise
configurations, we have performed the following tests: (1) an
interference of rock music at 45° (scene 1); (2) two concur-
rent speakers (one female and one male utterance) at azimuth
angles of —45° and 45° (scene 2); and (3) four concurrent
speakers (two female and two male utterances) at azimuth
angles of —135°, —45°, 45°, and 135° (scene 3). The silence
before and after each of the interfering utterances is deleted
in scene 2 and scene 3 making them more comparable with
scene 1. Note that we do not expect the performance to vary
significantly with respect to test material because of the spa-
tial filtering principle employed in our model. The signals are
upsampled to the HRIR sampling frequency of 44.1 kHz and
convolved with the corresponding left and right ear HRIRSs to
simulate the individual sources for the above three testing
conditions (scene 1-scene 3). Finally, the reverberated sig-
nals at each simulated ear are summed and then down-
sampled to 16 kHz. In all our evaluations, the input SNR is
calculated at the left ear using reverberant target speech as
signal. While in scene 2 and scene 3, the SNR at the two ears
is comparable; the left ear is the “better ear”—the ear with a

Roman et al.: Binaural Segregation in Multisource Reverberant Environments 4043



o]
o
(=
o

Frequency (Hz)

@

S

S o
o

Frequency (Hz)

e}
[=}
[=}
o

Frequency (Hz)

Frequency (Hz

N
<
>
Q
c
5]
3
o
o
-
0.0
< 8000
=
>
o
c
7]
=
o
2
w 0
0.0

Time (sec)

higher SNR—in the scene 1 condition. In the case of mul-
tiple interferences, the interfering signals are scaled to have
equal energy at the left ear.

The binaural input is processed by our system as de-
scribed in Sec. II in order to estimate the ideal T-F binary
mask that is defined as 1 when the reverberant target energy
is greater than the interference energy and O otherwise. In all
our results, the signal simulated at the left ear corresponds to
the input signal at the primary microphone. Hence, the bi-
nary mask is computed and the signal is resynthesized at the
left simulated ear. Figure 3 illustrates the output of our sys-
tem for scene 3 when the target is the male utterance “Bright
sunshine shimmers on the ocean.” The room conditions are
Tp=0.3 s and 5 dB input SNR. Figures 3(a) and 3(b) show
the spectrograms of the reverberant target speech and the
mixture, respectively. Figures 3(c) and 3(d) show the esti-
mated binary mask and the ideal binary mask, respectively.
Figures 3(e) and 3(f) show the output by applying the esti-
mated mask and the ideal mask to the mixture in Fig. 3(b),
respectively. Observe that the estimated mask is able to esti-
mate well the ideal binary mask, especially in the high target
energy T-F regions.
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2.0

FIG. 3. A comparison between the estimated mask and
the ideal binary mask for a five-source configuration.
(a) Spectrogram of the reverberant target speech. (b)
Spectrogram of the mixture of target speech presented
at 0° and four interfering speakers at locations —135°,
—45°, 45°, and 135°. The SNR is 5 dB. (c) The esti-
mated T-F binary mask. (d) The ideal binary mask. (e)
The mixture spectrogram overlaid by the estimated T-F
binary mask. (f) The mixture spectrogram overlaid by
the ideal binary mask. The recordings correspond to the
left microphone.

20

To systematically evaluate our segregation system, we
use the following performance measures: (1) SNR evaluation
using the reverberant target speech as signal; and (2) ASR
accuracy using our model as a front end. Quantitative com-
parisons with related approaches are also provided.

A. SNR evaluation

We perform SNR evaluations for the three conditions
described above using ten speech signals from the TIMIT
database (Garofolo er al., 1993) as target: five female utter-
ances and five male utterances, as used in Roman et al
(2003). Results are given in Table I, Table II, and Table III.
The room reverberation time is 0.3 s in all conditions and the
system is evaluated for the following four input SNR values:

TABLE 1. SNR evaluation for a one-source interference (scene 1).

Input SNR -5dB 0 dB 5dB 10 dB
Output SNR (db) 6.36 11.55 15.87 19.69
RSR (%) 59 74 84 91

Roman et al.: Binaural Segregation in Multisource Reverberant Environments



TABLE II. SNR evaluation for a two-speaker interference (scene 2).

Input SNR -5 dB 0 dB 5dB 10 dB
Output SNR (dB) 4.82 10.18 14.68 18.54
RSR (%) 58 73 83 90

-5, 0, 5, and 10 dB. In order to assess the system perfor-
mance, output SNR and retained speech ratio (RSR) are
computed as follows:

Output SNR = 10 1og10(2 52(1) / s ng(t)), (5)

RSR= S 52(1) / S 20, (©)

where s.(t) is the reverberant target signal resynthesized
through an all-one mask, sz(7) is obtained by applying the
estimated binary mask to the reverberant target signal, and
ng(t) is obtained by applying the estimated mask to the noise
signal. While the output SNR measures the level of noise
that remains in the reconstructed signal, the RSR measures
the percentage of target energy loss. The RSR measure is
needed because the output SNR measure can be maximized
by a strategy that retains very few T-F units containing little
noise and hence loses much target energy. The results, aver-
aged across the ten input signals, show SNR improvements
in the range of 8—11 dB while preserving much of the tar-
get energy (~70% —-90%) for input SNR levels greater
than or equal to 0 dB. Observe that the system perfor-
mance degrades at lower SNR values because of an in-
creased overlap between target and interference. The RSR
may be improved by imposing a higher threshold on the
output-to-input attenuation level at the expense of increas-
ing the residual noise in the output signal. For example, in
the scene 3 condition at a 5 dB input SNR, a 0 dB thresh-
old on the output-to-input energy ratio retains 92% of the
target signal while improving the SNR only by 4.29 dB.
These numbers should be compared with the RSR of 79%
and the SNR gain of 8.68 dB reported in Table III using a
—6 dB threshold.

Table IV shows the performance of our system for six
reverberation times between 0.0 (anechoic) and 0.5 s (e.g.,
large living rooms and classrooms) that are obtained by
simulating room impulse responses with different room ab-
sorption characteristics. Results are reported for scene 1 and
0 dB input SNR. For each room configuration, the filter in
the TCM module is adapted using 10 s of white noise simu-
lated at the target location, as mentioned earlier. Overall, the
system performance degrades by 8 dB output SNR when T
is 0.2 s compared to the anechoic case while preserving the
same retained speech ratio. This is partly due to the spectral

TABLE III. SNR evaluation for a four-speaker interference (scene 3).

Input SNR -5 dB 0 dB 5dB 10 dB
Output SNR (dB) 3.41 8.94 13.68 17.79
RSR (%) 52 66 79 89
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TABLE IV. SNR evaluation at different reverberation levels for a one
source interference and 0 dB input SNR.

Output SNR (dB) RSR (%)
T5p=0.0's 18.74 70
To=0.1s 13.14 73
T=02s 10.89 74
Te=03s 11.55 74
T=04s 11.49 75
Te=0.5s 10.99 74

smearing of individual sources as the reverberation time in-
creases, which results in increased overlap between target
and interference. However, note that the RSR is above 70%
across all conditions.

We compare the performance of our algorithm with the
standard delay-and-sum beamformer that is computationally
simple and requires no knowledge about the interfering
sources. As discussed in the Introduction, while fixed beam-
formers are computationally simple and require only the tar-
get direction, they require a large number of microphones to
obtain a good resolution. For our two-microphone configu-
ration, the delay-and-sum beamformer produces only an av-
erage of 1.2 dB SNR gain across all three conditions.

To compare our model with adaptive beamforming tech-
niques, we have implemented the two-stage adaptive filtering
strategy described in Van Compernolle (1990) that improves
the classic Griffith-Jim model under reverberation. The first
stage is identical to our target cancellation module and is
used to obtain a good noise reference. The second stage uses
another adaptive filter to model the difference between the
noise reference and the noise portion in the primary micro-
phone. Here, training for the second filter is done indepen-
dently for each noise condition (scene 1-scene 3) in the ab-
sence of a target signal using 10 s white noise sequences
presented at each location in the tested configuration. The
length of the filter is the same as the one used in the TCM
(375 ms). Note that this approach requires adaptation for any
change in both the target source location as well as any in-
terfering source location. As expected, the adaptive beam-
former is optimal for canceling out one interfering source
and hence gives a SNR gain of 13.61 dB in the scene 1
condition. However, the second adaptive filter is not able to
adapt to the noise configuration when multiple interferences
are active since each source has a different differential path
between the microphones. The adaptive beamformer thus
produces a SNR gain of 3.63 dB in the scene 2 condition and
only 2.74 dB in the scene 3 condition. The advantage for
both the fixed beamformer as well as the adaptive one is that
target signal distortions are minimal in the output when the
filters are calibrated. By comparison, our system introduces
some target energy loss. However, note that in the scene 3
condition our system produces a SNR gain of 8 dB while
losing less than 30% energy in the target signal for input
SNR levels greater than O dB.

Given our computational objective of estimating the
ideal binary mask, we also employ a SNR evaluation that
uses the signal reconstructed from the ideal binary mask as
ground truth (see Hu and Wang, 2004):
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TABLE V. A comparison with adaptive beamforming in terms of SNR.

Input SNR -5 dB 0 dB 5dB 10 dB

Scene 1 Adaptive beamformer 6.43 8.83 11.34 13.90
Proposed system 3.72 6.47 8.92 11.70

Scene 2 Adaptive beamformer -0.40 4.22 8.47 12.38
Proposed system 2.94 5.85 8.53 11.33

Scene 3 Adaptive beamformer -1.51 3.18 7.56 11.75
Proposed system 2.14 4.88 7.58 10.69

> stam(?)

SNRppm = 10 logyg (7)

E [sim(?) = SEU)]2 ’

where si)p(?) represents the target signal reconstructed us-
ing the ideal binary mask and sg(¢) is the estimated target
reconstructed from the binary mask produced by our
model. The denominator provides a measure of noise—the
difference between the reconstructed signals using the
ideal mask and the estimated mask. In a way, SNRpy
combines the two measures in Eq. (5) and Eq. (6) into a
single indicator in dB. Table V provides a comparison
between our proposed system and the adaptive beam-
former approach described above using this SNR measure.
In order to extend the evaluation to the adaptive beam-
former, the waveform at the beamformer output needs to
be converted into a binary mask representation. Assuming
target energy and noise energy are uncorrelated in indi-
vidual T-F units, we can construct a binary mask as fol-
lows. For each T-F unit, if the energy ratio between the
beamformer output and the input mixture is greater than
0.5 we label the unit as 1; otherwise we label the unit as 0.
The signal resynthesized by applying this mask to the out-
put waveform is used in Eq. (7) as the estimated target. As
seen in the table, our system provides some improvements
over the adaptive beamformer in low input SNR scenarios
with multiple interferences (scene 2 and scene 3).

A combination of target cancellation using a first-order
differential beamformer and a spectral subtraction technique
has been proposed previously by Alvarez et al. (2002). Since
the first stage of our system produces a noise estimate, alter-
natively we can combine our adaptive filtering stage with
spectral subtraction to enhance the reverberant target signal.
However, as we will show in the following subsection, the
computation of the binary mask improves front-end robust-
ness compared to spectral subtraction in ASR applications.

B. ASR evaluation

We also evaluate the performance of our system as a
front-end to a robust ASR system. The task domain is
speaker independent recognition of connected digits. Here 13
(the numbers 1-9, a silence, very short pause between words,
zero and oh) word-level hidden Markov models (HMM) are
trained using the HTK toolkit (Young et al., 2000). All ex-
cept the short pause model have ten states. The short pause
model has three states, tied to the middle state of the silence
model. The output distribution in each state is modeled as a
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mixture of ten Gaussians. The HMM architecture is the same
as the one used in Cooke et al. (2001). The grammar for this
task allows for one or more repetitions of digits and all digits
are equally probable, and hence the perplexity for this task is
11.0 (Srinivasan et al., 2004). Note that perplexity here refers
to the average number of possible words at any point in the
sentence (Rabiner and Juang, 1993). Training is performed
using the 4235 anechoic signals corresponding to the male
speaker dataset from the training portion of the TIDigits da-
tabase (Leonard, 1984) downsampled to 16 kHz to be con-
sistent with our model. Testing is performed on a subset of
the testing set containing 229 utterances from 3 speakers,
which is similar to the test set used in Palomiki er al. (2004).
The test speakers are different from the speakers in the train-
ing set. The test signals are convolved with the correspond-
ing left and right ear target impulse responses and noise is
added as described above to simulate the three conditions,
scene 1-scene 3.

We have trained the above HMMs with clean, anechoic
utterances from the training data using feature vectors con-
sisting of the 13 mel-frequency cepstral coefficients (MFCC)
together with their first and second order temporal deriva-
tives. MFCCs are used as feature vectors, as they are most
commonly used in state-of-the-art recognizers (Rabiner and
Juang, 1993). Mean normalization is applied to the cepstral
features in order to improve the robustness of the system
under reverberant conditions (Shire, 2000). Frames are ex-
tracted using 20 ms windows with 10 ms overlap. A first-
order preemphasis coefficient of 0.97 is applied to the signal.
The recognition accuracy in the absence of noise using
anechoic test utterances is 99%. Using the reverberated test
utterances, performance degrades to 94% accuracy.

Cepstral mean normalization applied on the MFCC fea-
tures provides a relatively robust front end for our task do-
main under the moderate reverberant conditions considered
here. Hence, a reasonable approach is to remove the noise
component from our acoustic mixture in the front-end pro-
cessor and to feed an estimate of the reverberant target to the
MFCC-based ASR. Although subjective listening tests have
shown that the signal reconstructed from the ideal binary
mask is highly intelligible (Roman et al., 2003; Chang, 2004;
Brungart er al., 2006), the extraction of MFCC features from
a signal reconstructed using such a mask is distorted due to
the mismatch arising from the T-F units labeled 0, which
smears the entire cepstrum via the cepstral transform (Cooke
et al., 2001). A similar problem occurs when the second
stage of our model is replaced by spectral subtraction since
spectral subtraction performs poorly in the T-F regions domi-
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nated by interference where oversubtraction or undersubtrac-
tion occurs. One way to handle this problem is by estimating
the original target spectral values in the T-F units labeled O
using a prior speech model. This approach has been sug-
gested by Raj er al. (2004) in the context of additive noise,
and promising results have been reported under this condi-
tion. In this approach, a noisy spectral vector Y at a particular
frame is partitioned in its reliable Y, and its unreliable Y,
components. The reliable components are those that approxi-
mate well the clean ones X, while the unreliable components
are those dominated by interference. The task in this ap-
proach is to reconstruct the underlying true spectral vector X.
A Bayesian decision is employed to estimate the unreliable
components X, given the reliable components and a speech
prior. Hence, this approach works seamlessly with the T-F
binary mask that our speech segregation system produces.
Here, the reliable features are the T-F units labeled 1 in the
mask while the unreliable features are the ones labeled O.
The prior speech model is trained on the clean training data
described previously. Note that, for practical purposes, it is
desirable for robust speech recognition to avoid obtaining a
prior speech model for each different reverberant condition
in which the system might be deployed.

The speech prior is modeled empirically as a mixture of
Gaussians and trained with the same clean utterances used in
ASR training:

M
p(X) =2 p(k)p(X[k), (8)
k=1
where M =1024 is the number of mixtures, k is the mixture
index, p(k) is the mixture weight, and p(X|k)
=NX; . 20)-

Previous studies (Cooke et al., 2001; Raj er al., 2004)
have shown that a good estimate of X, is its expected value
conditioned on X,

M

Ex x o<x <v (X,) = 2 p(k[X,,0 < X,<7Y,)
k=1

Yu
xf X pX,|k0=<X,<7Y,)dX,,
0

)

where p(k|X,) is the a posteriori probability of the kth
Gaussian given the reliable data and the integral denotes

the expectation )_(u,k corresponding to the kth mixture. Note
that under the additive noise condition, the unreliable
parts may be constrained as 0<X,<Y, (Cooke et al,
2001); this constraint is an approximation that is, for ex-
ample, not applicable when the target and the noise have
antiphase relations. In our implementation, we have as-
sumed that the prior can be modeled using a mixture of
Gaussians with diagonal covariance, which can theoreti-
cally approximate any probability distribution if an ad-
equate number of mixtures are used (McLachlan and Bas-
ford, 1988). Additionally, our empirical evaluations have
shown that for the case of M=1024 this approximation
results in an insignificant degradation in recognition per-
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FIG. 4. Digit recognition performance in terms of word-level accuracy for
scene 1 at different SNR values for the reverberant mixture (%), a fixed
beamformer (V), an adaptive beamformer (A), a system that combines tar-
get cancellation and spectral subtraction (M), our front-end ASR using the
estimated binary mask (@), our front-end ASR using the ideal binary mask
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formance in comparison with using the full covariance
matrix, while the computational cost is greatly reduced.
Hence, the expected value can now be computed as

Iu’u,k’ 0= Iu’u,k = Yu’
Xu = Yu’ Mok > Yw (10)
O’ Mok <0.

The a posteriori probability of the kth mixture given the
reliable data is estimated using the Bayesian rule from the
simplified marginal distribution p(X,|k)=N(X,; @, .01
obtained from p(X|k) without utilizing any bounds on X,,.
While this simplification results in a small decrease in
accuracy, it results in a substantially faster computation of
the marginal.

Results

Speech recognition results for the three conditions:
scene 1 (one interference of rock music), scene 2 (two con-
current interfering speakers), and scene 3 (four concurrent
interfering speakers) are reported separately in Fig. 4, Fig. 5,
and Fig. 6 at five SNR levels: -5, 0, 5, 10, and 20 dB. Re-
sults are obtained using the same mean normalized MFCC
features and the ASR back end described previously for the
following approaches: fixed beamforming, adaptive beam-
forming, target cancellation through adaptive filtering fol-
lowed by spectral subtraction, our proposed front-end ASR
using the estimated mask, and, finally, our proposed front-
end ASR using the ideal binary mask. The baseline results
correspond to the unprocessed signal at the simulated left
ear. Observe that our system achieves improvements over the
baseline performance across all conditions. For scene 1, Fig.
4 shows that the word error rate reduction varies from 26%
at -5 dB to 58% at 5 dB. For scene 2, Fig. 5 shows that the
error rate reduction varies from 50% at -5 dB to 77% at
10 dB. For scene 3, Fig. 6 shows that the error rate reduction
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estimated binary mask (@), our front-end ASR using the ideal binary mask

(&)

varies from 26% at —5 dB input SNR to 63% at 5 dB input
SNR. Additionally, the excellent results reported for the ideal
binary mask highlights the potential performance that can be
obtained using this approach. Note that the ASR performance
depends on the interference type and we obtain the best ac-
curacy score in the two-speaker and four-speaker interfer-
ence conditions. As seen also in the SNR evaluation, the
adaptive beamformer outperforms all the other algorithms in
the case of a single interference (scene 1). However, as the
number of interferences increases, the performance of the
adaptive beamformer degrades rapidly and approaches the
performance of the fixed beamformer in the scene 3 condi-
tion. As described in the previous subsection, we can com-
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FIG. 6. Digit recognition performance in terms of word-level accuracy for
scene 3 at different SNR values for the reverberant mixture (%), a fixed
beamformer (V), an adaptive beamformer (A), a system that combines tar-
get cancellation and spectral subtraction (M), our front-end ASR using the
estimated binary mask (@), our front-end ASR using the ideal binary mask
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TABLE VI. A comparison with the Paloméki er al. system in terms of
speech recognition accuracy (%).

Input SNR 0dB 10 dB 20 dB
Baseline 13.04 43.01 81.85
Palomiki et al. system 32.7 78.8 91.9
Proposed system 47.58 81.59 91.80

bine our adaptive filtering stage with spectral subtraction to
cancel the interference. As illustrated by the recognition re-
sults in Fig. 5 and Fig. 6, this approach outperforms the
adaptive beamformer in the case of multiple concurrent in-
terferences. While spectral subtraction improves the SNR
gain in target-dominant T-F units, it does not produce a good
target signal estimate in noise-dominant regions. Note that
our front-end ASR employs a better estimation of the spec-
trum in the unreliable T-F units and therefore results in large
improvements over the spectral subtraction method.

We compare our system with the binaural system pro-
posed by Palomiki et al. (2004), which was shown to pro-
duce substantial recognition improvements on the same digit
recognition task, as used here. Their system combines binau-
ral localization with precedence effect processing in order to
detect reliable spectral regions that are not contaminated by
interfering noise or echoes. Recognition is then performed in
the log spectral domain by employing the missing data ASR
system proposed by Cooke et al. (2001). This recognizer
takes as input a binary mask that identifies the reliable data
in the mixture spectrogram and uses this to compute the state
output probabilities for each observed vector based only on
its reliable parts. In order to account for the reverberant en-
vironment, spectral energy normalization is employed. While
our system can handle a variety of interfering sources, the
binaural system of Palomiki er al. was developed for only
one-interference scenarios. Table VI compares the two sys-
tems for the case of one interfering source of rock music,
which was used in Palomiki ef al. The recognition results for
the Palomiki et al. system are the ones reported by the au-
thors while the results for our system have been produced
using their configuration setup and our ASR back end de-
scribed above. The listener is located in the middle of the
room while target and interfering sources are located at 20°
and -20°, respectively. Here Ty, is 0.3 s and the input SNR
is fixed before the binaural presentation of the signals at
three SNR levels: 0, 10, and 20 dB. Note that we obtain a
marked improvement over the system of Palomiki et al.
(2004), in the low SNR conditions. By utilizing interaural
time and intensity differences only during acoustic onsets,
the mask obtained by their system has a limited number of
reliable units. This limits the amount of information avail-
able to the missing data recognizer for the decoding (Srini-
vasan et al., 2004). In our system, on the other hand, a novel
encoding of the target source location leads to the recovery
of more target dominant regions, and this results in a more
robust front end for ASR.

We further compare our system with the negative beam-
forming approach proposed by Alvarez et al. (2002), which
is chosen because it also performs target cancellation. The
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TABLE VII. A comparison with the Alvarez er al. system in terms of
speech recognition accuracy (%).

Input SNR 0 dB 10 dB 20 dB
Baseline 11.69 40.99 82.80
A’lvarez et al. system 24.14 51.61 73.39
Proposed system 31.59 75.00 91.94

results are reported in Table VII. In order to compare with
this approach, we simulate the input for a two-microphone
array with a 5 cm intermicrophone distance using the image
reverberation model (Allen and Berkley, 1979). We use the
same room configuration, the same interfering signals, and
the same spatial configuration as in the scene 3 condition
described previously. The system proposed by Alvarez et al.
uses a first-order differential beamformer to cancel the direct
path of the target signal. Since target is fixed at 0°, the ad-
aptation parameter in the differential beamformer is fixed to
0.5 across all frequencies (see Alvarez et al., 2002). The
output of the differential beamformer contains both the re-
verberant part of the target signal as well as an estimate of
the additional interfering sources. An additional frequency-
equalizing curve is applied on this output since the amount
of attenuation performed by this beamformer varies with the
frequency of the signal as well as its location. This
equalizing-curve is trained using white noise at the corre-
sponding interfering locations. The estimated noise spectrum
is finally subtracted from the spectrum of one of the two
microphone mixtures (the left one) and the results are fed to
the same MFCC-based ASR as used with out system. Our
system is trained on the new configuration to obtain the TCM
adaptive filter, as described in Sec. II. The T-F mask pro-
duced by our system is then used to reconstruct the spectro-
gram using the prior speech model. As shown in Table VII,
our system significantly outperforms the system of Alvarez
et al. (2002) across a range of SNRs.

IV. DISCUSSION

In natural settings, reverberation alters many of the
acoustical properties of a sound source reaching our ears,
including smearing of the binaural cues due to the presence
of multiple reflections. This is especially detrimental when
multiple sound sources are present in the acoustic scene
since the acoustic cues are now required to distinguish be-
tween the competing sources. Location based algorithms that
rely on the anechoic assumption of time delayed and attenu-
ated mixtures are therefore prone to failure in reverberant
scenarios. An adaptive filter can be used to better character-
ize the target location in a reverberant room. We have pre-
sented here a novel two-microphone sound segregation sys-
tem that performs well under such realistic conditions. Our
approach is based on target cancellation through adaptive
filtering followed by an analysis of the output-to-input at-
tenuation level in individual T-F units. The output of the
system is an estimate of an ideal binary mask which labels
the T-F components of the acoustic scene dominated by the
target sound.
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A main novel aspect of the present study lies in the use
of a binary mask (Wang, 2005). Techniques that attempt to
estimate ratio masks, e.g., the Wiener filter, have been inves-
tigated previously in the context of speech enhancement. Al-
though an ideal ratio mask will outperform an ideal binary
mask (Srinivasan et al., 2004), the estimation of a ratio mask
is more complicated than making binary decisions for esti-
mating a binary mask. Models that estimate ideal binary
masks have been recently shown to provide sizable intelligi-
bility as well as ASR gains in anechoic environments (Cooke
et al., 2001; Roman et al., 2003). In this study we have
further shown that binary mask estimation can result in sub-
stantial SNR as well as ASR gains in multisource reverberant
situations.

Classic two-microphone noise cancellation strategies
process the input using linear adaptive filters and while being
optimal in the one-interference condition, they are unable to
cope with multiple interferences. By using a binary T-F
masking strategy in the second stage, our system is able to
cancel an arbitrary number of interferences using only two
microphones. As shown in our SNR evaluation, the system is
able to outperform existing beamforming techniques across a
range of input SNRs. Note that while our processing pro-
duces some target signal distortion, we preserve most of the
target energy (>70%) at input SNRs greater than 0 dB. The
balance between noise cancellation and target distortion can
be controlled in our system by varying the output-to-input
attenuation threshold. As explained in Sec. III, a more re-
laxed threshold will ensure less target distortion at the ex-
pense of some background noise. Note that target distortion
can also be minimized by smoothing the reconstructed signal
in a post-processing stage (see, for example, Araki et al.,
2005). Our binary mask estimation is currently conducted on
the primary microphone, and further improvement may be
possible by merging the reconstructed signals at the two mi-
crophones.

Since the first stage of our system provides a noise esti-
mate, an alternative nonlinear strategy for the second stage is
spectral subtraction. A combination of target cancellation
through differential beamforming and spectral subtraction
has been proposed previously by Alvarez er al. (2002). A
SNR evaluation using the reverberant target as signal shows
a slight improvement using the spectral subtraction method.
However, as seen in the ASR evaluation, the binary masks
complement missing data techniques to provide sizable ASR
improvements compared to spectral subtraction. Spectral
subtraction, however, can also be used in combination with
our binary mask estimation. We have observed that addi-
tional improvements (an absolute word error rate reduction
of 3%—-5%) could be obtained when using spectral subtrac-
tion to “clean” the reliable regions prior to spectrogram re-
construction.

In terms of application to real-world scenarios, our adap-
tive filtering strategy has several drawbacks. First, the adap-
tation of the inverse filter requires data on the order of a few
seconds and thus any fast change in target location (e.g.,
walking) will have an adverse impact on the system. Second,
the system needs to identify signal intervals that contain no
interference to allow for the filter to adapt to a new target
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position. On the other hand, note that our system requires
training only with respect to target location and is therefore
insensitive to changes in the locations of interfering sources,
unlike adaptive beamforming whose training is conditioned
on the positions of all sound sources in the environment.

We use the approach proposed by Raj et al. (2004) to
reconstruct the clean target signal in the unreliable T-F units.
This allows for our system to be utilized as a front end to a
standard speech recognition system operating using cepstral
features. In a systematic comparison, our system shows sub-
stantial performance gains over baseline and significant im-
provements over related approaches. Note that our prior and
ASR models are trained on anechoic speech and hence our
algorithm is applicable when recognition in changing rever-
berant environments is desired. However, if samples of re-
verberant target are available a priori, the ASR performance
can be further improved through model adaptation (Rabiner
and Juang, 1993). We also intend to investigate the possibil-
ity of coupling with dereverberation techniques (e.g., Allen
et al., 1977) for deriving robust features for recognition.
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