
Neural Networks 24 (2011) 54–64
Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Selecting salient objects in real scenes: An oscillatory correlation model
Marcos G. Quiles a, DeLiang Wang b,∗, Liang Zhao c, Roseli A.F. Romero c, De-Shuang Huang d

a Department of Science and Technology, Federal University of São Paulo (Unifesp), São José dos Campos, SP, Brazil
b Department of Computer Science & Engineering and Center for Cognitive Science, The Ohio State University (OSU), Columbus, OH 43210, USA
c Department of Computer Science, Institute of Mathematics and Computer Science, University of São Paulo (USP), São Carlos, SP, Brazil
d The Intelligent Computing Lab, Hefei Institute of Intelligent Machines, Chinese Academy of Sciences, P.O. Box 1130, Hefei, Anhui 230031, China

a r t i c l e i n f o

Article history:
Received 20 April 2010
Received in revised form 6 September 2010
Accepted 7 September 2010

Keywords:
Object selection
LEGION
Oscillatory correlation
Visual attention

a b s t r a c t

Attention is a critical mechanism for visual scene analysis. By means of attention, it is possible to break
down the analysis of a complex scene to the analysis of its parts through a selection process. Empirical
studies demonstrate that attentional selection is conducted on visual objects as a whole. We present
a neurocomputational model of object-based selection in the framework of oscillatory correlation. By
segmenting an input scene and integrating the segments with their conspicuity obtained from a saliency
map, the model selects salient objects rather than salient locations. The proposed system is composed
of three modules: a saliency map providing saliency values of image locations, image segmentation for
breaking the input scene into a set of objects, and object selection which allows one of the objects of the
scene to be selected at a time. This object selection system has been applied to real gray-level and color
images and the simulation results show the effectiveness of the system.

© 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The feeling of seeing everything around us is a mere illusion.
At a given time, only a small part of the visual scene undergoes
scrutiny and reaches the level of awareness. The perceptual
mechanism of selecting a part of the visual input for conscious
analysis is called selective visual attention, and it is a mechanism
that is fundamentally important for the survival of an organism
(Desimone & Duncan, 1995; Pashler, 1998; Yantis, 1998). Visual
attention is thought to involve two aspects (Yantis, 1998). The first
one is called bottom-up (or stimulus-driven) attention that is based
on analyzing stimulus characteristics of the input scene. Bottom-
up control is mostly associated with feature contrast among the
items that compose the scene. For example, when a red item is
presented among green ones, it pops out from the visual scene
to the eye. The second aspect is top-down control (or goal-driven
attention) that is influenced by the intention of the viewer, like
looking for a specific thing.

Besides the stimulus-driven and goal-driven aspects of atten-
tional control, an important component of visual attention is se-
lection, concerning how to select a part of a visual scene for
further analysis. The visual system can select spatial locations
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(location-based attention), visual features (feature-based atten-
tion), or objects (object-based attention) (for reviews see Egeth &
Yantis, 1997; Yantis, 2000). Recent behavioral andneurophysiolog-
ical evidence establishes that the selection of objects plays a cen-
tral role in primate vision (Martinez, Ramanathan, Foxe, Javitt, &
Hillyard, 2007; O’Craven, Downing, & Kanwisher, 1999; Richard,
Lee, & Vecera, 2008; Roelfsema, Lamme, & Spekreijse, 1998; Shinn-
Cunningham, 2008; Wang, Kristjansson, & Nakayama, 2005). It is
believed that a preattentive process, in the form of perceptual or-
ganization, is performed unconsciously by the brain. This process
is responsible for segmenting the visual scene into a set of objects
which then act as wholes in the competition for attentional se-
lection (Desimone & Duncan, 1995). Perceptual organization has
been extensively studied in Gestalt psychology where it is empha-
sized that the visual world is perceived as an agglomeration of
well-structured objects, not as an unorganized collection of pix-
els. Object formation is governed by Gestalt grouping rules such as
connectedness, proximity, and similarity.

Due to the competitive nature of visual selection, most of the
neural models are based on winner-take-all (WTA) networks (Itti
& Koch, 2001a; Itti, Koch, & Niebur, 1998; Koch & Ullman, 1985).
Through neural competition, a WTA network selects one neuron,
the winner, in response to a given input (Arbib, 2003). In this
way, a pixel or location, not an object, of the scene is selected. In
Itti et al. (1998), when a neuron wins competition, a circle of a
fixed radius surrounding the neuron is considered to be the region
receiving attention (spotlight). Usually, these models make use
of a two-dimensional saliency map that encodes the conspicuity
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over the visual scene (Itti & Koch, 2001a; Koch & Ullman, 1985).
The saliency map is used to direct the deployment of attention
(Gottlieb, Kusunoki, & Goldberg, 1998; Itti & Koch, 2001a; Koch
& Ullman, 1985). These visual selection models correspond to
location-based theories of visual attention, but not object-based
theories.

According to Sun and Fisher (2003), object selection has at least
the following advantages:

• visual search is more efficient;
• selection of something instead of empty locations;
• it allows for hierarchical selection.

In order to develop a neural model of visual selection that
is object-based, one has to address how to group the elements,
or features, of a visual scene into a set of coherent objects. The
problemof howsensory elements of a scene are combined together
to form perceptual objects in the brain is known as the binding
problem (Revounsuo & Newman, 1999; von der Malsburg, 1981).

Von der Malsburg proposed temporal correlation theory to
address the binding problem (von der Malsburg, 1981). The theory
asserts that objects are represented by the temporal correlation of
the firing activities of spatially distributed neurons coding different
object features. A natural way of encoding temporal correlation is
using synchronization of neural oscillators where each oscillator
encodes some feature of an object (Terman & Wang, 1995; von
der Malsburg & Schneider, 1986; Wang, 2005; Yu & Slotine, 2009).
This form of temporal correlation is called oscillatory correlation
(Terman & Wang, 1995) whereby oscillators that encode different
features of the same object are synchronized and those that
encode different objects are desynchronized. Note that binding
can occur at multiple levels, including the binding of local pixels
to form an image region, which is addressed in this paper, and
the binding of region-level features (e.g. shape) to form a high-
level entity (e.g. house). The oscillatory correlation theory has
been applied to various tasks of scene analysis, such as texture
segmentation, motion analysis, and auditory scene segregation
(see Wang, 2005, for an extensive review).

Although oscillation-based models for visual attention have
been studied for years (Niebur, Koch, & Rosin, 1993), the first
attempt to perform object selection using oscillatory correlation
was made by Wang (1999). This study achieves size-based object
selection based on LEGION (Locally Excitatory Globally Inhibitory
Oscillator Network) and a slow inhibition mechanism. Given an
input scene composed of several objects, this model selects the
largest segment while all the others remain silent thanks to
competition among the objects formed by LEGION segmentation.
In terms of competition, when a segment becomes active, it
sets the slow inhibitor with a value based on the size of the
segment, allowing only the segmentswith larger sizes to overcome
the slow inhibition. Thus, after a number of oscillation cycles,
only the largest segment survives the competition and keeps
oscillating. However, the model considers just object size in
competition, which restricts its applicability as a general visual
selection model. Size-based selection using oscillatory correlation
was also considered by Kazanovich and Borisyuk (2002) where
the frequency and amplitude of oscillators are used to perform
selection. Their simulations showed that the model can perform
consecutive selection of objects, though only synthetic images
were used. That model was extended in Borisyuk and Kazanovich
(2004) where a novelty detection mechanism using a short-term
working memory was incorporated. Although this model aims
to solve a more complex cognitive task, it only deals with toy
images. A different object-based model for visual attention was
proposed in Sun and Fisher (2003). Although this model performs
object-based selection, it assumes that perceptual organization
has already been done. Another model was proposed by Tiesinga
Fig. 1. Diagram of the proposed object selection model, which is composed a
saliency map, a scene segmentation module (implemented by a LEGION network),
an object-saliencymap, and an object selectionmodule that includes an inhibition-
of-return (IoR) mechanism. Arrows indicate the computational flow of the system.
The images shown below the selection module illustrates a sequence of the objects
selected.

(2005). This model is based on Hodgkin–Huxley type neurons to
reproduce experimental results of stimulus competition in V4. The
model can produce quantitative results of visual selection albeit
the competition is restricted to only two stimuli.

Recently, another object selectionmodel was proposed by Chik,
Borisyuk, andKazanovich (2009). Thismodel usesHodgkin–Huxley
neurons in a two-layer architecture. The first layer defines periph-
eral neurons representing feature detectors and the second layer is
composed of two central neurons responsible for the formation of
the focus of attention and also the shifting between the objects of
the scene. Although this model offers amechanism to select differ-
ent objects in real scenes, it does not consider object-level saliency.
A related model presents a more complete framework composed
of three modules responsible for selective attention, contour ex-
traction, and segmentation (Borisyuk, Kazanovich, Chik, Tikhanoff,
& Cangelosi, 2009). Although the results are promising, the concept
of object saliency is still missing.

Here we propose an object-based visual selection model with
three major components. First, a saliency map is employed to
calculate point-wise conspicuity over the input scene. This saliency
map is intended to simulate feature- and location-based aspects
of visual attention which is based on the contrast between local
features, such as color, intensity, and orientation. Second, the
LEGION network is used to segment the input image, and this
network is intended to perform the task of perceptual organization
in a biologically plausible manner. Third, an object-based selection
network is proposed. This selection network chooses the most
salient object using an object-saliency map created by integrating
the results from the saliency map and LEGION segmentation. The
object-saliency map extends the notion of saliency from a single
location to an object.Moreover, based on an inhibition of the return
mechanism, our selection network is able to shift from a previous
selected object to the next. Fig. 1 shows a flowchart of our model.
To our knowledge, this is the first model that can select objects
from real scenes based on general object saliency.

We should clarify that, by an object, we mean an image
region which roughly corresponds to a visual surface (Marr, 1982).
Broadly speaking, an object in a three-dimensional environment
includesmultiple surfaces, and a complex object such as a car often
needs to be defined in a hierarchical manner. This paper focuses on
selecting salient regions from visual scenes.

This paper is organized as follows. In Section 2, an overview of
the saliencymap and LEGION segmentation is presented. Section 3
describes the selection model of the system. Evaluation results are
presented in Section 4. Finally, Section 5 offers a few concluding
remarks.

2. Background

In this section, we review the saliency map and the segmenta-
tion mechanism used in our visual selection model.
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Fig. 2. Flowchart of a saliency map.

2.1. Saliency map

To compute the saliency, we use the saliency map proposed in
Itti et al. (1998) and Koch and Ullman (1985). This saliency map
mimics the properties of early vision in primates and is based on
the idea that a unique map is used to control the deployment of
attention (Gottlieb et al., 1998; Itti & Koch, 2001a; Koch & Ullman,
1985).

The saliency map is an explicit two-dimensional map respon-
sible for encoding the saliency over all points of the visual scene.
It focuses on the role of local feature contrast in guiding attention
(Itti & Koch, 2001a; Itti et al., 1998). Despite its simple architecture
based on feedforward feature-extraction mechanisms, this model
has proved to have robust performance when dealing with com-
plex scenes and it achieves some qualitative results matching hu-
man visual search (Itti & Koch, 2000).

Generally speaking, the saliencymap is produced in the follow-
ing way. First, a set of maps representing primary features, such
as color and orientation, are extracted from the input scene. Af-
ter that, in order to model the center–surround receptive fields,
operations are performed over different spatial scales of those
maps. This process, followed by a normalization operator (ex-
plained later), results in a newset ofmaps called featuremaps. Next,
feature maps are combined into a set of conspicuity maps. Finally, a
linear combination of conspicuitymaps results in the saliency map.
A flowchart of this process is shown in Fig. 2.

Formally, given a static image Υ as input, a set of nine
spatial-scale dyadic Gaussian pyramids is created by a convolution
of a low-pass filter and downsampling of the filtered image
by a factor of two (Burt & Adelson, 1983). A dyadic Gaussian
pyramid represents a set of images in which the image at one
level is a reduced version of the image at the previous level in
both resolution and density. Here, a separable Gaussian kernel
[1, 5, 10, 10, 5, 1]/32 is used. Note that to perform convolution
near image borders, the missing pixels have their values set to the
mean value of the present pixels. The result is a set of Υ (i), i ∈

{0, 1, 2, . . . , 8}, that corresponds to the nine levels from Υ (0)
(original image) toΥ (8) (scale eightwith a resolution that is 1/256
of the input image). The Gaussian pyramid provides an efficient
way to highlight features at different scales of a scene.

EachΥ (i) is composed of three channels defined as r, g , and b ∈

[0, 1], which represent red, green, and blue values, respectively.
The intensity map, I , for each level (i) of the pyramid is computed
as

I(i) =
r(i)+ g(i)+ b(i)

3
. (1)

From the r, g , and b channelswe also extract the red–green (RG)
and blue–yellow (BY ) maps for each level. To extract these color
opponencies, we use the definition proposed in Walther and Koch
(2006)which gives better results than those in Itti et al. (1998). The
RG and the BY maps are defined as follows:

RG(i) =
r(i)− g(i)

max(r(i), g(i), b(i))
(2)

and,

BY (i) =
b(i)− min(r(i), g(i))
max(r(i), g(i), b(i))

. (3)

Moreover, in order to avoid the hue instability when the inten-
sity level is low, RG and BY are set to zero whenmax(r, g, b) < 0.1
(Cheng, Jiang, Sun, & Wang, 2001; Gonzalez & Woods, 2002).

Local orientation maps, Rθ , are extracted by convolving I with
orientedGabor filters for four orientations θ ∈ {0°, 45°, 90°, 135°}:

Rθ (i) = |I(i) ∗ G0(θ)| + |I(i) ∗ Gπ/2(θ)| (4)

where G(θ) represents a Gabor kernel with orientation θ , and a
subscript indicates the phase of a kernel.

After extracting the intensity (I), color (RG and BY ), and
orientation maps (Rθ ), feature maps are extracted by across-scale
subtractions (⊖) between different levels of the same feature. This
operation is performed in two steps. First the surround map (s) is
rescaled to the size of the centermap (c) by a linear interpolation of
pixels. After that, a pointwise subtraction is applied. The operator
⊖mimics the center–surround receptive fields in the visual cortex:

FI(c, s) = |I(c)⊖ I(s)| (5)
FRG(c, s) = |RG(c)⊖ RG(s)| (6)
FBY (c, s) = |BY (c)⊖ BY (s)| (7)
Fθ (c, s) = |Rθ (c)⊖ Rθ (s)| (8)

where c ∈ {2, 3, 4} represents the levels of the center map and
s ∈ {c +3, c +4} represents the surround levels. Next, these maps
are combined to form the conspicuity maps. The conspicuity map
for intensity (CI ) is calculated as follows:

CI =

4
c=2

c+4
s=c+3

N (FI(c, s)) (9)

where ⊕ is an across-scale addition operator and N is a
normalization operator responsible for enhancing the responses
of those maps that have a few active locations (high values) and
suppressing those with homogeneous activity (Itti & Koch, 2001b;
Itti et al., 1998). The normalization operator first normalizes the
values of the feature maps to the same range and then multiplies
each map by the squared difference between the global maximum
and the average of the local maxima for individual maps.

The conspicuity map for colors (CH ) is calculated using the
following equation:

CH =

4
c=2

c+4
s=c+3

[N (FRG(c, s))+ N (FBY (c, s))] . (10)

Fig. 3 illustrates how the conspicuitymap for colors is calculated
for a given scene. The conspicuity map for orientation is generated
in two steps. First, an intermediary conspicuity map for each
orientation is calculated:

Cθ =

4
c=2

c+4
s=c+3

N (Fθ (c, s)). (11)

Second, these maps are combined into a unique conspicuity map
representing all orientations:

CR =

−
θ∈{0°,45°,90°,135°}

N (Cθ ). (12)
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Fig. 3. (Color online) Flowchart for calculating the conspicuity map for colors (CH ).
Finally, the saliency map is computed by a linear combination
of the conspicuity maps:

Sm =
1
3
[N (CI)+ N (CH)+ N (CR)] . (13)

Normally, the saliency map is computed at scale four, which
means a map size that is 1/16 of the input image size. The saliency
map Sm is used to compute the object-saliency map described in
Section 3.

2.2. Image segmentation

The scene segmentation model proposed in Wang and Terman
(1997) is an extension of the LEGION model (Terman & Wang,
1995). The basic unit of LEGION is a relaxation oscillator defined as
a feedback loop between an excitatory variable xi and an inhibitory
variable yi (Terman &Wang, 1995):

ẋi = 3xi − x3i + 2 − yi + Ii + Si + ρ (14a)

ẏi = ϵ(α(1 + tanh(xi/β))− yi) (14b)

where Ii represents the external stimulation, Si the input from
neighboring oscillators in the network, and ρ denotes the
amplitude of Gaussian noise. The parameter ϵ is a small positive
number. IfIi is set to a constant and the terms Si andρ are removed,
Eq. (14) becomes a typical relaxation oscillator (van der Pol, 1926).
The noise term ρ not only serves to test the robustness of the
model but also helps to segregate different input patterns (Terman
&Wang, 1995).

Fig. 4 shows the nullclines and the trajectories of a single
oscillator defined in Eq. (14), where the x-nullcline is a cubic
function and the y-nullcline is a sigmoid function. If the total
stimulation received by the oscillator, Ii + Si + ρ > 0, the x and
the y nullclines intersect at just one point at the middle branch of
the cubic. In this case, the oscillator is said to be enabled and a stable
cycle limit is observed (see Fig. 4(a)). The periodic orbit alternates
between an active phase and a silent phase, which correspond to
high and low x values, respectively (see Fig. 4(a)). The transition
between the two phases occurs rapidly in comparison with the
Fig. 4. Dynamics of a single relaxation oscillator. (a) Behavior of an enabled
oscillator. A limit cycle trajectory is represented by a bold curve and the arrows
indicate the motion direction. (b) Behavior of an excitable oscillator. In this case, a
stable fixed point is observed indicated by the dot.

motion within each phase, thus referred to as jumping. The
parameterα controls howmuch time the oscillator spends in these
two phases.When the total input Ii+Si+ρ < 0, the two nullclines
of Eq. (14) intersect at a stable fixed point on the left branch of the
cubic (see Fig. 4(b)). In this case, the oscillator does not produce a
periodic orbit andno oscillation is observed. As the oscillator can be
induced to oscillate by external stimulation, such a state is called
excitable. The parameter β controls the steepness of the sigmoid
which is normally set to a small value in order tomake the sigmoid
approach a step function (Terman &Wang, 1995).
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Ii represents the total external stimulation received by
oscillator i. In the original LEGION model (Terman & Wang, 1995),
Ii was a constant. To perform image segmentation on real images, a
lateral potential term was later introduced to distinguish between
major regions and noisy fragments (Wang & Terman, 1997). This
mechanism can be explained as follows. If oscillator i lies in the
center of a homogeneous image region, it is able to receive a large
input from its neighbors; in this case it is defined as a leader. On the
other hand, if it corresponds to an isolated fragment of the image,
it does not receive a large input from its neighborhood and hence
cannot become a leader. Based on this idea, only blockswhich have
at least one leader are allowed to oscillate.

To perform the segmentation task, a two-dimensional LEGION
network is used. Here, the oscillators are typically connected with
their eight immediate neighbors, except on the borders where no
wraparound is applied.

For this network, the connection term Si of Eq. (14a) is defined
as follows:

Si =

−
k∈N(i)

WikH(xk − θx)− WzH(z − θz) (15)

where Wik defines the dynamic connection weight from oscillator
k to i and N(i) represents a set of oscillators that comprises
the neighborhood of i (Wang & Terman, 1997). H represents the
Heaviside function defined as H(v) = 1 if v ≥ 0 and H(v) =

0 otherwise. The dynamic connection weights Wik are formed
on the basis of the permanent connection weights following
dynamic normalization which ensures that each oscillator gets
equal weights from its neighbors. Dynamic weights are rapidly
formed on the basis of the correlation between presynaptic and
postsynaptic activity (for details see Wang and Terman (1997)). θx
and θz are thresholds.

Wz in Eq. (15) defines the inhibition weight associated with the
global inhibitor z. The dynamics of z is defined as

ż = φ

−
k

H(xk − θx)− z


, (16)

where φ is a parameter that controls how fast the global inhibitor
reacts to the stimulation received from the oscillators. Note that z
approaches the number of oscillators in the active phase, and will
be used to represent the size of each synchronized oscillator block
(segment).

Based on the LEGION dynamics described above,Wang and Ter-
man (1997) developed a computer algorithm for image segmen-
tation that follows the main aspects observed on the numerical
simulations of the Eqs. (14)–(16). In particular, segmentation is the
process of forming blocks of synchronized oscillators, each block
corresponding to one segment. Here synchronizationmeans simul-
taneous jumping to the active phase (see Fig. 4). Different blocks
are desynchronized, i.e. they do not stay in the active phase at the
same time. Detailed description of this algorithm can be found in
Wang and Terman (1997).

3. Model description

In Fig. 1 we have shown a flowchart of our model that is
composed of three modules: image segmentation, saliency map,
and object selection. The computational flow can be described as
follows. First, an input image feeds the image segmentation and
saliency map modules. Second, the segmentation result and the
saliency map generated by these modules are combined to build
an object-saliency map that feeds the object selection module.
Third, the object selection module selects the most salient object
and suppresses all the others. Finally, the inhibition of return
(IoR) mechanism is included in the object selection module that
Fig. 5. Interaction betweenmodules. Empty circles represent pixel locations in the
object-saliency map, and oscillators in the segmentation and selection networks.
The black circles indicate inhibitors: the global inhibitor (z) in the segmentation
network and the slow (zs) and the fast (z) inhibitors in the selection network. The
connections between modules are one-to-one correspondence.

inhibits the previously selected object in order to allow the
next most salient object to be selected. This process is repeated
until all objects have been selected or when the input image is
withdrawn. Fig. 5 shows the interaction between the segmentation
and selection networks along with the object saliency map.

The following sections describe how the object-saliency map is
created and how object selection works.

3.1. Object-saliency map

The object-saliency map, So, is responsible for providing the
level of saliency of each object in the input scene. This map differs
from the saliencymap presented in Section 2.1 in that it represents
the saliency of each object instead of each pixel. First, in order
to create a one-to-one correspondence between the saliency map
and the LEGION network, the saliency map is rescaled to the input
image size by means of linear interpolation. After that, for each
segment produced by the LEGION, its average saliency is calculated
from all the corresponding points in Sm (Eq. (13)):

S
o
i =

∑
j∈O(i)

Smj

|O(i)|
, (17)

where S
o
i is the average saliency of the segment that contains

pixel i; O(i) is the set of all pixels grouped with pixel i in the
same segment via oscillator synchronization; Smj is value of the
saliency map at pixel j (Eq. (13)); and |O(i)| is the size of O(i).
After calculating the saliency for all segments, the object size is
incorporated into the saliency value by the following equation:

Soi = S
o
i

5


|O(i)|
|OM |

, (18)

where the fifth-root function, chosen empirically, is used to
moderate the saliency of relatively small segments. |OM | is the
size of the largest segment in the input image. So defines the
object-saliency map which is used as input to the object selection
network.

As described above, to calculate the object-saliency map we
utilize the results generated by the previous stages. Thus, the
segmentation process must be concluded before selection can
happen. As pointed inWang and Terman (1997), the segmentation
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module (LEGION) takes no longer than M + 1 cycles to segment
the input image, where M is the number of major segments,
or segments that contain at least one leader as described in
Section 2.2. It is worth noting that the number of segments is
unknown in advance. However, as mentioned before, in order
to deal with real images containing large numbers of pixels, the
segmentation process is performed by an efficient approximation
algorithm proposed in Wang and Terman (1997). An interesting
property of this algorithm is that the segmentation process is
completed when every leader has jumped to the active phase once
(see Section 2.2). In this way, we can generate the object-saliency
map and perform visual selection after the segmentation process
is completed.

3.2. Object selection

The object selection network is an extension of the LEGION
model following the ideas developed in Wang (1999). The
architecture of this network is shown in Fig. 5 in which a fast and a
slow inhibitor are responsible for desynchronizing the objects and
selecting the one of them, respectively.

This network follows the dynamics described in Section 2.2.
The main differences between our network for object selection
and LEGION for image segmentation are the presence of the slow
inhibitor, the introduction of the IoR mechanisms, and how the
external stimulation is defined.

In our selection network, each oscillator is connected to its
eight nearest neighbors as follows. If two neighboring oscillators
have their corresponding oscillators in the segmentation network
synchronized, they are connected. On the other hand, if the
corresponding oscillators in the segmentation network do not
belong to the same object (i.e. desynchronized), the connection
between the two oscillators in the object selection module is set
to zero. Such connectivity can be readily set up using dynamic
weights that quickly increase their strengths when presynaptic
and postsynaptic oscillators are both active (Terman & Wang,
1995; von der Malsburg, 1981). Thus, the objects formed in the
LEGION are directly transported to the object selection network.

The external stimulation Ii is defined as follows:

Ii = ViH(Soi − Czs)H(ri − θz), (19)

where Vi is set to a high value if the corresponding oscillator
i in the segmentation module is enabled. Otherwise, Vi is set
to a low value. In this way, oscillators in the object selection
network corresponding to a segment in LEGION assume high
values of V , whereas oscillators representing noisy fragments (the
background) have a low V value. Soi is the object-saliency value
from Eq. (18). C is a parameter that controls the number of objects
that can be selected at a time (Wang, 1999). zs models the slow
inhibitor and ri represents the IoR component.

The dynamics of the slow inhibitor is defined as

żs = ψ

−
k

SokH(xk − θx)

|O(k)|
− zs

+

− µϵzs (20)

where the function [v]+ = v if v ≥ 0 and 0 otherwise. The param-
etersψ andµ are on the order of 1. The slow inhibitor is character-
ized by a fast rise and a slow decay owing to the small value of the
relaxation parameter ϵ in the second term. The selection process is
produced by the Heaviside function and the slow inhibitor which
allows to become active just the oscillators with Soi ≥ Czs.Thus,
by setting a proper value of C as defined in Wang (1999), only the
object with the highest value of So is allowed to oscillate, i.e. to be
selected.
Fig. 6. Illustration of the object selection process. The selection network is
integrated using the fourth-order Runge–Kutta method. (a) Object-saliency map
showing three objects: a square, a left object and a lower-right object. (b) Activity
of each oscillator block and its corresponding IoR, plus the activity traces of the fast
and the slow inhibitor.

The variable ri in Eq. (19) models the IoR component of each
oscillator described by the following equation:

ṙi = −ωriH(xi − θx). (21)

Initially, for each oscillator i, ri is set to 1. Every time an
oscillator jumps to the active phase, its ri value is reduced following
Eq. (21). After a number of cycles controlled by parameter ω, ri
approaches zero. Thus, the second Heaviside function of Eq. (19)
returns zero and the oscillator is inhibited. Due to the presence
of the IoR, the selection network is allowed to select the next
most salient object, which resembles attentional shifts in visual
perception (Itti & Koch, 2001a).

The object-saliency value is also used to set the initial state of
each oscillator. Once we have the saliency of all the objects, we
can use these values to determine which object oscillates so as to
avoid the time-consuming competition for selection. To achieve
this behavior, the initial value of yi (Eq. (14b)) is set according to
its object-saliency value in the following way:

yi = 2α(1 − Soi )+ Vi. (22)

Based on Eq. (22), the oscillators of the selection network
representing the object with the highest saliency have their initial
yi values set in the silent phase close to the left knee of the cubic
nullcline and the oscillatorswith low saliency far from the left knee
in the silent phase (see Fig. 4). In the special case where two or
more objects have the same object saliency, the selection network
chooses all of them, which will oscillate desynchronously until
they are inhibited by the IoR.

Fig. 6 shows an illustration of the selection process performed
by the object selection network. Consider Fig. 6(a) to be an object-
saliency map described in Section 3.2. This map feeds the object
selection network. There, the square object, corresponding to the
brightest region, represents the most salient object while the
lower-right object, the darkest one, represents the least salient
object. The saliency value of each object serves two functions. First,
it is used as input in Eq. (19) to decide which object is allowed
to pulse. Second, it defines the initial values of yi in Eq. (22). As
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we can see in Fig. 6(b), the square is the first to be selected while
the others remain silent. As the oscillators representing the square
keep pulsing the IoR takes effect, and after some time determined
byω (Eq. (20)), the oscillators are inhibited allowing the next most
salient object to become selected, in this example, the left object.
This process continues until all the objects have been selected once.

The overall behavior of ourmodel can be understood as follows.
An input image feeds the saliency map and the segmentation
module as illustrated in Fig. 1. The saliency map calculates the
saliency of all pixels. This process incorporates the role of local
feature contrast in guiding attention. In parallel, the LEGION
segregates the input image into a set of segments. The LEGION
network is able to achieve rapid synchronization among oscillators
activated by the same object and desynchronization between
different blocks of oscillators representing different segments
(Terman & Wang, 1995; Wang & Terman, 1997). After obtaining
the saliency map and the segmentation result, the object saliency
map is generated. Eq. (18) incorporates the size of an object into the
object-saliency map. This map feeds the object selection module,
which becomes the original LEGIONmodel if we eliminate the two
Heaviside functions in Eq. (19) (Terman & Wang, 1995). In this
equation, the first Heaviside plays the role of object selection and
the second the IoR. If the first Heaviside returns 0, i.e. the object
saliency value that feeds the oscillator does not exceed the level of
the slow inhibitor, the oscillator is excitable and can be recruited
to oscillate by one of its neighbors based on the term Si in Eq. (14a).
However, considering that the oscillators within a block are not
connected to oscillators fromanother block, and the object saliency
value for the whole block is the same, if the first Heaviside of an
oscillator is 0, the Heaviside of the whole block is also zero. Thus,
the object is inhibited. On the other hand, if the object saliency
value that feeds a block of oscillators exceeds slow inhibition, the
oscillators are allowed to oscillate and the object represented by
them is selected. At the same time, the slow inhibitor assumes a
new value through Eq. (20) which represents the object saliency of
the currently active segment. As a result, other objectswith smaller
object saliency values are prevented from being selected.

Once a block is oscillating, the IoR mechanism takes effect and
each oscillator iwithin that block has its ri reducedby Eq. (21). After
a few cycles defined by ω, ri approaches zero. Thus, the second
Heaviside of Eq. (19) returns 0, which represents the inhibition of
oscillator i and consequently the inhibition of the whole segment.
Following the inhibition of this object, the slow inhibitor has its
value decreased by Eq. (20) and the next most salient object is
selected as shown in Fig. 6.

4. Simulation results

In this section, computer simulation results are presented.
Before presenting the results,we first describe theparameters used
in themodules. In the saliencymapmodule (Section 2.1), we apply
the same parameter values used in Itti et al. (1998), except for the
definitions of the color opponencies and the Gaussian kernel as
mentioned in Section 2.1. Image segmentation is performed by the
algorithmpresented inWang and Terman (1997). In this algorithm,
the coupling strength Wij between two neighbor oscillators is set
up according to their similarity using the following rule. For gray
level images,

Wij = IM/(1 + |Ii − Ij|). (23)

For color images,

Wij = IM/


1 +

−
h∈{r,g,b}

|hi − hj|


(24)

where IM is the maximum value of the channels I, r, g , and b. In
our simulations, this value is set to 255. Ii is the gray level of pixel
i. hi represents the color channel (r, g , and b) of a color pixel i.
The parameter Wz in Eq. (15) defines the strength of the global
inhibitor. When Wz is set to a high value, it is more difficult to
group pixels into a single object, which consequently leads tomore
and smaller regions. In a way,Wz provides a control on the scale of
analysis which is not addressed in this study. Wz is adjusted for
each input image in order to produce a reasonable segmentation
result (Wang & Terman, 1997) and its value will be given when
describing the simulations.

The object selection network presented in Section 3.2 is
integrated by using the fast numerical method of singular
limit which allows for simulating large networks of relaxation
oscillators (Linsay &Wang, 1998). The following parameter values
are used for integrating the selection network by the singular
limit method: α = 6.5,Wz = 0.7, and µ = 0.125. All the other
parameters are not necessary when solving the equations using
this method. C = 1.65 is used for all the experiments. Note that
selection results are not very sensitive to these parameter values.

First, two gray level images are used as an input. Fig. 7(a)
shows the first input figure. Fig. 7(b) presents the saliency map
from Fig. 7(a) where brighter pixels indicate higher saliency
points. Here, by using Wz = 20 the LEGION network produces 17
segments as shown in Fig. 7(c). Based on the results from the
saliency map (Fig. 7(b)) and LEGION (Fig. 7(c)), the object-saliency
map is shown in Fig. 7(d). In this figure, a brighter object indicates
a higher saliency one. This map feeds the object selection network
which first chooses the most salient object shown in Fig. 7(e),
representing a lake in the central part of the scene. After that,
due to the IoR mechanism described in Section 3.2, the oscillators
representing the first selected object are inhibited allowing the
system to select the second most salient object which is shown
in Fig. 7(f). In all the simulations presented in this paper, only
the first and the second selected objects are shown to illustrate
the selection process. The next simulation, presented in Fig. 8,
is performed on an MRI (magnetic resonance imaging) image of
the human head. As in Figs. 7, 8(a) shows the input image and
Fig. 8(b) the saliencymap. For this image,Wz = 20 and the LEGION
network produces 21 segments as shown in Fig. 8(c). From the
object-saliency map in Fig. 8(d), one can see that the cortex is the
most salient object, thus, the first object to be selected as presented
in Fig. 8(e). The second object selected by the network is shown in
Fig. 8(f), corresponding to the brainstem.

Next, we present results on color images in Figs. 9–12, following
the same format as in Figs. 7 and 8. For all of them, Wz = 20. In
Fig. 9(a), due to the high contrast of the beetle with its background
composed of mostly yellow and green things, the beetle seems to
be the first object to pop out from the scene for a human observer.
This percept agrees with the result from our object-saliency map
in Fig. 9(d), where the segment corresponding to the beetle is the
brightest. As we can see in Fig. 9(e), the first object to be selected
is indeed the beetle.

Fig. 10 presents a simulation of a scene where the most salient
object appears to be a boat to a human observer. Again, due to its
high contrast with background objects, the boat is selected by our
system as the first object (see Fig. 10(e)). Part of an orange tree
is shown in Fig. 11(a). For this input image, our model selects the
two oranges as the first and the second object emerging from the
competition, and the selected objects are shown in Fig. 11(e) and
(f), respectively. Fig. 12 presents a scene of a person in Central
Park, New York. For this color image, the first selected object is
the upper body of the person shown in Fig. 12(e) and the second
selected object corresponds to the left part of the park scene shown
in Fig. 12(f).

Other simulations with gray and color images have been
conducted, and results with similar quality to that of the above
simulation results have been obtained.
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Fig. 7. (Color online) Object selection result for a gray level image. (a) Input image which is an aerial image with 160 × 160 pixels. (b) Saliency map. (c) Result of LEGION
segmentation, where each segment is represented by a distinct color. (d) Object-saliency map. (e) First object selected. (f) Second object selected.
Fig. 8. (Color online) Object selection result for a gray level image. (a) The input image which is an MRI image with 257× 257 pixels. (b) Saliency map. (c) Result of LEGION
segmentation. (d) Object-saliency map. (e) First object selected. (f) Second object selected.
5. Concluding remarks

Object-based attention has received empirical support (Mar-
tinez et al., 2007; O’Craven et al., 1999; Richard et al., 2008; Roelf-
sema et al., 1998; Shinn-Cunningham, 2008; Wang et al., 2005).
In this paper, we have presented a novel object selection model
based on oscillatory correlation theory. This model integrates sev-
eral modules. A saliency map, which calculates the saliency values
of all the locations of the input scene, a LEGION network for seg-
menting the scene into a set of segments or objects, and an object
selection network for selecting themost salient object of the scene.
Modeling visual attention with an oscillator network is motivated
by physiological studies suggesting that synchronous activity plays
a fundamental role in solving the binding problem and visual at-
tention (Fries, Reynolds, Rorie, & Desimone, 2001; Jermakowicz
& Casagrande, 2007; Singer & Gray, 1995). In contrast to previ-
ous computational models of location-based visual attention, our
model, due to the use of an image segmentation network, is able to
deal with objects directly. By integrating the saliencymap, the seg-
mentation module, and the IoR mechanism, our selection network
can select a set of objects sequentially according to their saliency.
The selection of objects based on their intrinsic saliency proposed
here also contrasts to other recent oscillatory models for selection
(Borisyuk et al., 2009; Chik et al., 2009).

Our model has several limitations that need be addressed
in future work. The proposed system only addresses bottom-
up aspects of attentional selection, and top-down guidance of
attention is not modeled. Top-down analysis could be modeled
by including a working memory and an associative memory, as
investigated in previouswork (Borisyuk&Kazanovich, 2004;Wang
& Liu, 2002). Incorporation of other visual features, such as motion
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Fig. 9. (Color online) Object selection result for a color image. (a) Input imagewith 351×256 pixels. (b) Saliencymap. (c) Result of LEGION segmentation. (d) Object-saliency
map. (e) First object selected. (f) Second object selected.
Fig. 10. (Color online) Object selection result for a color image. (a) Input imagewith 385×256 pixels. (b) Saliencymap. (c) Result of LEGION segmentation. (d) Object-saliency
map. (e) First object selected. (f) Second object selected.
Fig. 11. (Color online) Object selection result for a color image. (a) Input imagewith 256×256 pixels. (b) Saliencymap. (c) Result of LEGION segmentation. (d) Object-saliency
map. (e) First object selected. (f) Second object selected.
and object contour, among others, could further enhance the
performance of the system (see Wang, 2005). Finally, it should
also be stated that even though the architecture of our model is
motivated by experimental studies of visual attention, our model
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Fig. 12. (Color online) Object selection result for a color image. (a) Input imagewith 341×256 pixels. (b) Saliencymap. (c) Result of LEGION segmentation. (d) Object-saliency
map. (e) First object selected. (f) Second object selected.
does not simulate psychophysical data in a quantitative way as
its purpose is to perform selection of objects in real scenes. From
the psychological standpoint, many aspects of the model are gross
simplifications. For example, our model does not allow an object
to be selected more than once. Also, the time course of shifting
from one object to another is not addressed although there is
potential consistency between gamma-band oscillations (about
40-Hz) (Singer & Gray, 1995) and the rate of attentional shifts
of about 50–100 ms (Pashler, 1998; Saarinen & Julesz, 1991)
(see Fig. 6). Neurocomputational models have been developed to
simulate perceptual data of visual attention (see Corchs & Deco,
2001, among others).
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