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Abstract
Listening in a multitalker scenario, we typically attend to a sin-
gle talker through auditory selective attention. Inspired by hu-
man selective attention, we propose attentive training: a new
training framework for talker-independent speaker extraction
with an intrinsic selection mechanism. In the real world, multi-
ple talkers very unlikely start speaking at the same time. Based
on this observation, we train a deep neural network to create a
representation for the first speaker and utilize it to extract or
track that speaker from a multitalker noisy mixture. Exper-
imental results demonstrate the superiority of attentive train-
ing over widely used permutation invariant training for talker-
independent speaker extraction, especially in mismatched con-
ditions in terms of the number of speakers, speaker interaction
patterns, and the amount of speaker overlaps.
Index Terms: speaker extraction, speaker separation, talker-
independent, attentive training

1. Introduction
The cocktail party effect refers to the amazing ability of audi-
tory perception attending to (hence extracting) a single speaker
in a multitalker noisy scenario [1]. This effect has influenced the
development of the perceptual theory of selective attention [2].
Separating all speakers or extracting a single one from a mul-
titalker mixture is considered very challenging for machines,
however, the introduction of deep learning to such tasks has led
to dramatic advances in recent years [3].

Currently, there are two approaches to speaker extraction:
speaker separation and target speaker extraction. Speaker sep-
aration aims at separating all speakers from a mixture. Early
speaker separation work is extended from deep neural net-
work (DNN) based speech enhancement, and such separation is
talker-dependent. When applied to talker-independent speaker
separation, these models suffer from the well-known permuta-
tion ambiguity problem, i.e., an underlying model cannot con-
sistently assign DNN output streams to different speakers dur-
ing training. Deep clustering [4] and permutation invariant
training (PIT) [5] are two representative approaches to resolv-
ing the permutation ambiguity problem. In particular, the sim-
plicity of PIT has led to many subsequent models for speaker
separation [6, 7, 8, 9, 10].

Target speaker extraction aims at extracting a single speaker
from a multitalker mixture, where the target speaker is cued
with the help of some additional information in the form of au-
dio [11, 12, 13, 14, 15, 16] or images [17, 18, 19]. Other kinds
of cues include spatial [20, 21], speech activity [22], or onsets
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[23]. Target speaker extraction is closer to auditory selective
attention, but it is not intrinsic to model training.

In this work, we propose a new training framework, which
we name attentive training, for talker-independent speaker ex-
traction (or tracking). In the real-world environments, it is very
unlikely that multiple talkers start speaking at the same time;
such a case would lead to their grouping into the same audi-
tory stream on the basis of common onsets [24]. Therefore, we
can assume that a given multitalker mixture has nonoverlapping
speech in the beginning. We provide this important cue to a
DNN to create a representation for the starting speaker in the
early part of processing and utilize this representation for at-
tending to this speaker throughout training. In other words, net-
work selects the first speaker and then attends to it for the rest
of the multitalker mixture. This, in a way, resembles speech en-
hancement in the sense that we treat the speech signals of the
first speaker as speech, and the utterances of other speakers plus
environmental sounds as background noise.

The attentive training framework is consistent with the
dominant feature integration theory of attention [25]. Accord-
ing to this theory, attention serves to integrate perceptual fea-
tures extracted in separate analyses into an object. Learning
and attention are integral parts of perception.

A similar idea of using speaker onsets as a cue was pro-
posed in serialized output training (SOT) [26]. The SOT uses
onset order of speakers to determine the transcription order at
the output of an automatic speech recognition (ASR) system.
The proposed attentive training, on the other hand, aims at deal-
ing with speaker interference in a speech enhancement system,
and hence, is fundamentally different from SOT. The SOT out-
puts transcriptions of all the speakers in a mixture, whereas the
attentive training outputs the enhanced speech corresponding to
the first speaker.

To evaluate the efficacy of attentive training, we create a
multitalker dataset by setting the first speaker to start slightly
ahead of the rest of speakers in an utterance. Next, we train an
end-to-end time-domain model to predict the first speaker in a
given mixture. We demonstrate that a DNN model trained with
attentive training generalizes well to different test conditions,
such as an untrained number of speakers, utterances with larger
gaps between consecutive segments of the target speaker, and
smaller speaker overlaps.

Further, we compare attentive training with PIT, and ob-
serve significant improvements in many conditions, especially
in mismatched conditions. We demonstrate that attentive train-
ing can overcome the shortcomings of PIT, such as sensitivity
to the number of speakers, interaction patterns and amount of
speaker overlaps.

Additionally, we introduce a novel data generation tech-
nique for mixing an arbitrary number of speakers in a controlled
way. Given a set of speakers, their corresponding utterances,
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(a) A 2-speaker mixture with an interaction pattern 1212.

(b) A 3-speaker mixture with an interaction pattern 12132.

Figure 1: Examples of interaction patterns with 2 and 3 speak-
ers, and a minimum onset gap of A between the first and the
second speaker. In pair (a, b) inside a box, a and b respectively
represent the speaker order and the segment order.

and a set of noises, our technique can mix any number of speak-
ers with specified overlaps and speaker orders. Also, mixtures
are generated dynamically during training which provides an
additional advantage of data augmentation [10]. Our data gen-
eration technique should be a useful tool for speaker separation
and diarization research, as it can utilize speakers from any cor-
pora and generate mixtures in a flexible way. We provide our
data generation script online.

Although this study focuses on extracting the first speaker
from a mixture, we believe that the simple and effective mech-
anism of attentive training has the potential to be applicable to
a variety of selection, tracking, and related tasks, such as mul-
titalker speaker separation and speaker diarization. For speaker
separation and diarization, a straightforward extension would
be to use an iterative strategy where the first speaker is extracted
first, then second, and so on, as in [27].

2. Attentive Training Mechanism
2.1. Problem Definition

A multitalker mixture y with N samples is modeled as

y =
C∑

i=1

si + n (1)

where {y, si,n} ∈ R1×N , si is the ith speaker, n is the back-
ground noise, and C is the total number of speakers. Let mi rep-
resent the sample when ith speaker starts to speak. Without the
loss of generality, we can assume that indices i = 1, 2, . . . , C
are sorted in the order of mi < mi+1. The goal of attentive
training is to get a close estimate ŝ1 of the first speaker s1 from
y.

2.2. Data Generation

In this section, we describe our technique to generate mul-
titalker mixture. We assume that we are given a set S =
{S1, . . . , SM} of speakers, their corresponding utterances
USk = {sk

1 , . . . , s
k
kN}, and a set of noise segments N =

{n1, . . . ,nnN}. We create a multitaker mixture by adding to-
gether speech segments of multiple speakers and a noise seg-
ment.

First, we sort a given set of speech segments in an increas-
ing order of their onset times, and based on this, define a con-

Algorithm 1 A pseudo code for generating a random mul-
titalker mixture.

1: Input: S,U ,N ,P
2: Output: y, s1, . . . , sC ,n
3: Sample a speaker pattern p from P
4: Set C = Len(Unique(p))
5: Sample C speakers S1, . . . , SC from S
6: Initialize List V = [ ], E = [ ], Set E1 ={ }, Bool Overlap = False
7: for k in p and i in {1, 2, . . . , Len(p)} do
8: Sample an utterance s from USk ;
9: Remove silences in the beginning and the end of s

10: Sample a value T for segment length
11: Extract a random segment x of length T from s
12: Set Overlap = True with a probability poverlap
13: if i = 1 then
14: PadLeft = 0
15: else if i = 2 then
16: Sample a value for B
17: if k in E1 then
18: Overlap = False
19: end if
20: if no Overlap then
21: Set PadLeft = E[ -1 ] + B
22: else
23: Sample PadLeft from [A, E[ -1 ]]
24: end if
25: else
26: Sample a value for B
27: if k in E1 and E1[k] = E[−1] then
28: Overlap = False
29: end if
30: if no Overlap then
31: Set PadLeft = E[ -1 ] + B
32: else
33: Sample PadLeft from [E[ -2 ] + B, E[ -1 ] ]
34: end if
35: end if
36: Apply a left padding of PadLeft to x
37: Set V [ i ] = x
38: Set E[ -1 ] = Len(x) + PadLeft
39: Set E1[ k ] = Len(x) + PadLeft
40: Sort E in increasing order
41: Set E = [E[ -2 ], E[ -1 ]]
42: end for
43: Apply right padding to segments in V to match lengths
44: Sample a separate value of loudness for all segments
45: Scale all segments for loudness
46: Create a multitalker mixture by adding all segments together
47: Sample a noise segment from N
48: Sample a value for noise loudness
49: Scale the noise segment for loudness and add it to the multitalker mixture

cept called interaction pattern representing the order of speak-
ers in a mixture. For example, an interaction pattern of 1212
represents a mixture created by adding 4 segments sorted in
increasing order of their onset times, where the first and the
third segments are from the first speaker and the second and the
fourth segments are from the second speaker. We also define
two parameters A and B, where A is the minimum allowed gap
between the onset of the first and the second speaker, and B
is the gap between two adjacent nonoverlapping segments (re-
gardless of speakers). We illustrate two interaction patterns in
Fig. 1. For data generation, we use interaction patterns from a
predefined set P = {p1, . . . , pP }.

Similar to the LibriCSS dataset [28], we generate mixtures
in a way that a given mixture can have an arbitrary number of
speakers, but at a given time instant, only a maximum of two
speakers can overlap. Algo. 1 describes the steps used in gen-
erating a sample mixture from S,U ,N , and P . In Algo. 1,
Len(x) represents the length of x, Unique(p) denotes the set of
unique elements in p, and E[ -k ] denotes the kth element in E
from the end.

In Algo. 1, the list E is used to keep track of allowed over-
lap regions and the set E1 is used to make sure that two different

202



Figure 2: The model architecture used in this study.

segments from the same speaker do not overlap. We remove si-
lences from all utterances and then pad zeroes in the beginning
to shift a given segment. We use no padding for the first speaker,
the second speaker has a minimum padding of A, and the rest
of the speakers use padding in a way that a maximum of two
speakers overlap at a time.

2.3. DNN Model

We employ a recently proposed attentive recurrent network
(ARN) for time-domain speech enhancement [29]. The model
architecture is shown in Fig. 2. It comprises an input linear
layer followed by four ARN layers and one output linear layer.
An input mixture y is first converted to frames Y ∈ RT×L,
where T is the number of frames and L is the frame size. Next,
frames in Y are projected to size D, processed by a stack of
four ARN layers, and projected back to size L using the output
linear layer. Finally, an overlap-and-add (OLA) is used to get
the enhanced waveform. A more detailed description of ARN
can be found in [29].

2.4. Loss Function

For attentive training, we use an utterance level SNR loss be-
tween the first speaker s1 and its estimate ŝ1, defined as

L(s1, ŝ1) = −10 · log10

||s1||2
||s1 − ŝ1||2

(2)

3. Experiments
3.1. Datasets

We create two datasets: one from the WSJ0 corpus [30] and the
other from Librispeech [31]. For WSJ0, we use a random split
of 80% and 20% from si tr s speakers for training and valida-
tion. All speakers from si dt 05 and si et 05 are used for eval-
uation. For Librispeech, we use speakers from train-clean-100,
dev-clean, and test-clean for training, validation, and evaluation
respectively. The Librispeech corpus is more challenging than
WSJ0 as it has a larger number of speakers, and a wide variety
of acoustic conditions [32].

We use noises from the WHAM! corpus [33]. First, we split
training noises into 10-s chunks, and validation and test noises
into 15-s chunks. All chunks shorter than 3 seconds are omitted.
We use an LKFS [34] based loudness for controlling the SNR.
We sample loudness from [−25,−30] dB for speaker segments
and from [−35,−40] dB for noise segments.

Table 1: Attentive training and PIT comparisons for single
speaker test set with speaker pattern 1111.

Dataset WSJ0 LibriSpeech
Metric SI-SNR PESQ eSTOI SI-SNR PESQ eSTOI
Mix. 9.6 2.54 76.3 9.5 2.33 72.2
PIT-2 18.3 3.52 92.9 15.0 3.06 85.2
AT-2 18.0 3.52 92.5 14.9 3.11 85.4
PIT-3 17.7 3.44 91.7 13.1 2.92 82.7
AT-3 17.4 3.47 92.3 14.4 3.05 84.7

3.2. Experimental settings

All the utterances are resampled to 16 kHz. A frame size of
16 ms, frame shift of 4 ms, and D = 512 is used for ARN.
ARN uses BLSTMs with 256 hidden units in both directions.
We train 2-speaker and 3-speaker models. All the models are
trained on interaction patterns with 4 segments. A 2-speaker
model is trained on 1 and 2 speakers. A 3-speaker model is
trained on 1, 2, and 3 speakers. For a p-speaker PIT model,
we use p linear layers at the output, and for an input with k
(k <= p) speakers, we select the minimum loss assignment
from all possible Cp

k assignments.
All training samples are randomly and dynamically gener-

ated during training, and an episode of 100k samples is consid-
ered as one epoch. We use poverlap = 0.75, A = 1 second.
B is sampled from [0.25, 0.50] seconds. Segment length, T , is
sampled from [2, 3] seconds for training and from [2, 4] seconds
for validation and test. We use interaction patterns 1221 and
1231 for validation of 2-speaker and 3-speaker models respec-
tively. We provide our dataset generation script at https://
github.com/ashutosh620/AttentiveTraining.

All the training utterances longer than 10 seconds are
trimmed to 10 seconds. All the models are trained for 100
epochs using the loss in (2) with a batch size of 26 utterances.
The learning rate is initialized with 0.0004 and scaled by 0.98
after every two epochs.

All the models are evaluated on interaction patterns from
{1111, 1212, 1221, 122221, 1231, 123231, 12341, 123451}
and three overlap types: {Max, Half, None}. Following Algo.
1, Max uses maximum allowed overlap, Half uses half of the
allowed regions for overlap, and None uses no overlap. We
generate 3000 evaluation utterances for each combination of
the interaction pattern and overlap type. The pattern 1212 is
used to assess performance for an alternating pattern of the tar-
get and interfering speaker, 1221 is used to assess performance
with a larger gap between two consecutive segments of the tar-
get speaker. The pattern 122221 is used to assess performance
with an even larger gap not used during training. Similarly, pat-
terns 1231 and 123231 are used to assess performance for 3
speakers with different gaps, where 123231 is not used during
training. Patterns 12341 and 123451 are used to assess perfor-
mance for untrained numbers of 4 and 5 speakers.

We use scale-invariant SNR (SI-SNR), extended short-time
objective intelligibility (eSTOI) [35], and perceptual evaluation
of speech quality (PESQ) [36] as evaluation metrics. Objective
scores are computed for the first speaker and eSTOI is reported
in percentage.

3.3. Experimental results

Attentive training and PIT are compared in Tables 1 and 2,
where PIT-2 and AT-2 are 2-speaker models, and PIT-3 and AT-
3 are 3-speaker models. Table 1 shows results for interaction
pattern 1111, i.e., test utterances with one speaker. We observe
that 2-speaker models are better than 3-speaker models and at-
tentive training and PIT obtain similar scores except for the 3-
speaker model on Librispeech where attentive training is better
than PIT.

Next, we compare attentive training and PIT for 2 to 5
speakers in Table 2. We notice that a 2-speaker model is better
than a 3-speaker model for interaction patterns with 2 speakers,
and vice versa. Additionally, for interaction patterns with 4 and
5 speakers, a 3-speaker model is better than a 2-speaker model.

Further, we can see that attentive training performs better
than PIT for all the cases. Also, performance improvements are
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Table 2: Attentive training and PIT comparisons for 2 to 5 speakers. (a) number of speakers, (b) interaction pattern.

Dataset WSJ0 LibriSpeech
trained? Type Max Half None Max Half None

(a) (b) (a) (b) Metric SI-SNR PESQ eSTOI SI-SNR PESQ ESTOI SI-SNR PESQ eSTOI SI-SNR PESQ eSTOI SI-SNR PESQ ESTOI SI-SNR PESQ eSTOI

2

1212

- - Mix. -0.6 1.85 51.9 -0.7 2.07 61.6 -1.0 2.48 75.9 -0.6 1.67 51.4 -0.7 1.86 59.5 -1.0 2.28 71.9

✓ ✓
PIT-2 13.8 2.97 84.7 15.3 3.13 88.5 17.2 3.31 93.1 11.7 2.62 76.4 13.1 2.80 81.0 15.4 3.04 87.0
AT-2 14.0 3.04 85.7 15.5 3.24 89.3 17.5 3.58 93.6 12.6 2.77 79.2 13.9 2.97 83.0 16.0 3.34 88.0

✓ ✓
PIT-3 12.5 2.82 81.7 13.9 2.98 85.7 16.0 3.22 91.4 9.9 2.41 71.7 10.9 2.57 76.0 13.5 2.93 83.3
AT-3 12.8 2.93 83.6 14.4 3.13 87.6 16.3 3.44 92.5 11.1 2.60 75.8 12.3 2.78 79.7 14.7 3.18 85.4

1221

- - Mix. -0.6 1.93 51.6 -0.8 2.21 62.4 -1.0 2.45 75.8 -0.6 1.77 51.2 -0.8 2.06 60.1 -1.0 2.31 71.6

✓ ✓
PIT-2 13.7 3.02 84.7 15.5 3.20 88.7 17.4 3.30 93.1 11.6 2.69 76.2 13.3 2.91 81.2 15.4 3.05 86.6
AT-2 13.9 3.14 85.8 15.7 3.43 89.5 17.9 3.68 93.7 12.6 2.90 79.0 14.2 3.21 83.3 16.2 3.47 87.9

✓ ✓
PIT-3 12.4 2.88 81.7 14.2 3.08 86.1 16.2 3.20 91.1 9.8 2.51 71.5 11.1 2.76 76.4 13.3 2.97 82.6
AT-3 12.6 3.01 83.4 14.6 3.31 87.8 16.8 3.52 92.7 11.1 2.70 75.7 12.6 3.03 80.0 14.6 3.30 85.0

122221

- - Mix. -3.6 2.11 51.6 -3.7 2.27 62.8 -3.8 2.42 76.0 -3.7 2.00 51.1 -3.8 2.16 60.2 -3.9 2.32 71.6

✓ ✕
PIT-2 13.6 3.06 84.8 15.5 3.16 88.8 17.3 3.20 93.1 11.4 2.80 76.4 12.9 2.93 81.4 14.9 3.02 87.0
AT-2 13.6 3.36 85.7 15.4 3.55 89.5 17.4 3.69 93.7 11.9 3.14 78.7 13.5 3.34 83.2 14.8 3.46 88.4

✓ ✕
PIT-3 12.4 2.95 81.9 14.3 3.06 86.4 16.4 3.13 91.3 9.9 2.72 71.8 11.3 2.86 77.0 13.6 3.01 83.3
AT-3 12.6 3.21 83.7 14.7 3.40 88.2 16.8 3.51 92.8 11.1 3.05 76.0 12.6 3.24 80.3 14.7 3.40 85.4

3

1231

- - Mix. -0.6 2.01 56.3 -0.7 2.24 65.5 -1.0 2.45 75.9 -0.6 1.86 55.3 -0.8 2.08 62.7 -1.0 2.32 71.7

✕ ✕
PIT-2 6.0 2.66 79.2 5.8 2.85 85.5 8.9 3.10 92.9 5.8 2.48 73.6 5.3 2.65 78.7 8.9 2.91 86.6
AT-2 8.3 2.88 84.4 8.4 3.09 88.8 13.6 3.50 93.6 8.3 2.73 79.4 8.4 2.94 83.4 12.9 3.32 88.3

✓ ✓
PIT-3 12.0 2.85 82.2 14.3 3.07 86.9 15.5 3.20 91.4 9.9 2.55 73.4 11.7 2.79 78.8 13.5 2.98 83.8
AT-3 11.8 2.94 83.3 14.6 3.26 88.5 16.3 3.50 92.6 10.9 2.71 77.0 12.6 2.99 80.9 14.5 3.29 84.9

123231

- - Mix. -3.5 2.10 56.8 -3.6 2.26 65.9 -3.8 2.42 76.1 -3.6 1.98 55.6 -3.7 2.14 62.6 -3.9 2.32 71.6

✕ ✕
PIT-2 0.8 2.52 79.1 1.0 2.69 85.1 5.9 2.95 92.9 0.4 2.40 72.5 0.3 2.53 77.7 5.0 2.81 86.7
AT-2 2.6 2.67 84.2 3.2 2.89 88.4 9.6 3.37 93.7 1.9 2.56 78.1 2.1 2.73 82.3 7.2 3.12 88.7

✓ ✕
PIT-3 11.6 2.84 82.8 13.5 3.00 87.2 14.8 3.11 91.5 9.5 2.62 74.0 11.1 2.80 78.9 12.9 2.98 84.3
AT-3 11.9 3.04 84.4 13.9 3.28 88.7 15.6 3.48 92.8 10.7 2.87 77.4 12.4 3.11 81.1 14.5 3.39 85.4

4 12341

- - Mix. -2.3 2.13 59.8 -2.4 2.26 65.9 -2.6 2.43 76.1 -2.4 1.98 57.5 -2.5 2.12 62.6 -2.8 2.31 71.8

✕ ✕
PIT-2 2.2 2.60 80.6 2.3 2.72 84.7 4.5 2.95 93.1 1.8 2.44 73.7 1.8 2.57 77.7 4.5 2.81 86.4
AT-2 4.1 2.77 85.6 4.8 2.96 88.5 9.2 3.37 93.9 3.5 2.63 79.2 4.1 2.80 82.6 8.0 3.16 88.5

✕ ✕
PIT-3 7.9 2.79 82.7 8.4 2.91 85.8 10.4 3.08 91.6 7.2 2.55 73.5 7.3 2.67 76.7 8.8 2.88 83.3
AT-3 11.7 3.05 85.3 13.8 3.27 88.6 15.5 3.49 92.9 10.7 2.83 77.8 12.4 3.06 80.9 14.3 3.35 85.2

5 123451

- - Mix. -3.5 2.10 56.9 -3.6 2.26 65.7 -3.8 2.42 76.0 -3.6 1.98 55.7 -3.7 2.14 62.8 -4.0 2.32 71.8

✕ ✕
PIT-2 0.4 2.47 77.5 0.5 2.64 84.2 1.9 2.85 93.2 -0.1 2.37 71.7 -0.1 2.51 77.1 1.7 2.74 86.4
AT-2 2.2 2.64 83.4 2.7 2.87 88.1 5.9 3.28 93.8 1.4 2.52 77.3 1.7 2.70 82.0 3.5 2.97 88.7

✕ ✕
PIT-3 4.7 2.64 79.4 5.0 2.80 84.5 6.9 2.98 91.7 4.7 2.47 71.3 4.6 2.61 75.8 5.5 2.80 82.8
AT-3 10.8 3.00 84.3 13.2 3.26 88.6 14.6 3.46 92.9 10.1 2.84 77.1 12.2 3.10 81.1 14.1 3.38 85.4

higher for the difficult Librispeech dataset, and for less over-
lap cases, such as Half and None. Most impressive improve-
ments are observed in PESQ scores. Worth mentioning is that
for the pattern 122221, which is not used during training, we
observe larger improvements compared to other 2-speaker pat-
terns. Similarly, with a 3-speaker model, larger improvements
are observed for the pattern 123231 compared to 1231. This
indicates that attentive training is helpful in improving gener-
alization for inputs with a trained number of speakers but an
untrained interaction pattern.

We notice that AT-3 is the only model that obtains strong
results for all the cases. PIT-3 is much worse than AT-3 for 4
and 5 speakers. For example, on WSJ0 with Max overlap, AT-3
obtains an average SI-SNR of 10.8 dB and PESQ of 3.00 for
the 5-speaker pattern 123451, but PIT-3 obtains a much worse
lower SI-SNR of 4.7 dB and PESQ of 2.64. We also notice
that AT-2 and PIT-2 do not generalize well to 3 or more speak-
ers. Even though better than PIT-2, AT-2 is far worse that AT-3
for 3 and more speakers. We expect AT-2 to generalize to an
untrained number of speakers as it is trained to treat the first
speaker as the target and the rest of the signal as the interfer-
ence. We believe that the unexpected behavior from AT-2 to not
generalize may be caused by limited interaction patterns used
in AT-2 training. It uses patterns with only 1 or 2 speakers dur-
ing training, and as a result, learns to preserve the first speaker
and suppress the second one, not the expected behavior of pre-
serving the first speaker and suppressing the rest. AT-3 on the
other hand learns to extract the first speaker and suppress the
remaining speakers.

In summary, proposed attentive training leads to a robust
DNN model that generalizes to untrained test conditions in
terms of number of speakers, speaker interaction patterns, and
amount of speaker overlaps. Also, improvements over PIT in

Table 3: Effect of reducing the onset difference between the first
and the second speaker.

Onset diff. 1 s 0.75 s 0.5 s 0.25 s
Model PIT-2 AT-2 PIT-2 AT-2 PIT-2 AT-2 PIT-2 AT-2

SI-SNR 13.8 13.9 13.8 13.7 13.7 13.2 13.6 11.6
PESQ 2.97 3.04 2.97 3.02 2.97 2.99 2.96 2.88
ESTOI 84.7 85.6 84.7 85.2 84.6 84.2 84.7 81.7

mismatched conditions are impressive.

Finally, we analyze the effect of reducing the onset differ-
ence between the first and the second speaker. We modify the
onset difference of the test set with the interaction pattern of
1212. Table 3 compares AT-2 and PIT-2 on WSJ. We observe
that even though AT-2 is trained with a minimum onset differ-
ence of 1 second, it obtains a similar performance for lower
onset differences of 0.75 and 0.5 seconds. A considerable drop
is observed only when the onset difference is reduced to a small
value of 0.25 seconds. Moreover, AT-2 and PIT-2 are compara-
ble up to an onset difference of 0.5 seconds.

4. Conclusion

We have proposed a novel attentive training framework for
talker-independent speaker extraction. The proposed frame-
work has an intrinsic mechanism for speaker selection. Ex-
perimental results have demonstrated the superiority of atten-
tive training over permutation invariant training, especially in
mismatched test conditions. Future work includes evaluating
the proposed framework for multitalker speaker separation and
speaker diarization.
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